Tidy data
Pivoting
Separating and Uniting
Separating a column
table3_sep <- table3 %>%
separate(col = rate, into = c("cases", "population"))
Unite two columns
table3_sep %>%
unite(col = "rate", c(cases, population), sep = "/")
## # A tibble: 6 × 3
## country year rate
## <chr> <dbl> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
Missing Values
bikes <- tibble(
bike_model = c("A","A", "B", "B", "C"),
material = c("steel", "aluminum", "steel", "aluminum", "steel"),
price = c(100, 200, 300, 400, 500)
)
bikes %>%
pivot_wider(names_from = bike_model, values_from = price)
## # A tibble: 2 × 4
## material A B C
## <chr> <dbl> <dbl> <dbl>
## 1 steel 100 300 500
## 2 aluminum 200 400 NA
bikes %>%
complete(bike_model, material)
## # A tibble: 6 × 3
## bike_model material price
## <chr> <chr> <dbl>
## 1 A aluminum 200
## 2 A steel 100
## 3 B aluminum 400
## 4 B steel 300
## 5 C aluminum NA
## 6 C steel 500
treatment <- tribble(
~ person, ~ treatment, ~response,
"Derrick Whitmore", 1, 7,
NA, 2, 10,
NA, 3, 9,
"Katherine Burke", 1, 4
)
treatment %>%
fill(person, .direction = "down")
## # A tibble: 4 × 3
## person treatment response
## <chr> <dbl> <dbl>
## 1 Derrick Whitmore 1 7
## 2 Derrick Whitmore 2 10
## 3 Derrick Whitmore 3 9
## 4 Katherine Burke 1 4
Non-tidy data