Preparación base de datos
- Codificación variable tratamiento y edad
- Codificación variable ocupación
- Codificación variable religión
- Diagnósticos
- Recodificando tipo de MAC no detectable con una sola variable
- Rocidificando el tipo de MAC acorde a las nuevas agrupaciones
library(readxl)
GAT <- read_excel("GAT.xlsx")
#se unifican las variables antes y después del diagnóstico por tipo de tratamiento.
#1
library(dplyr)
GAT <- GAT %>%
mutate(QUIM = ifelse(AQuimioTerSiste == "Checked" | BQuimioTerSiste == "Checked", "Si", "No")) %>%
mutate(RAD = ifelse(ARadio == "Checked" | BRadio == "Checked", "Si", "No")) %>%
mutate(CIR = ifelse(ACirugia == "Checked" | BCirugia == "Checked", "Si", "No")) %>%
mutate(PAL = ifelse(APaliativo == "Checked" | BPaliativo == "Checked", "Si", "No"))
GAT <- GAT %>% mutate(Edadcat = cut(Edad, breaks = c(-Inf, 49, 64, Inf), right = F, labels = c("< 50 años", "50 - 64 años", ">=65")))
#2
GAT$Nocup <- ifelse(GAT$Ocupacion %in% c("Cesante"), "Cesante",
ifelse(GAT$Ocupacion %in% c("Estudiante"), "Estudiante",
ifelse(GAT$Ocupacion %in% c("Empleado", "Independiente"), "Empleado/Independiente",
ifelse(GAT$Ocupacion %in% c("Hogar", "Pensionado"), "Hogar/Pensionado",GAT$Ocupacion))))
#3
GAT$Nrel <- ifelse(GAT$Religion %in% c("Católica"), "Católica",
ifelse(GAT$Religion %in% c("Cristiana"), "Cristiana",
ifelse(GAT$Religion %in% c("Judía", "No profesa religión", "Otra"), "Otra", GAT$Religion)))
#4
GAT$CIE <- ifelse(substr(GAT$TipoCancer, 1, 1) == "D", "D", substr(GAT$TipoCancer, 1, 3))
GAT$Tipotumor <- ifelse(GAT$CIE == "D", "hematologico", "tumor solido")
#5
#Unificando el tipo de MAC que no se capta con un única respuesta
#terapias de cuerpo
#mente cuerpo
GAT <- GAT %>%
mutate(cuerpo = ifelse(rowSums(!is.na(select(., Masaje, Reflexología, Quiropraxia))) > 0 & rowSums(select(., Masaje, Reflexología, Quiropraxia) == "Si", na.rm = TRUE) > 0,
"Si", "No"))
#terapia energetica
GAT <- GAT %>%
mutate(energetica = ifelse(rowSums(!is.na(select(., Bioenergética, `Terapia electromagnética`, Acupuntura, TerapiaNeural))) > 0 & rowSums(select(., Bioenergética, `Terapia electromagnética`, Acupuntura, TerapiaNeural) == "Si", na.rm = TRUE) > 0,
"Si", "No"))
#terapia mente
GAT <- GAT %>%
mutate(mente = ifelse(rowSums(!is.na(select(., Meditacion, Yoga, Taichi, Yorae, OtroMente))) > 0 & rowSums(select(., Meditacion, Yoga, Taichi, Yorae, OtroMente) == "Checked", na.rm = TRUE) > 0, "Si", "No"))
#6
GAT <- GAT %>%
mutate(Base_planta = ifelse(Planta == "Si" | Hierbas == "Si", "Si", "No")) %>%
mutate(Base_animal = ifelse(Animal == "Si" | OrigenAnimal == "Si", "Si", "No")) %>%
mutate(Nutricionales = ifelse(Dieta == "Si" | Vitaminas == "Si", "Si", "No")) %>%
mutate(whole = ifelse(Homeopatia == "Si" | Tradicionales == "Si" | cuerpo == "Si" | energetica == "Si" | mente == "Si", "Si", "No"))
Cruce de variables
Tratamientos
GAT$Sexo <- as.factor(GAT$Sexo)
GAT$Nrel <- as.factor(GAT$Nrel)
GAT$Nocup <- as.factor(GAT$Nocup)
GAT$QUIM <- as.factor(GAT$QUIM)
GAT$RAD <- as.factor(GAT$RAD)
GAT$PAL <- as.factor(GAT$PAL)
GAT$CIR <- as.factor(GAT$CIR)
GAT$Base_animal <- as.factor(GAT$Base_animal)
GAT$Base_planta <- as.factor(GAT$Base_planta)
GAT$Nutricionales <- as.factor(GAT$Nutricionales)
GAT$whole <- as.factor(GAT$whole)
GAT$EstadoCancer <- as.factor(GAT$EstadoCancer)
GAT$Tipotumor <- as.factor(GAT$Tipotumor)
GAT_MAC <- GAT %>% filter(AlternativaActual == "Si")
myVars1 <- c("Sexo", "Nocup", "Nrel", "Edadcat")
catVars1 <- c("Sexo", "Nocup", "Nrel", "Edadcat")
library(tableone)
table1 <- CreateTableOne(vars = myVars1, data = GAT_MAC, factorVars = catVars1, includeNA = FALSE, strata = "QUIM")
table2 <- CreateTableOne(vars = myVars1, data = GAT_MAC, factorVars = catVars1, includeNA = FALSE, strata = "RAD")
table3 <- CreateTableOne(vars = myVars1, data = GAT_MAC, factorVars = catVars1, includeNA = FALSE, strata = "CIR")
table4 <- CreateTableOne(vars = myVars1, data = GAT_MAC, factorVars = catVars1, includeNA = FALSE, strata = "PAL")
table1 <- as.data.frame(print(table1, show.all = TRUE, printToggle = FALSE))
table2 <- as.data.frame(print(table2, show.all = TRUE, printToggle = FALSE))
table3 <- as.data.frame(print(table3, show.all = TRUE, printToggle = FALSE))
table4 <- as.data.frame(print(table4, show.all = TRUE, printToggle = FALSE))
library(knitr)
library(kableExtra)
kable(table1, format = "html", caption = "Cruce Quim - VRBLS SOC_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#D7261E") %>%
column_spec(2, border_left = T, background = "#F3E6E3")
Cruce Quim - VRBLS SOC_DEM.
|
No
|
Si
|
p
|
test
|
n
|
61
|
1549
|
|
|
Sexo = Masculino (%)
|
24 (39.3)
|
458 (29.6)
|
0.135
|
|
Nocup (%)
|
|
|
0.315
|
|
Cesante
|
7 (11.5)
|
156 (10.1)
|
|
|
Empleado/Independiente
|
19 (31.1)
|
495 (32.0)
|
|
|
Estudiante
|
2 ( 3.3)
|
14 ( 0.9)
|
|
|
Hogar/Pensionado
|
33 (54.1)
|
884 (57.1)
|
|
|
Nrel (%)
|
|
|
0.005
|
|
Católica
|
45 (73.8)
|
1177 (76.0)
|
|
|
Cristiana
|
6 ( 9.8)
|
273 (17.6)
|
|
|
Otra
|
10 (16.4)
|
99 ( 6.4)
|
|
|
Edadcat (%)
|
|
|
0.017
|
|
< 50 años
|
10 (16.4)
|
369 (23.8)
|
|
|
50 - 64 años
|
18 (29.5)
|
620 (40.0)
|
|
|
>=65
|
33 (54.1)
|
560 (36.2)
|
|
|
kable(table2, format = "html", caption = "Cruce RAD - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "blue") %>%
column_spec(2, border_left = T, background = "#ADD8E6")
Cruce RAD - VRBLS SOCIO_DEM.
|
No
|
Si
|
p
|
test
|
n
|
1033
|
577
|
|
|
Sexo = Masculino (%)
|
313 (30.3)
|
169 (29.3)
|
0.713
|
|
Nocup (%)
|
|
|
0.210
|
|
Cesante
|
102 ( 9.9)
|
61 (10.6)
|
|
|
Empleado/Independiente
|
342 (33.1)
|
172 (29.8)
|
|
|
Estudiante
|
7 ( 0.7)
|
9 ( 1.6)
|
|
|
Hogar/Pensionado
|
582 (56.3)
|
335 (58.1)
|
|
|
Nrel (%)
|
|
|
0.013
|
|
Católica
|
765 (74.1)
|
457 (79.2)
|
|
|
Cristiana
|
185 (17.9)
|
94 (16.3)
|
|
|
Otra
|
83 ( 8.0)
|
26 ( 4.5)
|
|
|
Edadcat (%)
|
|
|
0.064
|
|
< 50 años
|
260 (25.2)
|
119 (20.6)
|
|
|
50 - 64 años
|
410 (39.7)
|
228 (39.5)
|
|
|
>=65
|
363 (35.1)
|
230 (39.9)
|
|
|
kable(table3, format = "html", caption = "Cruce CIR - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#698B22") %>%
column_spec(2, border_left = T, background = "#98FB98")
Cruce CIR - VRBLS SOCIO_DEM.
|
No
|
Si
|
p
|
test
|
n
|
782
|
828
|
|
|
Sexo = Masculino (%)
|
257 (32.9)
|
225 (27.2)
|
0.015
|
|
Nocup (%)
|
|
|
0.973
|
|
Cesante
|
78 (10.0)
|
85 (10.3)
|
|
|
Empleado/Independiente
|
252 (32.2)
|
262 (31.6)
|
|
|
Estudiante
|
7 ( 0.9)
|
9 ( 1.1)
|
|
|
Hogar/Pensionado
|
445 (56.9)
|
472 (57.0)
|
|
|
Nrel (%)
|
|
|
0.017
|
|
Católica
|
572 (73.1)
|
650 (78.5)
|
|
|
Cristiana
|
145 (18.5)
|
134 (16.2)
|
|
|
Otra
|
65 ( 8.3)
|
44 ( 5.3)
|
|
|
Edadcat (%)
|
|
|
0.089
|
|
< 50 años
|
202 (25.8)
|
177 (21.4)
|
|
|
50 - 64 años
|
295 (37.7)
|
343 (41.4)
|
|
|
>=65
|
285 (36.4)
|
308 (37.2)
|
|
|
kable(table4, format = "html", caption = "Cruce PAL - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#8B475D") %>%
column_spec(2, border_left = T, background = "#FFC0CB")
Cruce PAL - VRBLS SOCIO_DEM.
|
No
|
Si
|
p
|
test
|
n
|
1569
|
41
|
|
|
Sexo = Masculino (%)
|
466 (29.7)
|
16 (39.0)
|
0.265
|
|
Nocup (%)
|
|
|
0.012
|
|
Cesante
|
153 ( 9.8)
|
10 (24.4)
|
|
|
Empleado/Independiente
|
505 (32.2)
|
9 (22.0)
|
|
|
Estudiante
|
15 ( 1.0)
|
1 ( 2.4)
|
|
|
Hogar/Pensionado
|
896 (57.1)
|
21 (51.2)
|
|
|
Nrel (%)
|
|
|
0.104
|
|
Católica
|
1195 (76.2)
|
27 (65.9)
|
|
|
Cristiana
|
271 (17.3)
|
8 (19.5)
|
|
|
Otra
|
103 ( 6.6)
|
6 (14.6)
|
|
|
Edadcat (%)
|
|
|
0.005
|
|
< 50 años
|
374 (23.8)
|
5 (12.2)
|
|
|
50 - 64 años
|
627 (40.0)
|
11 (26.8)
|
|
|
>=65
|
568 (36.2)
|
25 (61.0)
|
|
|
Cruce diagnóstico
GAT_TRAT <- GAT %>% filter(EstadoCancer != "No sabe")
GAT_TRAT <- GAT_TRAT %>%
mutate(EstadoCancer = case_when(
EstadoCancer == "Con ganglios comprometidos, pero sin metástasis a otros órganos" | EstadoCancer == "Localizado" ~ "Localizado/Con ganglios comprometidos",
EstadoCancer == "Con metástasis a otros órganos" ~ "Metastasis"
))
myVars2 <- c("Sexo", "Nocup", "Nrel", "Edadcat", "EstadoCancer", "Tipotumor")
catVars2 <- c("Sexo", "Nocup", "Nrel", "Edadcat", "EstadoCancer", "Tipotumor")
table5 <- CreateTableOne(vars = myVars2, data = GAT_TRAT, factorVars = catVars2, includeNA = FALSE, strata = "AlternativaActual", addOverall = TRUE)
table5 <- as.data.frame(print(table5, show.all = TRUE, printToggle = FALSE))
kable(table5, format = "html", caption = "Cruce MAC - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "orange") %>%
column_spec(2, border_left = T, background = "#EEDD82")
Cruce MAC - VRBLS SOCIO_DEM.
|
Overall
|
No
|
Si
|
p
|
test
|
n
|
2830
|
1365
|
1465
|
|
|
Sexo = Masculino (%)
|
1044 (36.9)
|
607 (44.5)
|
437 (29.8)
|
<0.001
|
|
Nocup (%)
|
|
|
|
<0.001
|
|
Cesante
|
362 (12.8)
|
223 (16.3)
|
139 ( 9.5)
|
|
|
Empleado/Independiente
|
857 (30.3)
|
379 (27.8)
|
478 (32.6)
|
|
|
Estudiante
|
28 ( 1.0)
|
12 ( 0.9)
|
16 ( 1.1)
|
|
|
Hogar/Pensionado
|
1583 (55.9)
|
751 (55.0)
|
832 (56.8)
|
|
|
Nrel (%)
|
|
|
|
<0.001
|
|
Católica
|
2214 (78.2)
|
1104 (80.9)
|
1110 (75.8)
|
|
|
Cristiana
|
417 (14.7)
|
164 (12.0)
|
253 (17.3)
|
|
|
Otra
|
199 ( 7.0)
|
97 ( 7.1)
|
102 ( 7.0)
|
|
|
Edadcat (%)
|
|
|
|
<0.001
|
|
< 50 años
|
638 (22.5)
|
277 (20.3)
|
361 (24.6)
|
|
|
50 - 64 años
|
1044 (36.9)
|
450 (33.0)
|
594 (40.5)
|
|
|
>=65
|
1148 (40.6)
|
638 (46.7)
|
510 (34.8)
|
|
|
EstadoCancer = Metastasis (%)
|
826 (29.2)
|
401 (29.4)
|
425 (29.0)
|
0.862
|
|
Tipotumor = tumor solido (%)
|
2750 (97.2)
|
1329 (97.4)
|
1421 (97.0)
|
0.636
|
|
Tipo de MAC
GAT_TRAT_MAC <- GAT_TRAT %>% filter(AlternativaActual == "Si")
table6 <- CreateTableOne(vars = myVars2, data = GAT_TRAT_MAC, factorVars = catVars2, includeNA = FALSE, strata = "Base_animal")
table7 <- CreateTableOne(vars = myVars2, data = GAT_TRAT_MAC, factorVars = catVars2, includeNA = FALSE, strata = "Base_planta")
table8 <- CreateTableOne(vars = myVars2, data = GAT_TRAT_MAC, factorVars = catVars2, includeNA = FALSE, strata = "Nutricionales")
table9 <- CreateTableOne(vars = myVars2, data = GAT_TRAT_MAC, factorVars = catVars2, includeNA = FALSE, strata = "whole")
table6 <- as.data.frame(print(table6, show.all = TRUE, printToggle = FALSE))
table7 <- as.data.frame(print(table7, show.all = TRUE, printToggle = FALSE))
table8 <- as.data.frame(print(table8, show.all = TRUE, printToggle = FALSE))
table9 <- as.data.frame(print(table9, show.all = TRUE, printToggle = FALSE))
kable(table6, format = "html", caption = "Cruce MAC ANIMAL - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#CD5555") %>%
column_spec(2, border_left = T, background = "#CD8C95")
Cruce MAC ANIMAL - VRBLS SOCIO_DEM.
|
No
|
Si
|
p
|
test
|
n
|
542
|
392
|
|
|
Sexo = Masculino (%)
|
138 (25.5)
|
121 (30.9)
|
0.081
|
|
Nocup (%)
|
|
|
0.021
|
|
Cesante
|
34 ( 6.3)
|
46 (11.7)
|
|
|
Empleado/Independiente
|
195 (36.0)
|
121 (30.9)
|
|
|
Estudiante
|
6 ( 1.1)
|
5 ( 1.3)
|
|
|
Hogar/Pensionado
|
307 (56.6)
|
220 (56.1)
|
|
|
Nrel (%)
|
|
|
0.419
|
|
Católica
|
401 (74.0)
|
298 (76.0)
|
|
|
Cristiana
|
97 (17.9)
|
71 (18.1)
|
|
|
Otra
|
44 ( 8.1)
|
23 ( 5.9)
|
|
|
Edadcat (%)
|
|
|
0.188
|
|
< 50 años
|
157 (29.0)
|
97 (24.7)
|
|
|
50 - 64 años
|
213 (39.3)
|
176 (44.9)
|
|
|
>=65
|
172 (31.7)
|
119 (30.4)
|
|
|
EstadoCancer = Metastasis (%)
|
133 (24.5)
|
114 (29.1)
|
0.139
|
|
Tipotumor = tumor solido (%)
|
533 (98.3)
|
377 (96.2)
|
0.064
|
|
kable(table7, format = "html", caption = "Cruce MAC PLANTAS - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#8B7E66") %>%
column_spec(2, border_left = T, background = "#FFDAB9")
Cruce MAC PLANTAS - VRBLS SOCIO_DEM.
|
No
|
Si
|
p
|
test
|
n
|
8
|
1212
|
|
|
Sexo = Masculino (%)
|
1 ( 12.5)
|
355 (29.3)
|
0.515
|
|
Nocup (%)
|
|
|
0.967
|
|
Cesante
|
1 ( 12.5)
|
114 ( 9.4)
|
|
|
Empleado/Independiente
|
3 ( 37.5)
|
400 (33.0)
|
|
|
Estudiante
|
0 ( 0.0)
|
11 ( 0.9)
|
|
|
Hogar/Pensionado
|
4 ( 50.0)
|
687 (56.7)
|
|
|
Nrel (%)
|
|
|
0.693
|
|
Católica
|
5 ( 62.5)
|
907 (74.8)
|
|
|
Cristiana
|
2 ( 25.0)
|
223 (18.4)
|
|
|
Otra
|
1 ( 12.5)
|
82 ( 6.8)
|
|
|
Edadcat (%)
|
|
|
0.827
|
|
< 50 años
|
2 ( 25.0)
|
311 (25.7)
|
|
|
50 - 64 años
|
4 ( 50.0)
|
488 (40.3)
|
|
|
>=65
|
2 ( 25.0)
|
413 (34.1)
|
|
|
EstadoCancer = Metastasis (%)
|
3 ( 37.5)
|
336 (27.7)
|
0.826
|
|
Tipotumor = tumor solido (%)
|
8 (100.0)
|
1175 (96.9)
|
1.000
|
|
kable(table8, format = "html", caption = "Cruce MAC NUTRICIONAL - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#B03060") %>%
column_spec(2, border_left = T, background = "#FFDAB9")
Cruce MAC NUTRICIONAL - VRBLS SOCIO_DEM.
|
No
|
Si
|
p
|
test
|
n
|
516
|
948
|
|
|
Sexo = Masculino (%)
|
166 (32.2)
|
270 (28.5)
|
0.157
|
|
Nocup (%)
|
|
|
0.001
|
|
Cesante
|
52 (10.1)
|
87 ( 9.2)
|
|
|
Empleado/Independiente
|
133 (25.8)
|
345 (36.4)
|
|
|
Estudiante
|
6 ( 1.2)
|
10 ( 1.1)
|
|
|
Hogar/Pensionado
|
325 (63.0)
|
506 (53.4)
|
|
|
Nrel (%)
|
|
|
0.434
|
|
Católica
|
401 (77.7)
|
708 (74.7)
|
|
|
Cristiana
|
82 (15.9)
|
171 (18.0)
|
|
|
Otra
|
33 ( 6.4)
|
69 ( 7.3)
|
|
|
Edadcat (%)
|
|
|
0.959
|
|
< 50 años
|
125 (24.2)
|
236 (24.9)
|
|
|
50 - 64 años
|
211 (40.9)
|
383 (40.4)
|
|
|
>=65
|
180 (34.9)
|
329 (34.7)
|
|
|
EstadoCancer = Metastasis (%)
|
163 (31.6)
|
262 (27.6)
|
0.126
|
|
Tipotumor = tumor solido (%)
|
501 (97.1)
|
919 (96.9)
|
0.998
|
|
kable(table9, format = "html", caption = "Cruce MAC WHOLE - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "purple") %>%
column_spec(2, border_left = T, background = "#BA55D3")
Cruce MAC WHOLE - VRBLS SOCIO_DEM.
|
No
|
Si
|
p
|
test
|
n
|
1070
|
395
|
|
|
Sexo = Masculino (%)
|
328 (30.7)
|
109 (27.6)
|
0.284
|
|
Nocup (%)
|
|
|
0.005
|
|
Cesante
|
109 (10.2)
|
30 ( 7.6)
|
|
|
Empleado/Independiente
|
323 (30.2)
|
155 (39.2)
|
|
|
Estudiante
|
10 ( 0.9)
|
6 ( 1.5)
|
|
|
Hogar/Pensionado
|
628 (58.7)
|
204 (51.6)
|
|
|
Nrel (%)
|
|
|
<0.001
|
|
Católica
|
829 (77.5)
|
281 (71.1)
|
|
|
Cristiana
|
185 (17.3)
|
68 (17.2)
|
|
|
Otra
|
56 ( 5.2)
|
46 (11.6)
|
|
|
Edadcat (%)
|
|
|
0.882
|
|
< 50 años
|
260 (24.3)
|
101 (25.6)
|
|
|
50 - 64 años
|
436 (40.7)
|
158 (40.0)
|
|
|
>=65
|
374 (35.0)
|
136 (34.4)
|
|
|
EstadoCancer = Metastasis (%)
|
306 (28.6)
|
119 (30.1)
|
0.612
|
|
Tipotumor = tumor solido (%)
|
1048 (97.9)
|
373 (94.4)
|
0.001
|
|