# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(dplyr)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
fro = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# Weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
# Calculate sd of portfolio returns
sd_portfolio <- sd(portfolio_returns_tbl$returns)
mean_portfolio <- mean(portfolio_returns_tbl$returns)
portfolio_returns_tbl %>%
# Add a new Variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio, "ext_neg", "not_ext_neg")) %>%
ggplot(aes(x = returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.003) +
scale_x_continuous(breaks = seq(-0.06, 0.06, 0.02)) +
labs(x = "monthly returns")
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AGG -0.599
## 2 EEM -0.0512
## 3 EFA -0.142
## 4 IJS 0.216
## 5 SPY -0.264
## 6 Portfolio -0.168
# Plot Skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio"))
# Transform data: Calculate Rolling Skewness
rolling_skew_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = 24,
FUN = skewness,
col_rename = "Skew") %>%
select(-returns) %>%
na.omit()
# Plot
rolling_skew_tbl %>%
ggplot(aes(x = date, y = Skew)) +
geom_line(color = "cornflowerblue") +
geom_hline(yintercept = 0, linetype = "dotted", size = 2) +
# Formatting
scale_y_continuous(limits = c(-1,1), breaks = seq(-1,1,0.2)) +
theme(plot.title = element_text(hjust = 0.5))
# Labeling
labs(y = "Skewness",
x = NULL,
title = "Rolling 24-Month Skewness") +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 0.8,
label = str_glue ("The 24 month rolling skewness is positive for about half of the lifetime, even though the overall skewness is negative"))
## NULL