hundred_sales <- read.csv('https://raw.githubusercontent.com/Kingtilon1/MachineLearning-BigData/refs/heads/main/100%20Sales%20Records.csv')
thousand_sales <- read.csv('https://raw.githubusercontent.com/Kingtilon1/MachineLearning-BigData/refs/heads/main/1000%20Sales%20Records.csv')
Lets explore the data to gain some insights This snippet provides an overview of the dataset by showing the first few rows, including column names and sample data. Let’s examine the dataset’s structure to understand the data types and column names:
head(hundred_sales)
## Region Country Item.Type
## 1 Australia and Oceania Tuvalu Baby Food
## 2 Central America and the Caribbean Grenada Cereal
## 3 Europe Russia Office Supplies
## 4 Sub-Saharan Africa Sao Tome and Principe Fruits
## 5 Sub-Saharan Africa Rwanda Office Supplies
## 6 Australia and Oceania Solomon Islands Baby Food
## Sales.Channel Order.Priority Order.Date Order.ID Ship.Date Units.Sold
## 1 Offline H 5/28/2010 669165933 6/27/2010 9925
## 2 Online C 8/22/2012 963881480 9/15/2012 2804
## 3 Offline L 5/2/2014 341417157 5/8/2014 1779
## 4 Online C 6/20/2014 514321792 7/5/2014 8102
## 5 Offline L 2/1/2013 115456712 2/6/2013 5062
## 6 Online C 2/4/2015 547995746 2/21/2015 2974
## Unit.Price Unit.Cost Total.Revenue Total.Cost Total.Profit
## 1 255.28 159.42 2533654.00 1582243.50 951410.50
## 2 205.70 117.11 576782.80 328376.44 248406.36
## 3 651.21 524.96 1158502.59 933903.84 224598.75
## 4 9.33 6.92 75591.66 56065.84 19525.82
## 5 651.21 524.96 3296425.02 2657347.52 639077.50
## 6 255.28 159.42 759202.72 474115.08 285087.64
head(thousand_sales)
## Region Country Item.Type Sales.Channel Order.Priority
## 1 Middle East and North Africa Libya Cosmetics Offline M
## 2 North America Canada Vegetables Online M
## 3 Middle East and North Africa Libya Baby Food Offline C
## 4 Asia Japan Cereal Offline C
## 5 Sub-Saharan Africa Chad Fruits Offline H
## 6 Europe Armenia Cereal Online H
## Order.Date Order.ID Ship.Date Units.Sold Unit.Price Unit.Cost Total.Revenue
## 1 10/18/2014 686800706 10/31/2014 8446 437.20 263.33 3692591.20
## 2 11/7/2011 185941302 12/8/2011 3018 154.06 90.93 464953.08
## 3 10/31/2016 246222341 12/9/2016 1517 255.28 159.42 387259.76
## 4 4/10/2010 161442649 5/12/2010 3322 205.70 117.11 683335.40
## 5 8/16/2011 645713555 8/31/2011 9845 9.33 6.92 91853.85
## 6 11/24/2014 683458888 12/28/2014 9528 205.70 117.11 1959909.60
## Total.Cost Total.Profit
## 1 2224085.2 1468506.02
## 2 274426.7 190526.34
## 3 241840.1 145419.62
## 4 389039.4 294295.98
## 5 68127.4 23726.45
## 6 1115824.1 844085.52
There are no missing values within both data sets
The average amount of units sold within the smaller dataset are 5128.71 units while the average for the larger dataset is 5053.9888. The larger dataset may include more polorizing numbers within the ’Unites sold column, causing the the average to be lower than the smaller dataset”
str(hundred_sales)
## 'data.frame': 100 obs. of 14 variables:
## $ Region : chr "Australia and Oceania" "Central America and the Caribbean" "Europe" "Sub-Saharan Africa" ...
## $ Country : chr "Tuvalu" "Grenada" "Russia" "Sao Tome and Principe" ...
## $ Item.Type : chr "Baby Food" "Cereal" "Office Supplies" "Fruits" ...
## $ Sales.Channel : chr "Offline" "Online" "Offline" "Online" ...
## $ Order.Priority: chr "H" "C" "L" "C" ...
## $ Order.Date : chr "5/28/2010" "8/22/2012" "5/2/2014" "6/20/2014" ...
## $ Order.ID : int 669165933 963881480 341417157 514321792 115456712 547995746 135425221 871543967 770463311 616607081 ...
## $ Ship.Date : chr "6/27/2010" "9/15/2012" "5/8/2014" "7/5/2014" ...
## $ Units.Sold : int 9925 2804 1779 8102 5062 2974 4187 8082 6070 6593 ...
## $ Unit.Price : num 255.28 205.7 651.21 9.33 651.21 ...
## $ Unit.Cost : num 159.42 117.11 524.96 6.92 524.96 ...
## $ Total.Revenue : num 2533654 576783 1158503 75592 3296425 ...
## $ Total.Cost : num 1582244 328376 933904 56066 2657348 ...
## $ Total.Profit : num 951411 248406 224599 19526 639078 ...
str(thousand_sales)
## 'data.frame': 1000 obs. of 14 variables:
## $ Region : chr "Middle East and North Africa" "North America" "Middle East and North Africa" "Asia" ...
## $ Country : chr "Libya" "Canada" "Libya" "Japan" ...
## $ Item.Type : chr "Cosmetics" "Vegetables" "Baby Food" "Cereal" ...
## $ Sales.Channel : chr "Offline" "Online" "Offline" "Offline" ...
## $ Order.Priority: chr "M" "M" "C" "C" ...
## $ Order.Date : chr "10/18/2014" "11/7/2011" "10/31/2016" "4/10/2010" ...
## $ Order.ID : int 686800706 185941302 246222341 161442649 645713555 683458888 679414975 208630645 266467225 118598544 ...
## $ Ship.Date : chr "10/31/2014" "12/8/2011" "12/9/2016" "5/12/2010" ...
## $ Units.Sold : int 8446 3018 1517 3322 9845 9528 2844 7299 2428 4800 ...
## $ Unit.Price : num 437.2 154.06 255.28 205.7 9.33 ...
## $ Unit.Cost : num 263.33 90.93 159.42 117.11 6.92 ...
## $ Total.Revenue : num 3692591 464953 387260 683335 91854 ...
## $ Total.Cost : num 2224085 274427 241840 389039 68127 ...
## $ Total.Profit : num 1468506 190526 145420 294296 23726 ...
skim(hundred_sales)
| Name | hundred_sales |
| Number of rows | 100 |
| Number of columns | 14 |
| _______________________ | |
| Column type frequency: | |
| character | 7 |
| numeric | 7 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| Region | 0 | 1 | 4 | 33 | 0 | 7 | 0 |
| Country | 0 | 1 | 4 | 32 | 0 | 76 | 0 |
| Item.Type | 0 | 1 | 4 | 15 | 0 | 12 | 0 |
| Sales.Channel | 0 | 1 | 6 | 7 | 0 | 2 | 0 |
| Order.Priority | 0 | 1 | 1 | 1 | 0 | 4 | 0 |
| Order.Date | 0 | 1 | 8 | 10 | 0 | 100 | 0 |
| Ship.Date | 0 | 1 | 8 | 10 | 0 | 99 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Order.ID | 0 | 1 | 555020412.36 | 260615257.13 | 114606559.00 | 338922488.00 | 557708561.00 | 790755080.75 | 994022214.00 | ▇▆▆▇▇ |
| Units.Sold | 0 | 1 | 5128.71 | 2794.48 | 124.00 | 2836.25 | 5382.50 | 7369.00 | 9925.00 | ▆▆▇▆▆ |
| Unit.Price | 0 | 1 | 276.76 | 235.59 | 9.33 | 81.73 | 179.88 | 437.20 | 668.27 | ▇▅▁▃▅ |
| Unit.Cost | 0 | 1 | 191.05 | 188.21 | 6.92 | 35.84 | 107.28 | 263.33 | 524.96 | ▇▂▂▁▃ |
| Total.Revenue | 0 | 1 | 1373487.68 | 1460028.71 | 4870.26 | 268721.21 | 752314.36 | 2212044.68 | 5997054.98 | ▇▂▂▁▁ |
| Total.Cost | 0 | 1 | 931805.70 | 1083938.25 | 3612.24 | 168868.03 | 363566.38 | 1613869.72 | 4509793.96 | ▇▁▂▁▁ |
| Total.Profit | 0 | 1 | 441681.98 | 438537.91 | 1258.02 | 121443.58 | 290768.00 | 635828.80 | 1719922.04 | ▇▃▂▁▁ |
skim(thousand_sales)
| Name | thousand_sales |
| Number of rows | 1000 |
| Number of columns | 14 |
| _______________________ | |
| Column type frequency: | |
| character | 7 |
| numeric | 7 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| Region | 0 | 1 | 4 | 33 | 0 | 7 | 0 |
| Country | 0 | 1 | 4 | 32 | 0 | 185 | 0 |
| Item.Type | 0 | 1 | 4 | 15 | 0 | 12 | 0 |
| Sales.Channel | 0 | 1 | 6 | 7 | 0 | 2 | 0 |
| Order.Priority | 0 | 1 | 1 | 1 | 0 | 4 | 0 |
| Order.Date | 0 | 1 | 8 | 10 | 0 | 841 | 0 |
| Ship.Date | 0 | 1 | 8 | 10 | 0 | 835 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Order.ID | 0 | 1 | 549681324.74 | 257133358.84 | 1.02928e+08 | 328074026.00 | 556609713.50 | 769694482.75 | 995529830.00 | ▇▇▇▇▇ |
| Units.Sold | 0 | 1 | 5053.99 | 2901.38 | 1.30000e+01 | 2420.25 | 5184.00 | 7536.75 | 9998.00 | ▇▆▇▇▇ |
| Unit.Price | 0 | 1 | 262.11 | 216.02 | 9.33000e+00 | 81.73 | 154.06 | 421.89 | 668.27 | ▇▇▁▃▃ |
| Unit.Cost | 0 | 1 | 184.97 | 175.29 | 6.92000e+00 | 56.67 | 97.44 | 263.33 | 524.96 | ▇▂▁▁▂ |
| Total.Revenue | 0 | 1 | 1327321.84 | 1486514.56 | 2.04325e+03 | 281191.90 | 754939.18 | 1733502.75 | 6617209.54 | ▇▂▁▁▁ |
| Total.Cost | 0 | 1 | 936119.23 | 1162570.75 | 1.41675e+03 | 164931.88 | 464726.06 | 1141750.09 | 5204978.40 | ▇▁▁▁▁ |
| Total.Profit | 0 | 1 | 391202.61 | 383640.19 | 5.32610e+02 | 98376.12 | 277225.98 | 548456.84 | 1726181.36 | ▇▃▂▁▁ |
Both Data frames share the same columns
colnames(hundred_sales)
## [1] "Region" "Country" "Item.Type" "Sales.Channel"
## [5] "Order.Priority" "Order.Date" "Order.ID" "Ship.Date"
## [9] "Units.Sold" "Unit.Price" "Unit.Cost" "Total.Revenue"
## [13] "Total.Cost" "Total.Profit"
colnames(thousand_sales)
## [1] "Region" "Country" "Item.Type" "Sales.Channel"
## [5] "Order.Priority" "Order.Date" "Order.ID" "Ship.Date"
## [9] "Units.Sold" "Unit.Price" "Unit.Cost" "Total.Revenue"
## [13] "Total.Cost" "Total.Profit"
Now, let’s visualize a correlation matrix for the numerical columns in the dataset. This will help identify pairs of columns that are highly correlated. We see that Total.Revenue, Total.Cost, and Total.Profit have high correlations, there’s also a high correlation between those values and Units.Sold and Units.Price
thousand_sales_num <- thousand_sales %>% select(where(is.numeric))
thousand_sales_num.cor = cor(thousand_sales_num)
corrplot(thousand_sales_num.cor)
Lets do the same with the smaller dataset Similar to the larger dataset, the data set has a high correlation between Total.Revenue, Total.Cost, and Total.Profit, there’s also a high correlation between those values and Units.Sold and Units.Price
hundred_sales_num <- hundred_sales %>% select(where(is.numeric))
hundred_sales_num.cor = cor(hundred_sales_num)
corrplot(hundred_sales_num.cor)
Which unit item has the highest average price?
average_price <- hundred_sales %>%
group_by(Item.Type) %>%
summarise(Average.Unit.Price = mean(Unit.Price)) %>%
arrange(desc(Average.Unit.Price))
# Print the result
print(average_price)
## # A tibble: 12 × 2
## Item.Type Average.Unit.Price
## <chr> <dbl>
## 1 Household 668.
## 2 Office Supplies 651.
## 3 Cosmetics 437.
## 4 Meat 422.
## 5 Baby Food 255.
## 6 Cereal 206.
## 7 Vegetables 154.
## 8 Snacks 153.
## 9 Clothes 109.
## 10 Personal Care 81.7
## 11 Beverages 47.4
## 12 Fruits 9.33
It’s clear that Household items have the average Unit price
Since the item type seems like it will have a significant impact on total revenue I will perform one hot encoding on the Item.Type column for both dataframes
encoded_data <- model.matrix(~ Item.Type - 1, data = thousand_sales)
encoded_df <- as.data.frame(encoded_data)
thousand_sales <- bind_cols(thousand_sales, encoded_df)
thousand_sales_num <- thousand_sales %>% select(where(is.numeric))
print(thousand_sales)
## Region Country
## 1 Middle East and North Africa Libya
## 2 North America Canada
## 3 Middle East and North Africa Libya
## 4 Asia Japan
## 5 Sub-Saharan Africa Chad
## 6 Europe Armenia
## 7 Sub-Saharan Africa Eritrea
## 8 Europe Montenegro
## 9 Central America and the Caribbean Jamaica
## 10 Australia and Oceania Fiji
## 11 Sub-Saharan Africa Togo
## 12 Europe Montenegro
## 13 Europe Greece
## 14 Sub-Saharan Africa Sudan
## 15 Asia Maldives
## 16 Europe Montenegro
## 17 Europe Estonia
## 18 North America Greenland
## 19 Sub-Saharan Africa Cape Verde
## 20 Sub-Saharan Africa Senegal
## 21 Australia and Oceania Federated States of Micronesia
## 22 Europe Bulgaria
## 23 Middle East and North Africa Algeria
## 24 Asia Mongolia
## 25 Central America and the Caribbean Grenada
## 26 Central America and the Caribbean Grenada
## 27 Sub-Saharan Africa Senegal
## 28 North America Greenland
## 29 Sub-Saharan Africa Chad
## 30 Sub-Saharan Africa Mauritius
## 31 Middle East and North Africa Morocco
## 32 Central America and the Caribbean Honduras
## 33 Sub-Saharan Africa Benin
## 34 Europe Greece
## 35 Central America and the Caribbean Jamaica
## 36 Sub-Saharan Africa Equatorial Guinea
## 37 Sub-Saharan Africa Swaziland
## 38 Central America and the Caribbean Trinidad and Tobago
## 39 Europe Sweden
## 40 Europe Belarus
## 41 Sub-Saharan Africa Guinea-Bissau
## 42 Asia Mongolia
## 43 Middle East and North Africa Turkey
## 44 Sub-Saharan Africa Central African Republic
## 45 Sub-Saharan Africa Equatorial Guinea
## 46 Asia Laos
## 47 Europe Armenia
## 48 Europe Greece
## 49 Middle East and North Africa Israel
## 50 Asia Bhutan
## 51 Australia and Oceania Vanuatu
## 52 Sub-Saharan Africa Burundi
## 53 Europe Ukraine
## 54 Europe Croatia
## 55 Sub-Saharan Africa Madagascar
## 56 Asia Malaysia
## 57 Asia Uzbekistan
## 58 Europe Italy
## 59 Asia Nepal
## 60 Australia and Oceania Fiji
## 61 Europe Portugal
## 62 Central America and the Caribbean Panama
## 63 Europe Belarus
## 64 Sub-Saharan Africa Botswana
## 65 Sub-Saharan Africa Tanzania
## 66 Europe Romania
## 67 Sub-Saharan Africa Mali
## 68 Sub-Saharan Africa Central African Republic
## 69 Sub-Saharan Africa Niger
## 70 Europe Austria
## 71 Asia India
## 72 Europe Luxembourg
## 73 Sub-Saharan Africa Cape Verde
## 74 Europe Sweden
## 75 Europe Iceland
## 76 Middle East and North Africa Qatar
## 77 Sub-Saharan Africa South Sudan
## 78 Europe United Kingdom
## 79 Middle East and North Africa Tunisia
## 80 North America United States of America
## 81 Sub-Saharan Africa Liberia
## 82 Sub-Saharan Africa Eritrea
## 83 Asia South Korea
## 84 Sub-Saharan Africa Kenya
## 85 Sub-Saharan Africa Rwanda
## 86 Central America and the Caribbean Cuba
## 87 Middle East and North Africa Libya
## 88 Europe Czech Republic
## 89 Europe Montenegro
## 90 Europe Montenegro
## 91 Asia Philippines
## 92 Central America and the Caribbean El Salvador
## 93 Australia and Oceania Tonga
## 94 Sub-Saharan Africa Democratic Republic of the Congo
## 95 Middle East and North Africa Afghanistan
## 96 Australia and Oceania Tuvalu
## 97 Sub-Saharan Africa Sudan
## 98 Sub-Saharan Africa Niger
## 99 Sub-Saharan Africa Gabon
## 100 Australia and Oceania East Timor
## 101 North America United States of America
## 102 Middle East and North Africa Jordan
## 103 Europe Cyprus
## 104 Sub-Saharan Africa Malawi
## 105 Europe Iceland
## 106 Middle East and North Africa Israel
## 107 Middle East and North Africa United Arab Emirates
## 108 Asia China
## 109 Sub-Saharan Africa Kenya
## 110 Middle East and North Africa Somalia
## 111 Australia and Oceania Tonga
## 112 Asia Bangladesh
## 113 Middle East and North Africa Egypt
## 114 Sub-Saharan Africa Eritrea
## 115 Sub-Saharan Africa Swaziland
## 116 Asia Vietnam
## 117 Australia and Oceania Marshall Islands
## 118 Asia Taiwan
## 119 Europe Ireland
## 120 Sub-Saharan Africa Rwanda
## 121 Europe Sweden
## 122 Sub-Saharan Africa Gabon
## 123 Sub-Saharan Africa South Africa
## 124 Europe United Kingdom
## 125 Europe Albania
## 126 Asia Malaysia
## 127 Sub-Saharan Africa Ghana
## 128 Central America and the Caribbean Cuba
## 129 Central America and the Caribbean Saint Lucia
## 130 Europe Romania
## 131 Europe Portugal
## 132 Europe Macedonia
## 133 Asia China
## 134 Europe Germany
## 135 Europe Ireland
## 136 Europe Poland
## 137 Sub-Saharan Africa Namibia
## 138 Asia Uzbekistan
## 139 Sub-Saharan Africa Zimbabwe
## 140 Asia Mongolia
## 141 Europe Norway
## 142 Middle East and North Africa Oman
## 143 Europe Serbia
## 144 Sub-Saharan Africa Democratic Republic of the Congo
## 145 Europe Bulgaria
## 146 Asia Brunei
## 147 Europe Serbia
## 148 Sub-Saharan Africa Ghana
## 149 Sub-Saharan Africa Malawi
## 150 Sub-Saharan Africa Zimbabwe
## 151 Europe Cyprus
## 152 Central America and the Caribbean Nicaragua
## 153 Europe Estonia
## 154 Europe Estonia
## 155 Europe Lithuania
## 156 Sub-Saharan Africa Republic of the Congo
## 157 Europe Czech Republic
## 158 Sub-Saharan Africa Cameroon
## 159 Asia Vietnam
## 160 Europe Moldova
## 161 Middle East and North Africa Bahrain
## 162 Europe Hungary
## 163 Australia and Oceania Marshall Islands
## 164 Middle East and North Africa Iraq
## 165 Europe Albania
## 166 Sub-Saharan Africa Lesotho
## 167 Middle East and North Africa Lebanon
## 168 Europe Hungary
## 169 Asia Japan
## 170 Europe Georgia
## 171 Europe Estonia
## 172 Europe Luxembourg
## 173 Sub-Saharan Africa Swaziland
## 174 Europe Romania
## 175 Sub-Saharan Africa Ethiopia
## 176 Sub-Saharan Africa Chad
## 177 Middle East and North Africa Morocco
## 178 North America Mexico
## 179 Sub-Saharan Africa Nigeria
## 180 Central America and the Caribbean Trinidad and Tobago
## 181 Europe Moldova
## 182 Australia and Oceania Solomon Islands
## 183 Asia India
## 184 Sub-Saharan Africa Burkina Faso
## 185 Australia and Oceania Kiribati
## 186 Middle East and North Africa Israel
## 187 Sub-Saharan Africa Comoros
## 188 Middle East and North Africa Iran
## 189 Asia Vietnam
## 190 Central America and the Caribbean Belize
## 191 Europe Belarus
## 192 North America United States of America
## 193 Europe Poland
## 194 North America Canada
## 195 Middle East and North Africa Israel
## 196 Middle East and North Africa Lebanon
## 197 Europe Andorra
## 198 Europe Slovakia
## 199 Sub-Saharan Africa Liberia
## 200 Central America and the Caribbean Antigua and Barbuda
## 201 Asia China
## 202 Sub-Saharan Africa Niger
## 203 Europe United Kingdom
## 204 Asia Bangladesh
## 205 Asia Myanmar
## 206 Australia and Oceania Tonga
## 207 Sub-Saharan Africa Guinea-Bissau
## 208 Australia and Oceania Nauru
## 209 Sub-Saharan Africa Swaziland
## 210 Europe Finland
## 211 Australia and Oceania Papua New Guinea
## 212 Sub-Saharan Africa Mauritius
## 213 Sub-Saharan Africa Mozambique
## 214 Europe Bulgaria
## 215 Europe Spain
## 216 Australia and Oceania Vanuatu
## 217 Europe Belgium
## 218 Europe Belgium
## 219 Sub-Saharan Africa Guinea-Bissau
## 220 Sub-Saharan Africa Togo
## 221 Sub-Saharan Africa Cote d'Ivoire
## 222 Sub-Saharan Africa Republic of the Congo
## 223 Middle East and North Africa Libya
## 224 Australia and Oceania East Timor
## 225 Europe Switzerland
## 226 Australia and Oceania Palau
## 227 Middle East and North Africa Jordan
## 228 Europe Slovenia
## 229 Asia South Korea
## 230 Europe Norway
## 231 Middle East and North Africa Afghanistan
## 232 Asia Bangladesh
## 233 Sub-Saharan Africa Guinea
## 234 Central America and the Caribbean Cuba
## 235 Europe Russia
## 236 Sub-Saharan Africa Seychelles
## 237 Asia South Korea
## 238 Sub-Saharan Africa Ghana
## 239 Central America and the Caribbean Costa Rica
## 240 Europe Romania
## 241 Europe Czech Republic
## 242 Europe Liechtenstein
## 243 Sub-Saharan Africa Seychelles
## 244 Middle East and North Africa Somalia
## 245 Australia and Oceania Solomon Islands
## 246 Sub-Saharan Africa Uganda
## 247 Sub-Saharan Africa Equatorial Guinea
## 248 Central America and the Caribbean Costa Rica
## 249 Europe Moldova
## 250 Sub-Saharan Africa Burkina Faso
## 251 Central America and the Caribbean Guatemala
## 252 Sub-Saharan Africa Swaziland
## 253 Asia Maldives
## 254 Asia Thailand
## 255 Sub-Saharan Africa Sudan
## 256 Central America and the Caribbean Costa Rica
## 257 Europe Denmark
## 258 Sub-Saharan Africa Angola
## 259 Australia and Oceania Papua New Guinea
## 260 Asia North Korea
## 261 Central America and the Caribbean El Salvador
## 262 Sub-Saharan Africa Burkina Faso
## 263 Middle East and North Africa Yemen
## 264 Sub-Saharan Africa Republic of the Congo
## 265 Europe Andorra
## 266 Central America and the Caribbean Dominican Republic
## 267 Middle East and North Africa Israel
## 268 Australia and Oceania Solomon Islands
## 269 Sub-Saharan Africa Liberia
## 270 Sub-Saharan Africa Mali
## 271 Asia Uzbekistan
## 272 Middle East and North Africa Tunisia
## 273 Europe Vatican City
## 274 Sub-Saharan Africa Djibouti
## 275 Europe Ukraine
## 276 Australia and Oceania East Timor
## 277 Sub-Saharan Africa Uganda
## 278 Sub-Saharan Africa Guinea
## 279 Sub-Saharan Africa Equatorial Guinea
## 280 Europe Malta
## 281 Europe Cyprus
## 282 Europe Czech Republic
## 283 Middle East and North Africa Libya
## 284 Asia Vietnam
## 285 Middle East and North Africa Jordan
## 286 Sub-Saharan Africa Mali
## 287 Europe Czech Republic
## 288 Europe Slovakia
## 289 Sub-Saharan Africa Zimbabwe
## 290 Central America and the Caribbean Honduras
## 291 Europe Switzerland
## 292 Sub-Saharan Africa South Africa
## 293 Sub-Saharan Africa Uganda
## 294 Middle East and North Africa Iran
## 295 Middle East and North Africa Algeria
## 296 Sub-Saharan Africa Central African Republic
## 297 Central America and the Caribbean The Bahamas
## 298 Sub-Saharan Africa South Africa
## 299 Sub-Saharan Africa Benin
## 300 Europe Hungary
## 301 Europe Austria
## 302 Asia Tajikistan
## 303 Europe Portugal
## 304 Europe Belgium
## 305 Europe Slovenia
## 306 Europe Czech Republic
## 307 Australia and Oceania Marshall Islands
## 308 Sub-Saharan Africa Sudan
## 309 Central America and the Caribbean Dominican Republic
## 310 Sub-Saharan Africa Tanzania
## 311 Europe Switzerland
## 312 North America Greenland
## 313 Australia and Oceania Tonga
## 314 Middle East and North Africa Saudi Arabia
## 315 Central America and the Caribbean Belize
## 316 Sub-Saharan Africa Angola
## 317 Asia Malaysia
## 318 Sub-Saharan Africa Ethiopia
## 319 North America Greenland
## 320 Sub-Saharan Africa Benin
## 321 Middle East and North Africa Yemen
## 322 Sub-Saharan Africa Rwanda
## 323 Sub-Saharan Africa Mauritania
## 324 Australia and Oceania New Zealand
## 325 Australia and Oceania Samoa
## 326 Australia and Oceania Fiji
## 327 Sub-Saharan Africa Malawi
## 328 Australia and Oceania Marshall Islands
## 329 Central America and the Caribbean Grenada
## 330 Europe Luxembourg
## 331 Sub-Saharan Africa Zimbabwe
## 332 Asia China
## 333 North America United States of America
## 334 Sub-Saharan Africa Central African Republic
## 335 Central America and the Caribbean Antigua and Barbuda
## 336 Central America and the Caribbean Guatemala
## 337 Middle East and North Africa Qatar
## 338 Middle East and North Africa Israel
## 339 Asia Thailand
## 340 Asia Singapore
## 341 Asia North Korea
## 342 Europe Austria
## 343 Asia Japan
## 344 Sub-Saharan Africa Zimbabwe
## 345 Europe Lithuania
## 346 Europe Luxembourg
## 347 Sub-Saharan Africa Central African Republic
## 348 Europe Norway
## 349 Sub-Saharan Africa Democratic Republic of the Congo
## 350 Australia and Oceania New Zealand
## 351 Europe Ukraine
## 352 Asia Taiwan
## 353 Europe Italy
## 354 Europe Finland
## 355 Sub-Saharan Africa Sudan
## 356 Europe Croatia
## 357 Sub-Saharan Africa Mauritania
## 358 Australia and Oceania New Zealand
## 359 Middle East and North Africa Pakistan
## 360 Europe Poland
## 361 Europe Lithuania
## 362 Middle East and North Africa Pakistan
## 363 Australia and Oceania East Timor
## 364 Australia and Oceania Marshall Islands
## 365 Central America and the Caribbean Cuba
## 366 North America Greenland
## 367 Europe Luxembourg
## 368 Middle East and North Africa Israel
## 369 Sub-Saharan Africa Djibouti
## 370 Europe Bulgaria
## 371 Asia Mongolia
## 372 Central America and the Caribbean Dominican Republic
## 373 Middle East and North Africa Yemen
## 374 Australia and Oceania Federated States of Micronesia
## 375 Europe Finland
## 376 Central America and the Caribbean The Bahamas
## 377 Central America and the Caribbean Grenada
## 378 Sub-Saharan Africa Sao Tome and Principe
## 379 Central America and the Caribbean El Salvador
## 380 Europe Sweden
## 381 Asia Turkmenistan
## 382 Europe Monaco
## 383 Middle East and North Africa Turkey
## 384 Sub-Saharan Africa Mozambique
## 385 Middle East and North Africa Yemen
## 386 Asia Philippines
## 387 Sub-Saharan Africa Democratic Republic of the Congo
## 388 Australia and Oceania Fiji
## 389 Europe Macedonia
## 390 Middle East and North Africa Tunisia
## 391 Europe Liechtenstein
## 392 Middle East and North Africa Qatar
## 393 Australia and Oceania Tonga
## 394 Europe Belgium
## 395 Sub-Saharan Africa Chad
## 396 Asia Thailand
## 397 Europe Iceland
## 398 Central America and the Caribbean Saint Lucia
## 399 Asia Japan
## 400 Asia India
## 401 Australia and Oceania Vanuatu
## 402 Sub-Saharan Africa Chad
## 403 Sub-Saharan Africa Malawi
## 404 Europe Finland
## 405 Middle East and North Africa Turkey
## 406 Sub-Saharan Africa South Africa
## 407 Europe Lithuania
## 408 Europe Russia
## 409 Central America and the Caribbean The Bahamas
## 410 Central America and the Caribbean The Bahamas
## 411 Middle East and North Africa Turkey
## 412 Sub-Saharan Africa Mauritius
## 413 Europe Bulgaria
## 414 Middle East and North Africa Iran
## 415 Sub-Saharan Africa Ghana
## 416 Sub-Saharan Africa Malawi
## 417 Sub-Saharan Africa Zimbabwe
## 418 Asia Tajikistan
## 419 Europe Czech Republic
## 420 Sub-Saharan Africa Mauritius
## 421 Sub-Saharan Africa Lesotho
## 422 Sub-Saharan Africa Mali
## 423 Europe Georgia
## 424 Europe Albania
## 425 Europe Cyprus
## 426 Central America and the Caribbean Saint Kitts and Nevis
## 427 Middle East and North Africa Tunisia
## 428 Central America and the Caribbean Cuba
## 429 Australia and Oceania Kiribati
## 430 Asia Cambodia
## 431 Europe Moldova
## 432 Asia Uzbekistan
## 433 Asia India
## 434 Europe Germany
## 435 Europe Austria
## 436 Europe Germany
## 437 Asia Bhutan
## 438 Asia Kyrgyzstan
## 439 Middle East and North Africa Somalia
## 440 Central America and the Caribbean Saint Lucia
## 441 Europe Armenia
## 442 North America Canada
## 443 Sub-Saharan Africa Burundi
## 444 Europe Liechtenstein
## 445 Middle East and North Africa Tunisia
## 446 Middle East and North Africa Iraq
## 447 Asia Indonesia
## 448 Asia Kazakhstan
## 449 Europe Denmark
## 450 Europe Luxembourg
## 451 Sub-Saharan Africa Cape Verde
## 452 Australia and Oceania Palau
## 453 Australia and Oceania Australia
## 454 Central America and the Caribbean Nicaragua
## 455 Asia Laos
## 456 Central America and the Caribbean Cuba
## 457 Europe Moldova
## 458 Middle East and North Africa Syria
## 459 Central America and the Caribbean The Bahamas
## 460 Europe Belarus
## 461 Middle East and North Africa United Arab Emirates
## 462 Sub-Saharan Africa Angola
## 463 Central America and the Caribbean Cuba
## 464 Europe Ukraine
## 465 Sub-Saharan Africa Mozambique
## 466 Europe Armenia
## 467 North America Greenland
## 468 Central America and the Caribbean Saint Kitts and Nevis
## 469 Europe Vatican City
## 470 Europe Ukraine
## 471 Sub-Saharan Africa Niger
## 472 Asia Myanmar
## 473 Sub-Saharan Africa Guinea
## 474 Sub-Saharan Africa Guinea-Bissau
## 475 Sub-Saharan Africa South Sudan
## 476 Middle East and North Africa Turkey
## 477 Australia and Oceania Palau
## 478 Europe Poland
## 479 Asia Malaysia
## 480 North America United States of America
## 481 Europe Switzerland
## 482 Australia and Oceania Papua New Guinea
## 483 Sub-Saharan Africa Namibia
## 484 Europe Ireland
## 485 Sub-Saharan Africa Mozambique
## 486 Sub-Saharan Africa Democratic Republic of the Congo
## 487 North America United States of America
## 488 Middle East and North Africa Azerbaijan
## 489 Europe Belgium
## 490 Asia Taiwan
## 491 Central America and the Caribbean Panama
## 492 Europe Andorra
## 493 Europe Georgia
## 494 Central America and the Caribbean Barbados
## 495 Europe Sweden
## 496 Middle East and North Africa Algeria
## 497 Europe Italy
## 498 Europe Russia
## 499 Central America and the Caribbean Antigua and Barbuda
## 500 Middle East and North Africa Jordan
## 501 Sub-Saharan Africa Mali
## 502 Middle East and North Africa Somalia
## 503 Middle East and North Africa Kuwait
## 504 Sub-Saharan Africa Liberia
## 505 Asia China
## 506 Europe Andorra
## 507 Sub-Saharan Africa Niger
## 508 Europe Hungary
## 509 Europe Monaco
## 510 Australia and Oceania Tuvalu
## 511 Sub-Saharan Africa South Sudan
## 512 Europe Cyprus
## 513 Europe Poland
## 514 Sub-Saharan Africa Liberia
## 515 Sub-Saharan Africa Cote d'Ivoire
## 516 Asia Kyrgyzstan
## 517 Europe Slovakia
## 518 Asia Malaysia
## 519 Sub-Saharan Africa Liberia
## 520 Australia and Oceania Vanuatu
## 521 Australia and Oceania Kiribati
## 522 Middle East and North Africa Turkey
## 523 Europe San Marino
## 524 Europe Vatican City
## 525 Middle East and North Africa Morocco
## 526 Sub-Saharan Africa Equatorial Guinea
## 527 Middle East and North Africa Jordan
## 528 Asia Kyrgyzstan
## 529 Sub-Saharan Africa Republic of the Congo
## 530 Australia and Oceania East Timor
## 531 Europe Estonia
## 532 Asia Bangladesh
## 533 Sub-Saharan Africa Senegal
## 534 Middle East and North Africa Pakistan
## 535 Europe Czech Republic
## 536 Sub-Saharan Africa Ghana
## 537 Asia Japan
## 538 Asia Kazakhstan
## 539 Central America and the Caribbean The Bahamas
## 540 Sub-Saharan Africa Ethiopia
## 541 Sub-Saharan Africa Burkina Faso
## 542 Sub-Saharan Africa Madagascar
## 543 Europe Netherlands
## 544 Europe Greece
## 545 Middle East and North Africa Egypt
## 546 Sub-Saharan Africa South Sudan
## 547 Europe Kosovo
## 548 Asia Brunei
## 549 Australia and Oceania Australia
## 550 Sub-Saharan Africa Cape Verde
## 551 Sub-Saharan Africa Malawi
## 552 Asia Philippines
## 553 Europe Estonia
## 554 Central America and the Caribbean Trinidad and Tobago
## 555 Asia Mongolia
## 556 Asia Japan
## 557 Sub-Saharan Africa Niger
## 558 Middle East and North Africa Egypt
## 559 Central America and the Caribbean Saint Lucia
## 560 Middle East and North Africa Qatar
## 561 Sub-Saharan Africa Mali
## 562 Central America and the Caribbean Saint Lucia
## 563 Sub-Saharan Africa Swaziland
## 564 Asia Mongolia
## 565 Sub-Saharan Africa Botswana
## 566 Europe San Marino
## 567 Middle East and North Africa Oman
## 568 Asia Bangladesh
## 569 Sub-Saharan Africa Namibia
## 570 Asia Mongolia
## 571 Asia North Korea
## 572 Europe Latvia
## 573 Sub-Saharan Africa Burundi
## 574 Sub-Saharan Africa Seychelles
## 575 Sub-Saharan Africa Kenya
## 576 Sub-Saharan Africa Benin
## 577 Central America and the Caribbean Saint Lucia
## 578 Middle East and North Africa Qatar
## 579 Sub-Saharan Africa Mozambique
## 580 Middle East and North Africa Pakistan
## 581 Asia Taiwan
## 582 Central America and the Caribbean Cuba
## 583 Central America and the Caribbean Cuba
## 584 Europe Russia
## 585 Europe Switzerland
## 586 Europe Czech Republic
## 587 Europe Poland
## 588 Sub-Saharan Africa Mauritius
## 589 Middle East and North Africa Pakistan
## 590 Sub-Saharan Africa South Africa
## 591 Sub-Saharan Africa Seychelles
## 592 Sub-Saharan Africa Benin
## 593 Sub-Saharan Africa Benin
## 594 Central America and the Caribbean Nicaragua
## 595 Middle East and North Africa Lebanon
## 596 Europe Moldova
## 597 Middle East and North Africa Tunisia
## 598 Australia and Oceania Vanuatu
## 599 Sub-Saharan Africa South Sudan
## 600 Europe Sweden
## 601 Europe Ireland
## 602 Europe Italy
## 603 Europe Bosnia and Herzegovina
## 604 Europe Bosnia and Herzegovina
## 605 Europe Poland
## 606 Middle East and North Africa Kuwait
## 607 Sub-Saharan Africa Sudan
## 608 Middle East and North Africa Saudi Arabia
## 609 Sub-Saharan Africa Swaziland
## 610 Sub-Saharan Africa Rwanda
## 611 Asia Cambodia
## 612 Sub-Saharan Africa Central African Republic
## 613 Asia Maldives
## 614 Sub-Saharan Africa Djibouti
## 615 Asia Tajikistan
## 616 Asia Sri Lanka
## 617 Europe Montenegro
## 618 Middle East and North Africa United Arab Emirates
## 619 Central America and the Caribbean Dominican Republic
## 620 Sub-Saharan Africa Seychelles
## 621 Europe Iceland
## 622 Sub-Saharan Africa Nigeria
## 623 Sub-Saharan Africa Rwanda
## 624 Europe Hungary
## 625 Europe Belarus
## 626 Sub-Saharan Africa South Sudan
## 627 Europe Andorra
## 628 Asia Japan
## 629 Central America and the Caribbean El Salvador
## 630 Sub-Saharan Africa Kenya
## 631 Europe Bosnia and Herzegovina
## 632 Europe Andorra
## 633 Sub-Saharan Africa Cape Verde
## 634 Australia and Oceania Nauru
## 635 Europe Czech Republic
## 636 Europe Serbia
## 637 Australia and Oceania Tuvalu
## 638 Sub-Saharan Africa Madagascar
## 639 Sub-Saharan Africa Ethiopia
## 640 Asia Malaysia
## 641 Sub-Saharan Africa Tanzania
## 642 Sub-Saharan Africa Cote d'Ivoire
## 643 Australia and Oceania Solomon Islands
## 644 Europe Netherlands
## 645 Sub-Saharan Africa Mali
## 646 Middle East and North Africa Afghanistan
## 647 Europe Moldova
## 648 Asia Bhutan
## 649 Asia Vietnam
## 650 Europe Portugal
## 651 Europe Spain
## 652 Middle East and North Africa Egypt
## 653 Europe Belgium
## 654 Asia Malaysia
## 655 Central America and the Caribbean Dominican Republic
## 656 Europe Estonia
## 657 Sub-Saharan Africa Burundi
## 658 Europe Latvia
## 659 Asia Tajikistan
## 660 Sub-Saharan Africa Zimbabwe
## 661 Sub-Saharan Africa Comoros
## 662 Sub-Saharan Africa Namibia
## 663 Europe Slovenia
## 664 Europe Bulgaria
## 665 Sub-Saharan Africa Guinea-Bissau
## 666 Sub-Saharan Africa Lesotho
## 667 Asia Sri Lanka
## 668 Australia and Oceania East Timor
## 669 Europe Belarus
## 670 Sub-Saharan Africa Benin
## 671 Europe Ireland
## 672 Middle East and North Africa Iran
## 673 Sub-Saharan Africa Benin
## 674 Sub-Saharan Africa South Sudan
## 675 Sub-Saharan Africa Comoros
## 676 Europe Poland
## 677 Europe Bosnia and Herzegovina
## 678 Sub-Saharan Africa Namibia
## 679 Europe Spain
## 680 Middle East and North Africa Iran
## 681 Central America and the Caribbean Guatemala
## 682 Australia and Oceania East Timor
## 683 Middle East and North Africa Bahrain
## 684 Sub-Saharan Africa Ethiopia
## 685 Australia and Oceania Solomon Islands
## 686 Central America and the Caribbean Belize
## 687 Asia Sri Lanka
## 688 Central America and the Caribbean Costa Rica
## 689 Sub-Saharan Africa Nigeria
## 690 Middle East and North Africa Iran
## 691 Sub-Saharan Africa Djibouti
## 692 Asia South Korea
## 693 Central America and the Caribbean Dominica
## 694 Asia Vietnam
## 695 Europe Norway
## 696 Central America and the Caribbean Haiti
## 697 Central America and the Caribbean Jamaica
## 698 Sub-Saharan Africa Sudan
## 699 Sub-Saharan Africa Angola
## 700 Central America and the Caribbean Panama
## 701 Europe Greece
## 702 Sub-Saharan Africa Madagascar
## 703 Sub-Saharan Africa Guinea-Bissau
## 704 North America Greenland
## 705 Middle East and North Africa Libya
## 706 Europe Belarus
## 707 Middle East and North Africa Lebanon
## 708 Sub-Saharan Africa Djibouti
## 709 Central America and the Caribbean Barbados
## 710 Sub-Saharan Africa Guinea-Bissau
## 711 Europe Finland
## 712 Central America and the Caribbean Haiti
## 713 Sub-Saharan Africa Niger
## 714 Central America and the Caribbean Trinidad and Tobago
## 715 Central America and the Caribbean Grenada
## 716 Central America and the Caribbean Dominican Republic
## 717 Europe Monaco
## 718 Europe Estonia
## 719 Europe Italy
## 720 Asia Malaysia
## 721 Sub-Saharan Africa Ghana
## 722 Middle East and North Africa Pakistan
## 723 Asia Sri Lanka
## 724 Europe Romania
## 725 Middle East and North Africa Qatar
## 726 Sub-Saharan Africa Cote d'Ivoire
## 727 Middle East and North Africa Egypt
## 728 Middle East and North Africa Iran
## 729 Middle East and North Africa Somalia
## 730 Middle East and North Africa Syria
## 731 Australia and Oceania Solomon Islands
## 732 Central America and the Caribbean Guatemala
## 733 Middle East and North Africa Kuwait
## 734 Middle East and North Africa Jordan
## 735 Australia and Oceania Marshall Islands
## 736 Middle East and North Africa Egypt
## 737 Europe Switzerland
## 738 Australia and Oceania Samoa
## 739 Europe Portugal
## 740 Europe Albania
## 741 Central America and the Caribbean Dominica
## 742 Australia and Oceania Tuvalu
## 743 Australia and Oceania Marshall Islands
## 744 Europe Bulgaria
## 745 Sub-Saharan Africa Niger
## 746 Central America and the Caribbean Saint Vincent and the Grenadines
## 747 Sub-Saharan Africa Malawi
## 748 Sub-Saharan Africa Cape Verde
## 749 Central America and the Caribbean Saint Vincent and the Grenadines
## 750 Europe Greece
## 751 Europe Monaco
## 752 Sub-Saharan Africa Nigeria
## 753 Europe Norway
## 754 North America Greenland
## 755 Middle East and North Africa Tunisia
## 756 Asia Uzbekistan
## 757 Central America and the Caribbean Saint Kitts and Nevis
## 758 Central America and the Caribbean Belize
## 759 Sub-Saharan Africa Angola
## 760 Asia Bhutan
## 761 Central America and the Caribbean Honduras
## 762 Sub-Saharan Africa South Sudan
## 763 Asia Kyrgyzstan
## 764 Sub-Saharan Africa Sao Tome and Principe
## 765 Sub-Saharan Africa Madagascar
## 766 Sub-Saharan Africa Senegal
## 767 Sub-Saharan Africa Sierra Leone
## 768 Asia Malaysia
## 769 Central America and the Caribbean Cuba
## 770 Sub-Saharan Africa Zimbabwe
## 771 Europe Serbia
## 772 Asia Maldives
## 773 Europe Ireland
## 774 Europe Romania
## 775 Europe Croatia
## 776 Europe Albania
## 777 Central America and the Caribbean Dominican Republic
## 778 Sub-Saharan Africa Zimbabwe
## 779 Sub-Saharan Africa Ghana
## 780 Asia Laos
## 781 Central America and the Caribbean Panama
## 782 Sub-Saharan Africa Angola
## 783 Middle East and North Africa Syria
## 784 Sub-Saharan Africa Sierra Leone
## 785 Sub-Saharan Africa Uganda
## 786 Asia Taiwan
## 787 Middle East and North Africa Azerbaijan
## 788 Asia Maldives
## 789 Sub-Saharan Africa Mauritania
## 790 Sub-Saharan Africa Burundi
## 791 Sub-Saharan Africa Zambia
## 792 Asia Singapore
## 793 Sub-Saharan Africa Ghana
## 794 Sub-Saharan Africa Guinea
## 795 Sub-Saharan Africa Zambia
## 796 Europe Georgia
## 797 Middle East and North Africa Bahrain
## 798 Sub-Saharan Africa Lesotho
## 799 Central America and the Caribbean Barbados
## 800 Middle East and North Africa Saudi Arabia
## 801 Europe Macedonia
## 802 Asia Turkmenistan
## 803 Europe Albania
## 804 Middle East and North Africa Afghanistan
## 805 Australia and Oceania Kiribati
## 806 Middle East and North Africa Morocco
## 807 Europe Norway
## 808 Europe Sweden
## 809 Asia Tajikistan
## 810 Europe Netherlands
## 811 Europe Spain
## 812 Sub-Saharan Africa Chad
## 813 Europe Ireland
## 814 Middle East and North Africa Pakistan
## 815 Sub-Saharan Africa Mozambique
## 816 Middle East and North Africa Bahrain
## 817 Asia Tajikistan
## 818 Australia and Oceania New Zealand
## 819 Sub-Saharan Africa Niger
## 820 Europe Armenia
## 821 Sub-Saharan Africa Gabon
## 822 Asia Kyrgyzstan
## 823 Australia and Oceania Fiji
## 824 Europe Romania
## 825 Sub-Saharan Africa Botswana
## 826 Australia and Oceania Fiji
## 827 Europe Vatican City
## 828 Asia Thailand
## 829 Europe Belarus
## 830 Australia and Oceania Solomon Islands
## 831 Asia China
## 832 Sub-Saharan Africa Angola
## 833 Asia Cambodia
## 834 Central America and the Caribbean Guatemala
## 835 Sub-Saharan Africa Namibia
## 836 Europe Serbia
## 837 Middle East and North Africa Turkey
## 838 Middle East and North Africa Pakistan
## 839 Europe Georgia
## 840 Australia and Oceania Vanuatu
## 841 Europe Luxembourg
## 842 Middle East and North Africa Saudi Arabia
## 843 Australia and Oceania Vanuatu
## 844 Central America and the Caribbean Haiti
## 845 Sub-Saharan Africa Tanzania
## 846 Asia North Korea
## 847 Middle East and North Africa Bahrain
## 848 Sub-Saharan Africa Cote d'Ivoire
## 849 Asia Singapore
## 850 Asia Malaysia
## 851 Europe Albania
## 852 Sub-Saharan Africa Gabon
## 853 Europe Poland
## 854 Sub-Saharan Africa Chad
## 855 Sub-Saharan Africa Republic of the Congo
## 856 Asia Philippines
## 857 Europe France
## 858 Europe Germany
## 859 Sub-Saharan Africa Uganda
## 860 Middle East and North Africa Bahrain
## 861 Middle East and North Africa Jordan
## 862 Europe Montenegro
## 863 Middle East and North Africa Tunisia
## 864 Europe Germany
## 865 Europe Italy
## 866 Europe France
## 867 Middle East and North Africa Algeria
## 868 Asia Myanmar
## 869 Europe France
## 870 Europe Spain
## 871 Asia Cambodia
## 872 Sub-Saharan Africa The Gambia
## 873 Europe Russia
## 874 Europe Belarus
## 875 Middle East and North Africa Turkey
## 876 Sub-Saharan Africa Kenya
## 877 Middle East and North Africa Iran
## 878 Asia Vietnam
## 879 Europe Albania
## 880 Central America and the Caribbean Antigua and Barbuda
## 881 Sub-Saharan Africa Senegal
## 882 Europe Netherlands
## 883 Europe Russia
## 884 Europe Slovakia
## 885 Australia and Oceania East Timor
## 886 Central America and the Caribbean Haiti
## 887 Middle East and North Africa Yemen
## 888 Australia and Oceania Tuvalu
## 889 Sub-Saharan Africa Liberia
## 890 Asia North Korea
## 891 Asia North Korea
## 892 Europe Romania
## 893 Sub-Saharan Africa Sao Tome and Principe
## 894 Middle East and North Africa Bahrain
## 895 Middle East and North Africa Somalia
## 896 Europe Cyprus
## 897 Europe United Kingdom
## 898 Europe Germany
## 899 Middle East and North Africa Somalia
## 900 Australia and Oceania New Zealand
## 901 Middle East and North Africa Kuwait
## 902 Asia Japan
## 903 Europe Norway
## 904 Sub-Saharan Africa Lesotho
## 905 Europe Belgium
## 906 Central America and the Caribbean Honduras
## 907 Europe Austria
## 908 Middle East and North Africa Oman
## 909 Middle East and North Africa Oman
## 910 Europe Spain
## 911 Middle East and North Africa Afghanistan
## 912 Central America and the Caribbean Saint Vincent and the Grenadines
## 913 Europe Iceland
## 914 Asia Myanmar
## 915 Europe Netherlands
## 916 Europe Slovakia
## 917 Middle East and North Africa Bahrain
## 918 Sub-Saharan Africa Lesotho
## 919 Central America and the Caribbean Cuba
## 920 Middle East and North Africa Afghanistan
## 921 Australia and Oceania Vanuatu
## 922 Asia Bhutan
## 923 Australia and Oceania Palau
## 924 Asia Indonesia
## 925 Europe Andorra
## 926 Middle East and North Africa Algeria
## 927 Australia and Oceania Vanuatu
## 928 North America Mexico
## 929 Europe Macedonia
## 930 Central America and the Caribbean Panama
## 931 Asia Nepal
## 932 Asia Nepal
## 933 Sub-Saharan Africa Mauritius
## 934 Sub-Saharan Africa Sao Tome and Principe
## 935 Central America and the Caribbean Saint Vincent and the Grenadines
## 936 Asia Maldives
## 937 Sub-Saharan Africa Swaziland
## 938 Middle East and North Africa Morocco
## 939 Asia Maldives
## 940 Sub-Saharan Africa Zimbabwe
## 941 Asia India
## 942 Asia Tajikistan
## 943 Sub-Saharan Africa Lesotho
## 944 Asia Bhutan
## 945 Central America and the Caribbean Trinidad and Tobago
## 946 Australia and Oceania Tuvalu
## 947 Middle East and North Africa Iraq
## 948 Sub-Saharan Africa The Gambia
## 949 Middle East and North Africa Bahrain
## 950 Middle East and North Africa Qatar
## 951 Sub-Saharan Africa Angola
## 952 Central America and the Caribbean Costa Rica
## 953 Australia and Oceania Papua New Guinea
## 954 Middle East and North Africa Qatar
## 955 Central America and the Caribbean Saint Kitts and Nevis
## 956 Sub-Saharan Africa Sierra Leone
## 957 Europe Russia
## 958 Europe Lithuania
## 959 Europe United Kingdom
## 960 Asia Indonesia
## 961 Asia Mongolia
## 962 Middle East and North Africa Egypt
## 963 Sub-Saharan Africa Comoros
## 964 Europe Slovenia
## 965 Middle East and North Africa Lebanon
## 966 Australia and Oceania Australia
## 967 Central America and the Caribbean Haiti
## 968 Central America and the Caribbean Saint Kitts and Nevis
## 969 Middle East and North Africa Syria
## 970 Asia Laos
## 971 Central America and the Caribbean Saint Kitts and Nevis
## 972 Sub-Saharan Africa Sudan
## 973 Central America and the Caribbean Guatemala
## 974 Asia Brunei
## 975 Middle East and North Africa Jordan
## 976 Central America and the Caribbean Panama
## 977 Sub-Saharan Africa Central African Republic
## 978 Middle East and North Africa Bahrain
## 979 Sub-Saharan Africa Burundi
## 980 Europe Austria
## 981 Australia and Oceania Fiji
## 982 Australia and Oceania Fiji
## 983 Europe Switzerland
## 984 Middle East and North Africa Yemen
## 985 Sub-Saharan Africa Comoros
## 986 Sub-Saharan Africa Democratic Republic of the Congo
## 987 Asia Mongolia
## 988 Australia and Oceania Palau
## 989 Europe Monaco
## 990 Australia and Oceania Fiji
## 991 Sub-Saharan Africa Mali
## 992 Sub-Saharan Africa Liberia
## 993 Europe Switzerland
## 994 Australia and Oceania Samoa
## 995 Asia Nepal
## 996 Middle East and North Africa Azerbaijan
## 997 Europe Georgia
## 998 Middle East and North Africa United Arab Emirates
## 999 Europe Finland
## 1000 Europe Portugal
## Item.Type Sales.Channel Order.Priority Order.Date Order.ID
## 1 Cosmetics Offline M 10/18/2014 686800706
## 2 Vegetables Online M 11/7/2011 185941302
## 3 Baby Food Offline C 10/31/2016 246222341
## 4 Cereal Offline C 4/10/2010 161442649
## 5 Fruits Offline H 8/16/2011 645713555
## 6 Cereal Online H 11/24/2014 683458888
## 7 Cereal Online H 3/4/2015 679414975
## 8 Clothes Offline M 5/17/2012 208630645
## 9 Vegetables Online H 1/29/2015 266467225
## 10 Vegetables Offline H 12/24/2013 118598544
## 11 Clothes Online M 12/29/2015 451010930
## 12 Snacks Offline M 2/27/2010 220003211
## 13 Household Online C 11/17/2016 702186715
## 14 Cosmetics Online C 12/20/2015 544485270
## 15 Fruits Offline L 1/8/2011 714135205
## 16 Clothes Offline H 6/28/2010 448685348
## 17 Office Supplies Online H 4/25/2016 405997025
## 18 Beverages Online M 7/27/2012 414244067
## 19 Clothes Online C 9/8/2014 821912801
## 20 Household Offline L 8/27/2012 247802054
## 21 Snacks Online C 9/3/2012 531023156
## 22 Clothes Online L 8/27/2010 880999934
## 23 Personal Care Online H 2/20/2011 127468717
## 24 Clothes Online L 12/12/2015 770478332
## 25 Cereal Online H 10/28/2012 430390107
## 26 Beverages Online M 1/30/2017 397877871
## 27 Beverages Offline M 10/22/2014 683927953
## 28 Fruits Offline M 1/31/2012 469839179
## 29 Meat Offline H 1/20/2016 357222878
## 30 Personal Care Online C 1/1/2016 118002879
## 31 Beverages Offline C 6/1/2017 944415509
## 32 Office Supplies Online H 6/30/2015 499009597
## 33 Fruits Online L 1/28/2014 564646470
## 34 Baby Food Offline M 4/8/2014 294499957
## 35 Beverages Offline L 9/4/2010 262056386
## 36 Office Supplies Online M 5/2/2010 211114585
## 37 Office Supplies Offline H 10/3/2013 405785882
## 38 Vegetables Offline M 3/6/2011 280494105
## 39 Baby Food Online L 8/7/2016 689975583
## 40 Office Supplies Online L 1/11/2011 759279143
## 41 Office Supplies Offline C 5/21/2014 133766114
## 42 Beverages Online M 8/3/2013 329110324
## 43 Meat Online L 10/5/2011 681298100
## 44 Snacks Offline L 11/15/2016 596628272
## 45 Office Supplies Offline L 4/3/2015 901712167
## 46 Beverages Online M 3/22/2013 693473613
## 47 Meat Online C 8/2/2010 489148938
## 48 Household Online L 1/5/2012 876286971
## 49 Personal Care Offline H 8/26/2015 262749040
## 50 Meat Online H 12/9/2016 726708972
## 51 Vegetables Online L 5/17/2012 366653096
## 52 Vegetables Online M 11/17/2010 951380240
## 53 Cosmetics Online M 11/13/2014 270001733
## 54 Beverages Online C 6/16/2016 681941401
## 55 Fruits Online L 5/31/2016 566935575
## 56 Snacks Offline M 10/6/2012 175033080
## 57 Office Supplies Offline L 3/10/2012 276595246
## 58 Office Supplies Online M 1/26/2011 812295901
## 59 Vegetables Offline C 6/2/2014 443121373
## 60 Personal Care Offline H 12/17/2016 600370490
## 61 Office Supplies Online L 6/27/2014 535654580
## 62 Cosmetics Offline H 3/17/2015 470897471
## 63 Beverages Offline L 4/3/2013 248335492
## 64 Clothes Offline C 3/8/2015 680517470
## 65 Personal Care Online M 6/21/2013 400304734
## 66 Office Supplies Offline C 1/6/2013 810871112
## 67 Cereal Online L 3/17/2012 235702931
## 68 Office Supplies Offline C 4/18/2014 668599021
## 69 Baby Food Online M 1/3/2016 123670709
## 70 Office Supplies Online L 5/12/2011 285341823
## 71 Fruits Online H 7/29/2010 658348691
## 72 Baby Food Offline L 8/2/2013 817740142
## 73 Beverages Offline H 10/23/2013 858877503
## 74 Vegetables Offline M 2/5/2017 947434604
## 75 Meat Offline H 3/20/2015 869397771
## 76 Personal Care Offline L 5/6/2012 481065833
## 77 Meat Online C 9/30/2013 159050118
## 78 Office Supplies Online M 5/20/2014 350274455
## 79 Cereal Online L 4/9/2010 221975171
## 80 Office Supplies Online C 6/9/2017 811701095
## 81 Cereal Online L 2/8/2015 977313554
## 82 Snacks Offline L 1/25/2010 546986377
## 83 Fruits Offline L 3/7/2010 769205892
## 84 Clothes Offline M 1/3/2013 262770926
## 85 Snacks Online M 3/6/2017 866792809
## 86 Beverages Offline C 1/9/2011 890695369
## 87 Cereal Offline M 3/27/2014 964214932
## 88 Snacks Online C 6/28/2013 887400329
## 89 Beverages Offline M 9/4/2011 980612885
## 90 Clothes Offline M 7/14/2016 734526431
## 91 Baby Food Online L 2/23/2014 160127294
## 92 Clothes Offline L 8/7/2010 238714301
## 93 Household Online M 1/14/2013 671898782
## 94 Personal Care Offline H 9/30/2010 331604564
## 95 Cereal Online M 10/13/2016 410067975
## 96 Snacks Offline L 3/16/2011 369837844
## 97 Fruits Online L 12/26/2012 193775498
## 98 Clothes Online M 9/2/2015 835054767
## 99 Household Offline C 11/11/2013 167161977
## 100 Vegetables Offline C 8/4/2014 633895957
## 101 Clothes Offline C 10/21/2010 699368035
## 102 Vegetables Offline L 6/13/2015 698002040
## 103 Snacks Offline H 3/29/2012 584534299
## 104 Vegetables Online L 6/22/2012 384013640
## 105 Personal Care Online M 5/10/2013 641801393
## 106 Personal Care Online M 12/10/2016 173571383
## 107 Snacks Offline H 3/20/2011 115309941
## 108 Cosmetics Offline L 9/22/2011 773315894
## 109 Beverages Online M 5/11/2012 274200570
## 110 Clothes Offline M 11/15/2011 414887797
## 111 Beverages Offline L 1/27/2010 812613904
## 112 Baby Food Online H 8/17/2011 254927718
## 113 Beverages Offline M 9/6/2014 749690568
## 114 Cereal Offline C 9/3/2014 775076282
## 115 Office Supplies Online H 9/5/2015 229571187
## 116 Baby Food Online C 6/20/2011 881974112
## 117 Snacks Online L 1/12/2012 521396386
## 118 Household Online C 1/23/2017 607261836
## 119 Vegetables Online M 3/4/2012 419306790
## 120 Meat Offline H 7/18/2010 207580077
## 121 Snacks Online M 4/12/2011 742443025
## 122 Snacks Offline M 10/3/2010 164569461
## 123 Baby Food Online L 12/29/2013 734945714
## 124 Clothes Offline C 9/19/2015 284870612
## 125 Fruits Offline M 9/17/2011 765955483
## 126 Snacks Offline H 3/11/2010 600124156
## 127 Household Offline L 11/10/2012 529612958
## 128 Clothes Offline H 2/16/2011 466970717
## 129 Cosmetics Online C 8/13/2012 845058763
## 130 Snacks Offline L 8/28/2014 367050921
## 131 Office Supplies Online L 8/19/2015 956433522
## 132 Beverages Online C 3/20/2011 107005393
## 133 Beverages Offline C 4/16/2013 332877862
## 134 Baby Food Online L 11/13/2015 618474757
## 135 Household Online M 1/10/2014 468532407
## 136 Office Supplies Offline M 4/9/2015 358099639
## 137 Household Online H 1/7/2013 382537782
## 138 Personal Care Offline H 2/12/2013 707520663
## 139 Meat Online M 11/28/2014 219034612
## 140 Meat Offline M 1/3/2015 573378455
## 141 Personal Care Online H 2/3/2011 347163522
## 142 Snacks Offline M 4/9/2013 887313640
## 143 Cosmetics Online H 7/26/2017 461065137
## 144 Fruits Offline H 4/15/2017 105966842
## 145 Baby Food Online M 5/16/2014 479880082
## 146 Baby Food Online H 8/12/2015 510978686
## 147 Snacks Offline C 9/20/2013 547748982
## 148 Cereal Offline M 10/31/2013 108989799
## 149 Cereal Offline M 7/30/2014 133812463
## 150 Fruits Offline L 11/12/2011 731640803
## 151 Snacks Offline C 3/25/2010 732211148
## 152 Cereal Online M 7/4/2011 835572326
## 153 Baby Food Offline C 1/1/2011 462085664
## 154 Clothes Online C 6/16/2016 902424991
## 155 Fruits Offline H 12/17/2013 367576634
## 156 Meat Offline H 3/1/2017 738839423
## 157 Baby Food Online C 7/2/2010 817824685
## 158 Snacks Online C 7/16/2013 376456248
## 159 Office Supplies Online H 8/16/2016 606970441
## 160 Meat Offline L 12/16/2014 971916091
## 161 Office Supplies Offline L 5/14/2012 554154527
## 162 Household Online L 7/18/2017 306859576
## 163 Personal Care Offline L 7/9/2017 803517568
## 164 Office Supplies Online C 9/30/2011 887927329
## 165 Vegetables Online H 11/24/2015 824200189
## 166 Office Supplies Online H 8/14/2012 946759974
## 167 Clothes Offline H 12/6/2015 310343015
## 168 Vegetables Online C 5/25/2014 739998137
## 169 Beverages Online H 10/18/2012 981086671
## 170 Office Supplies Offline L 3/13/2013 749282443
## 171 Office Supplies Online C 2/23/2011 280571782
## 172 Household Online C 8/15/2014 781253516
## 173 Personal Care Online H 7/6/2017 377938973
## 174 Clothes Offline C 12/31/2010 867551982
## 175 Personal Care Offline C 1/13/2010 967328870
## 176 Office Supplies Offline C 9/17/2011 364818465
## 177 Office Supplies Online C 3/8/2014 167882096
## 178 Clothes Online H 11/18/2012 654693591
## 179 Personal Care Offline H 11/18/2011 823739278
## 180 Beverages Offline L 7/12/2012 643817985
## 181 Personal Care Offline H 3/30/2017 604041039
## 182 Personal Care Online H 7/26/2010 363832271
## 183 Personal Care Online L 12/24/2015 102928006
## 184 Office Supplies Offline M 5/15/2016 971377074
## 185 Meat Online L 11/3/2010 139540803
## 186 Meat Offline M 12/1/2010 248093020
## 187 Snacks Offline L 1/16/2014 858020055
## 188 Baby Food Offline H 12/11/2014 700620734
## 189 Cosmetics Offline L 12/24/2016 827506387
## 190 Household Online M 3/21/2013 560600841
## 191 Personal Care Offline H 12/8/2012 642140424
## 192 Baby Food Offline C 2/13/2015 984673964
## 193 Beverages Online L 3/28/2012 221062791
## 194 Vegetables Offline L 10/7/2016 654480731
## 195 Beverages Offline C 12/15/2011 608414113
## 196 Household Online L 3/8/2016 276661765
## 197 Baby Food Online L 1/18/2011 373335015
## 198 Clothes Online L 4/11/2013 782857692
## 199 Fruits Online H 5/18/2010 109966123
## 200 Cereal Offline M 6/5/2017 629709136
## 201 Personal Care Online L 9/11/2012 637448060
## 202 Baby Food Online H 3/8/2017 298856723
## 203 Household Offline L 1/28/2015 299921452
## 204 Personal Care Offline M 7/26/2010 496941077
## 205 Snacks Online L 6/24/2016 366526925
## 206 Meat Offline M 8/18/2012 355602824
## 207 Vegetables Online C 3/11/2010 531405103
## 208 Vegetables Offline M 1/14/2010 131482589
## 209 Cereal Online L 2/10/2014 713696610
## 210 Vegetables Online C 1/21/2014 306220996
## 211 Household Offline L 2/28/2010 157542073
## 212 Personal Care Online L 2/18/2015 686458671
## 213 Office Supplies Online M 6/14/2012 132082116
## 214 Clothes Online L 3/5/2013 403836238
## 215 Household Online C 4/10/2014 331457364
## 216 Meat Online H 7/26/2017 614994323
## 217 Fruits Offline L 10/19/2010 674808442
## 218 Baby Food Offline L 11/8/2016 901573550
## 219 Clothes Online L 3/31/2014 406275975
## 220 Vegetables Online C 8/18/2016 170214545
## 221 Personal Care Offline C 1/3/2016 795000588
## 222 Fruits Offline C 10/21/2016 252557933
## 223 Baby Food Offline M 12/10/2016 635122907
## 224 Vegetables Online C 8/12/2011 505244338
## 225 Clothes Offline H 3/23/2012 745783555
## 226 Snacks Offline M 4/27/2012 509914386
## 227 Household Online M 1/29/2014 371123158
## 228 Household Online H 12/13/2016 973208701
## 229 Baby Food Online L 11/21/2013 780282342
## 230 Clothes Online H 4/7/2010 126767909
## 231 Baby Food Online M 7/8/2012 767401731
## 232 Personal Care Online L 10/15/2016 927232635
## 233 Meat Offline M 9/18/2012 251621949
## 234 Office Supplies Offline H 7/2/2017 256243503
## 235 Cosmetics Offline C 7/21/2011 277083623
## 236 Vegetables Offline L 6/1/2010 620441138
## 237 Office Supplies Offline M 7/26/2015 312927377
## 238 Baby Food Offline L 8/6/2010 251466166
## 239 Office Supplies Online H 6/20/2010 953293836
## 240 Cereal Online C 4/8/2012 305959212
## 241 Cereal Online L 2/27/2014 317323625
## 242 Household Offline L 7/25/2011 365560901
## 243 Baby Food Online M 2/18/2016 349157369
## 244 Baby Food Online L 1/24/2014 236911857
## 245 Personal Care Offline H 5/10/2015 517935693
## 246 Clothes Offline C 2/13/2012 851652705
## 247 Cereal Offline M 9/7/2012 517799222
## 248 Office Supplies Offline C 2/4/2015 666424071
## 249 Fruits Offline C 11/16/2010 267888581
## 250 Vegetables Online L 7/20/2011 162866580
## 251 Beverages Offline H 7/26/2014 812344396
## 252 Meat Online M 8/24/2014 947620856
## 253 Vegetables Online H 2/25/2015 720307290
## 254 Household Online H 9/21/2016 352327525
## 255 Household Online C 6/28/2013 585917890
## 256 Meat Offline L 1/5/2012 433627212
## 257 Beverages Online C 5/1/2012 328316819
## 258 Cereal Offline C 10/13/2011 773160541
## 259 Household Online M 4/27/2016 991644704
## 260 Meat Online M 1/19/2014 277568137
## 261 Fruits Online C 11/6/2016 245042169
## 262 Household Online M 2/28/2011 778490626
## 263 Baby Food Online C 10/11/2014 482649838
## 264 Beverages Online L 6/25/2012 732568633
## 265 Household Online M 11/6/2012 723608338
## 266 Household Offline H 2/24/2014 621442782
## 267 Baby Food Offline M 9/19/2015 212058293
## 268 Snacks Offline L 3/4/2014 251753699
## 269 Fruits Online M 10/8/2014 217140328
## 270 Vegetables Online C 6/19/2012 555142009
## 271 Clothes Online C 11/11/2010 432995069
## 272 Personal Care Offline H 11/1/2010 888248336
## 273 Vegetables Online C 4/28/2014 778763139
## 274 Snacks Offline H 12/22/2012 832713305
## 275 Household Offline M 8/25/2014 498585164
## 276 Fruits Offline M 11/26/2016 195177543
## 277 Cereal Online C 10/20/2010 861601769
## 278 Meat Online H 12/18/2014 807281672
## 279 Clothes Offline H 3/20/2011 661953580
## 280 Cosmetics Online M 7/12/2016 225666320
## 281 Household Offline L 1/26/2011 718781220
## 282 Office Supplies Online L 2/24/2010 731972110
## 283 Vegetables Online C 1/2/2015 276225316
## 284 Office Supplies Offline C 7/26/2016 332839667
## 285 Vegetables Online C 6/1/2014 603426492
## 286 Beverages Offline H 12/21/2012 859909617
## 287 Household Online L 2/27/2010 494525372
## 288 Vegetables Online M 4/24/2016 769822585
## 289 Vegetables Offline C 7/22/2012 768662583
## 290 Cereal Online M 2/22/2015 544219195
## 291 Beverages Offline L 2/10/2011 669978749
## 292 Cosmetics Offline L 1/21/2015 889740073
## 293 Beverages Online M 5/10/2012 567614495
## 294 Vegetables Offline M 12/16/2015 938025844
## 295 Vegetables Online C 2/25/2017 155710446
## 296 Baby Food Online L 1/31/2012 945717132
## 297 Cosmetics Offline C 2/7/2013 253407227
## 298 Household Offline H 9/14/2014 494454562
## 299 Cereal Online M 6/5/2012 104845464
## 300 Cosmetics Online M 4/5/2014 290878760
## 301 Office Supplies Offline C 2/2/2014 979165780
## 302 Office Supplies Offline C 9/1/2010 366630351
## 303 Office Supplies Online C 5/17/2011 770508801
## 304 Beverages Offline M 4/21/2013 978349959
## 305 Beverages Offline L 8/10/2014 298015153
## 306 Snacks Online M 9/19/2010 807678210
## 307 Personal Care Offline C 4/13/2013 605825459
## 308 Fruits Online C 1/28/2016 561255729
## 309 Clothes Online H 12/9/2013 263080346
## 310 Cereal Offline C 2/21/2014 270723140
## 311 Clothes Offline H 6/9/2017 763920438
## 312 Household Online L 4/17/2014 192721068
## 313 Fruits Offline L 5/20/2011 227486360
## 314 Vegetables Online M 8/28/2012 808890140
## 315 Cosmetics Offline C 7/25/2015 597918736
## 316 Cosmetics Online H 10/27/2014 125870978
## 317 Household Online H 10/18/2013 444358193
## 318 Beverages Online C 2/15/2013 875304210
## 319 Baby Food Offline C 7/8/2014 360945355
## 320 Cereal Offline C 12/12/2016 613830459
## 321 Cereal Offline H 11/24/2012 266820847
## 322 Baby Food Offline M 11/3/2014 723090350
## 323 Meat Offline M 8/3/2013 306125295
## 324 Personal Care Online L 5/23/2012 109724509
## 325 Clothes Offline M 7/22/2015 847999322
## 326 Clothes Online H 2/1/2017 605373561
## 327 Beverages Online H 1/28/2012 686583554
## 328 Beverages Offline M 8/3/2015 666678130
## 329 Baby Food Online M 6/23/2013 641018617
## 330 Meat Online C 8/3/2011 775278842
## 331 Meat Offline M 10/30/2016 855445134
## 332 Vegetables Online H 9/5/2010 737816321
## 333 Beverages Online L 7/13/2013 799003732
## 334 Vegetables Online L 10/9/2012 585931193
## 335 Vegetables Online M 1/3/2012 165835034
## 336 Baby Food Offline H 2/8/2012 576264083
## 337 Clothes Offline L 1/3/2015 675079667
## 338 Personal Care Online L 5/13/2012 290455615
## 339 Snacks Offline L 1/13/2012 670878255
## 340 Cereal Online M 7/30/2011 435146415
## 341 Snacks Online C 3/13/2017 522371423
## 342 Office Supplies Online L 3/23/2017 141977107
## 343 Baby Food Offline L 3/16/2016 823699796
## 344 Beverages Offline L 12/18/2015 567588317
## 345 Fruits Offline H 10/25/2011 594003999
## 346 Baby Food Offline H 6/30/2011 393620669
## 347 Cosmetics Offline H 3/27/2016 877424657
## 348 Household Offline M 12/23/2016 326714789
## 349 Fruits Offline M 4/18/2013 243102395
## 350 Household Offline L 3/8/2017 398511302
## 351 Personal Care Offline M 6/3/2011 185177838
## 352 Personal Care Offline H 11/30/2013 865650832
## 353 Cereal Offline C 5/11/2013 622791612
## 354 Personal Care Online L 11/13/2010 409774005
## 355 Office Supplies Online H 3/9/2016 800084340
## 356 Snacks Offline M 8/19/2013 637521445
## 357 Beverages Online L 4/19/2011 186196649
## 358 Baby Food Offline L 7/20/2014 680533778
## 359 Beverages Online L 9/8/2014 275269162
## 360 Household Online C 6/4/2015 795451629
## 361 Cereal Offline M 12/19/2013 986442506
## 362 Cereal Offline M 5/18/2012 563915622
## 363 Cosmetics Offline C 10/12/2013 663857305
## 364 Fruits Online L 1/2/2011 692566382
## 365 Household Offline L 2/2/2013 576654183
## 366 Baby Food Offline H 3/19/2011 313044536
## 367 Personal Care Offline C 10/3/2012 418973767
## 368 Beverages Online C 10/23/2014 581990706
## 369 Baby Food Online H 7/12/2015 109956681
## 370 Cereal Online L 5/6/2010 181045520
## 371 Vegetables Online C 11/27/2010 693743550
## 372 Clothes Offline L 12/26/2010 716849601
## 373 Cosmetics Online L 12/30/2012 739474999
## 374 Personal Care Online M 8/21/2016 421043574
## 375 Personal Care Online M 2/3/2015 841291654
## 376 Cereal Offline L 12/19/2013 450268065
## 377 Meat Online L 5/12/2012 918334138
## 378 Meat Offline M 3/28/2014 386163699
## 379 Personal Care Offline C 1/11/2017 214743077
## 380 Baby Food Online M 6/21/2015 935371100
## 381 Cosmetics Offline H 11/29/2012 899659097
## 382 Vegetables Online H 1/1/2010 329530894
## 383 Meat Online H 1/6/2016 867222821
## 384 Beverages Online M 10/14/2014 625283706
## 385 Office Supplies Offline C 12/9/2013 936574876
## 386 Cereal Offline M 10/19/2010 504270160
## 387 Personal Care Offline M 5/2/2011 351855885
## 388 Snacks Online H 3/17/2011 673130881
## 389 Office Supplies Offline H 9/24/2014 382206475
## 390 Cereal Online H 12/1/2015 263506495
## 391 Cereal Offline L 6/2/2017 721767270
## 392 Cosmetics Online M 8/4/2011 432037627
## 393 Meat Offline C 7/29/2014 389678895
## 394 Meat Online L 1/26/2017 760364902
## 395 Fruits Offline C 11/5/2010 430081975
## 396 Baby Food Online H 3/26/2015 155128943
## 397 Clothes Offline H 10/7/2012 312117135
## 398 Meat Offline L 7/22/2013 447970378
## 399 Cosmetics Offline C 8/16/2013 629925000
## 400 Personal Care Offline L 11/5/2013 995529830
## 401 Office Supplies Online L 3/1/2016 402646195
## 402 Meat Offline M 3/25/2012 479447925
## 403 Cosmetics Offline H 6/20/2017 674421346
## 404 Cosmetics Online L 4/18/2014 506365287
## 405 Clothes Online C 6/28/2016 914391076
## 406 Meat Online L 5/20/2012 207922542
## 407 Office Supplies Offline M 2/4/2014 816696012
## 408 Beverages Offline L 11/15/2015 740760314
## 409 Baby Food Online C 1/11/2013 300476777
## 410 Snacks Online L 4/24/2013 786519229
## 411 Cosmetics Offline C 5/15/2010 409873998
## 412 Cosmetics Offline H 4/17/2010 151839911
## 413 Vegetables Online H 8/25/2012 614028298
## 414 Household Offline L 4/19/2014 668362987
## 415 Household Online M 2/26/2013 607080304
## 416 Baby Food Online M 12/28/2011 792729079
## 417 Baby Food Offline M 8/21/2014 308170640
## 418 Vegetables Online H 8/21/2014 106578814
## 419 Cereal Online H 3/2/2014 761439931
## 420 Household Online L 9/6/2012 216552817
## 421 Fruits Online H 9/16/2010 536028802
## 422 Beverages Online L 8/13/2013 254291713
## 423 Personal Care Online C 9/11/2012 226077878
## 424 Office Supplies Offline M 8/31/2011 476436126
## 425 Cosmetics Offline L 4/21/2015 650727784
## 426 Household Offline C 7/11/2010 464626681
## 427 Meat Offline C 8/9/2015 154119145
## 428 Meat Online M 10/17/2015 925504004
## 429 Cereal Offline L 7/24/2012 905392587
## 430 Snacks Online C 3/25/2012 990708720
## 431 Baby Food Online M 8/11/2014 798688733
## 432 Cereal Offline C 10/15/2016 916881453
## 433 Cosmetics Offline L 12/3/2016 653148210
## 434 Personal Care Offline C 6/12/2010 285662829
## 435 Vegetables Online C 7/29/2016 612911641
## 436 Office Supplies Offline L 12/9/2013 703693473
## 437 Clothes Online M 7/12/2012 147119653
## 438 Fruits Online C 1/14/2012 402614009
## 439 Personal Care Online C 3/20/2013 749912869
## 440 Household Online H 2/10/2014 539065062
## 441 Snacks Offline H 10/26/2013 540431916
## 442 Beverages Online C 4/16/2016 694687259
## 443 Cosmetics Offline H 5/27/2011 562817418
## 444 Cereal Online L 8/4/2016 676121222
## 445 Snacks Offline L 7/3/2012 286210000
## 446 Beverages Online L 12/4/2014 515007579
## 447 Cosmetics Offline C 5/31/2010 304750287
## 448 Beverages Online H 2/5/2013 467986953
## 449 Beverages Offline C 6/15/2015 537578904
## 450 Vegetables Offline L 10/21/2014 116699969
## 451 Snacks Offline C 2/13/2017 228836476
## 452 Vegetables Offline C 6/29/2010 167787253
## 453 Vegetables Online M 5/19/2014 647663629
## 454 Meat Offline L 3/21/2015 652889430
## 455 Office Supplies Offline M 8/31/2015 588200986
## 456 Personal Care Online L 8/23/2015 928647124
## 457 Cosmetics Offline L 2/24/2016 869589173
## 458 Household Online C 6/17/2015 576700961
## 459 Cereal Offline M 11/27/2012 735968816
## 460 Snacks Offline M 9/7/2012 303691565
## 461 Clothes Offline C 6/23/2012 556480538
## 462 Beverages Offline H 10/23/2014 141259562
## 463 Cosmetics Offline C 9/18/2015 925264966
## 464 Office Supplies Online H 1/24/2016 346045577
## 465 Fruits Offline H 3/23/2010 861462724
## 466 Personal Care Online M 7/26/2012 499690234
## 467 Clothes Online H 10/20/2015 509214437
## 468 Office Supplies Online M 6/27/2017 408834159
## 469 Beverages Offline M 4/4/2016 237660729
## 470 Clothes Online C 8/5/2015 105117976
## 471 Cereal Offline L 6/16/2012 640942227
## 472 Cosmetics Online L 4/3/2016 745182311
## 473 Baby Food Offline C 9/21/2014 738199555
## 474 Snacks Online L 8/8/2015 110667788
## 475 Office Supplies Online C 7/19/2012 673573338
## 476 Snacks Offline H 8/26/2011 708215034
## 477 Household Online M 6/23/2012 816204202
## 478 Beverages Offline L 11/20/2011 769464671
## 479 Beverages Offline L 5/13/2015 860232770
## 480 Personal Care Offline C 7/16/2010 551057326
## 481 Cosmetics Online C 5/21/2016 724799668
## 482 Cosmetics Offline H 4/22/2011 534633624
## 483 Beverages Offline H 8/14/2012 554045522
## 484 Clothes Online C 3/17/2012 526834189
## 485 Household Online C 8/6/2010 717110955
## 486 Baby Food Offline L 2/25/2013 559299647
## 487 Meat Online M 3/6/2011 908136594
## 488 Office Supplies Offline M 12/14/2015 888670623
## 489 Office Supplies Offline C 2/10/2017 146263062
## 490 Office Supplies Offline L 9/20/2016 196587741
## 491 Baby Food Online M 4/30/2010 375630986
## 492 Beverages Offline H 6/25/2013 989691627
## 493 Household Offline H 7/4/2012 165380990
## 494 Snacks Online C 9/21/2013 599622905
## 495 Personal Care Offline C 12/8/2016 109653699
## 496 Meat Offline M 9/2/2011 183022201
## 497 Personal Care Online L 3/21/2011 127589738
## 498 Fruits Offline L 1/8/2011 221530139
## 499 Office Supplies Offline M 2/22/2015 363329732
## 500 Fruits Online C 5/15/2017 521787345
## 501 Meat Online L 7/14/2012 286014306
## 502 Cereal Offline C 6/25/2015 215434443
## 503 Snacks Online L 10/26/2011 489784085
## 504 Office Supplies Offline C 9/24/2014 459112060
## 505 Office Supplies Online C 9/30/2015 893779695
## 506 Meat Offline M 3/31/2011 834460818
## 507 Beverages Online C 10/25/2013 742141759
## 508 Vegetables Offline M 8/12/2010 248121345
## 509 Clothes Offline M 7/26/2012 404010903
## 510 Household Online L 9/30/2012 531734263
## 511 Baby Food Online C 11/9/2012 473527753
## 512 Cereal Offline M 11/19/2011 141940200
## 513 Household Offline M 6/9/2017 869832932
## 514 Snacks Online H 9/17/2011 460379779
## 515 Vegetables Online C 10/23/2015 837067067
## 516 Beverages Online C 4/3/2010 393693625
## 517 Vegetables Offline L 7/3/2014 744370782
## 518 Cosmetics Offline M 12/30/2014 873522365
## 519 Beverages Online L 5/19/2014 285884702
## 520 Cosmetics Online H 8/4/2012 356506621
## 521 Baby Food Offline L 8/15/2010 280749452
## 522 Baby Food Online M 4/26/2014 224287021
## 523 Fruits Offline M 6/10/2015 873105657
## 524 Snacks Offline C 8/12/2010 283504188
## 525 Beverages Offline C 8/28/2012 632093942
## 526 Meat Offline L 7/15/2016 565798747
## 527 Vegetables Online M 9/14/2010 151854932
## 528 Vegetables Online H 3/7/2011 427811324
## 529 Fruits Online L 4/30/2012 251529252
## 530 Snacks Offline C 5/18/2013 351182544
## 531 Meat Offline H 8/10/2014 175257527
## 532 Snacks Online H 7/31/2013 142553031
## 533 Fruits Offline H 7/2/2016 292180383
## 534 Fruits Offline L 9/13/2011 733563411
## 535 Beverages Online H 4/18/2011 296438443
## 536 Meat Offline C 2/9/2017 580854308
## 537 Cosmetics Offline H 11/20/2016 107172334
## 538 Baby Food Offline H 10/16/2010 166066348
## 539 Snacks Offline H 3/15/2015 768522679
## 540 Household Online M 6/25/2013 195840156
## 541 Cosmetics Offline L 10/11/2012 849630105
## 542 Fruits Offline M 7/8/2017 701816356
## 543 Office Supplies Online M 6/22/2010 944635236
## 544 Vegetables Online L 2/17/2017 140635573
## 545 Meat Online C 1/14/2011 972678697
## 546 Fruits Online M 1/9/2016 793938434
## 547 Baby Food Online L 7/18/2011 177901113
## 548 Beverages Online L 3/16/2012 668365561
## 549 Vegetables Online C 12/15/2010 729443109
## 550 Fruits Offline H 3/2/2013 695557582
## 551 Household Offline H 2/17/2010 521445310
## 552 Personal Care Online L 2/19/2013 232155120
## 553 Beverages Online L 10/28/2011 373048341
## 554 Office Supplies Offline L 10/26/2015 659798800
## 555 Household Online C 2/5/2013 428392827
## 556 Personal Care Offline M 8/25/2011 885129249
## 557 Meat Online C 12/4/2012 156619393
## 558 Baby Food Offline M 9/8/2015 939787089
## 559 Vegetables Online C 3/1/2012 151868665
## 560 Cereal Offline C 8/5/2014 180412948
## 561 Fruits Offline H 7/24/2013 333281266
## 562 Cosmetics Online L 1/26/2012 888647449
## 563 Clothes Offline M 3/10/2014 844997823
## 564 Fruits Online M 9/12/2013 171131217
## 565 Office Supplies Online C 1/5/2013 256158959
## 566 Cosmetics Online H 10/28/2011 759504878
## 567 Fruits Online C 11/21/2010 960905301
## 568 Office Supplies Offline C 10/28/2015 210409057
## 569 Cosmetics Offline C 7/29/2010 178377473
## 570 Fruits Online M 3/30/2014 805484378
## 571 Beverages Online C 9/14/2016 752716100
## 572 Clothes Online M 9/6/2012 551371467
## 573 Snacks Offline M 2/8/2013 353061807
## 574 Personal Care Online C 1/17/2011 379710948
## 575 Cereal Online H 10/11/2015 473555219
## 576 Office Supplies Online C 2/21/2011 547143447
## 577 Personal Care Online C 4/29/2012 133336961
## 578 Meat Online H 8/30/2016 635309588
## 579 Beverages Online C 12/20/2014 376547658
## 580 Clothes Offline M 6/28/2010 450849997
## 581 Personal Care Online M 2/6/2015 672327935
## 582 Cereal Offline L 3/30/2015 925405299
## 583 Household Offline H 7/28/2013 714818418
## 584 Beverages Offline C 1/6/2010 515616118
## 585 Cereal Offline C 2/20/2013 423159730
## 586 Personal Care Offline H 8/25/2013 603123080
## 587 Meat Offline C 11/16/2010 841492497
## 588 Cereal Offline L 8/2/2016 994566810
## 589 Vegetables Offline M 4/25/2013 538957345
## 590 Fruits Offline L 3/2/2011 821587932
## 591 Household Online C 9/28/2013 109694898
## 592 Meat Offline M 5/5/2014 340827071
## 593 Meat Offline L 11/28/2014 372845780
## 594 Fruits Online M 8/30/2014 933924853
## 595 Office Supplies Online L 11/20/2013 572550618
## 596 Meat Online M 2/23/2010 607521903
## 597 Snacks Online H 3/20/2017 177950036
## 598 Beverages Offline M 11/8/2015 293258845
## 599 Beverages Online C 8/9/2010 683184659
## 600 Cereal Online L 11/12/2010 247776305
## 601 Meat Offline C 12/14/2011 207395112
## 602 Vegetables Offline L 1/10/2014 952714908
## 603 Vegetables Online C 10/3/2010 694722020
## 604 Household Online H 10/15/2015 414715278
## 605 Snacks Offline M 7/20/2013 714306008
## 606 Snacks Online H 1/19/2016 465418040
## 607 Cereal Online M 8/17/2013 860287702
## 608 Vegetables Online C 8/16/2016 461463820
## 609 Baby Food Offline M 9/25/2013 151807725
## 610 Meat Offline C 8/21/2013 884493243
## 611 Cosmetics Offline M 12/10/2010 533006703
## 612 Vegetables Online C 9/4/2012 641146934
## 613 Cosmetics Offline M 10/15/2011 573025262
## 614 Household Offline C 8/26/2013 663065516
## 615 Beverages Online M 2/17/2017 866004025
## 616 Baby Food Online H 10/19/2010 306889617
## 617 Personal Care Online M 7/30/2014 431083619
## 618 Personal Care Online H 5/21/2015 954259860
## 619 Personal Care Offline C 5/5/2016 312404668
## 620 Office Supplies Offline C 4/14/2010 611816871
## 621 Office Supplies Online C 10/26/2013 879107797
## 622 Vegetables Offline C 7/21/2010 211201274
## 623 Fruits Online H 6/9/2015 925333631
## 624 Snacks Offline C 6/3/2010 909053695
## 625 Baby Food Online L 5/17/2016 370222795
## 626 Cosmetics Offline H 8/3/2013 487014758
## 627 Vegetables Online M 9/15/2013 257915914
## 628 Meat Offline M 7/2/2010 551725089
## 629 Meat Offline L 12/18/2013 957553613
## 630 Office Supplies Offline L 3/19/2016 234825313
## 631 Snacks Online M 6/9/2010 363276517
## 632 Personal Care Online M 5/21/2017 692956054
## 633 Cosmetics Online H 6/12/2013 194225251
## 634 Fruits Online L 2/22/2010 607757937
## 635 Cereal Offline H 6/29/2012 594540441
## 636 Vegetables Online L 3/23/2015 685871589
## 637 Cereal Offline C 2/12/2014 133362710
## 638 Clothes Offline H 5/22/2017 958937633
## 639 Vegetables Online C 8/6/2011 304832684
## 640 Baby Food Offline L 11/14/2010 783596694
## 641 Household Offline C 4/5/2015 128090989
## 642 Vegetables Offline M 7/8/2014 641489398
## 643 Clothes Offline M 8/9/2014 647278249
## 644 Clothes Online H 3/13/2011 339256370
## 645 Baby Food Offline M 3/2/2016 431535089
## 646 Cereal Offline C 12/19/2015 808538234
## 647 Personal Care Online C 3/28/2013 975002133
## 648 Snacks Online H 6/27/2015 505975615
## 649 Vegetables Offline M 2/18/2016 396820008
## 650 Vegetables Online H 6/14/2013 813209140
## 651 Baby Food Online M 5/10/2014 641129338
## 652 Meat Offline C 6/17/2015 636879432
## 653 Snacks Online C 6/11/2014 277070748
## 654 Cosmetics Offline H 11/3/2013 908627116
## 655 Cosmetics Offline C 4/2/2017 798784863
## 656 Beverages Offline H 5/28/2010 985092818
## 657 Snacks Offline C 5/22/2010 325412309
## 658 Beverages Online M 6/2/2016 447917163
## 659 Meat Offline M 8/22/2013 801093709
## 660 Fruits Offline H 10/5/2014 903740775
## 661 Meat Offline L 10/31/2010 794969689
## 662 Clothes Online L 11/27/2012 584204280
## 663 Cereal Offline H 5/22/2010 901180875
## 664 Snacks Offline L 8/31/2012 645948302
## 665 Cereal Online L 1/23/2015 138867890
## 666 Beverages Offline L 3/2/2010 670613467
## 667 Cosmetics Offline L 5/9/2014 452171361
## 668 Snacks Online H 12/28/2010 464840400
## 669 Household Online M 10/19/2014 410231912
## 670 Meat Offline H 1/21/2015 960269725
## 671 Beverages Offline L 4/4/2017 607190167
## 672 Meat Offline H 8/5/2016 613542068
## 673 Household Offline C 11/26/2016 962186753
## 674 Beverages Online L 9/23/2011 806298053
## 675 Personal Care Online L 10/24/2010 719362294
## 676 Baby Food Online H 8/14/2013 445178306
## 677 Cosmetics Offline C 2/4/2013 247857415
## 678 Vegetables Offline C 8/11/2014 461823451
## 679 Office Supplies Offline C 1/12/2017 141812741
## 680 Meat Online C 7/3/2016 212874114
## 681 Office Supplies Offline C 3/27/2010 320368897
## 682 Beverages Online C 6/5/2015 179970920
## 683 Household Online H 6/27/2012 927666509
## 684 Office Supplies Online L 12/19/2016 169754493
## 685 Personal Care Offline M 3/9/2015 532846200
## 686 Snacks Online C 6/18/2013 213865458
## 687 Office Supplies Online C 8/12/2011 630048596
## 688 Clothes Offline H 4/17/2014 568944442
## 689 Baby Food Online L 2/3/2012 238414323
## 690 Office Supplies Online L 8/1/2015 816632068
## 691 Baby Food Online C 9/11/2013 402084004
## 692 Snacks Online L 5/8/2015 763568961
## 693 Snacks Offline L 5/22/2015 590198266
## 694 Snacks Online L 7/3/2013 441395747
## 695 Personal Care Offline H 6/16/2010 496897733
## 696 Beverages Online C 11/8/2011 106753051
## 697 Fruits Offline L 10/17/2016 941323029
## 698 Vegetables Offline M 2/2/2014 241281497
## 699 Meat Offline L 4/30/2016 267614781
## 700 Cosmetics Offline M 8/31/2010 651621711
## 701 Personal Care Online M 8/8/2015 644913613
## 702 Cereal Offline H 8/18/2016 469414317
## 703 Clothes Online L 6/18/2015 867360150
## 704 Clothes Online L 1/28/2011 851299941
## 705 Beverages Offline H 2/4/2011 854095017
## 706 Vegetables Offline C 11/3/2012 478919208
## 707 Clothes Offline H 9/18/2014 749258840
## 708 Baby Food Offline H 5/17/2012 958912742
## 709 Personal Care Online C 2/20/2010 921992242
## 710 Vegetables Online L 2/28/2017 522921168
## 711 Personal Care Offline C 5/17/2013 166435849
## 712 Baby Food Offline L 11/9/2013 327585113
## 713 Clothes Offline M 1/10/2012 201730287
## 714 Fruits Offline L 9/24/2013 854545199
## 715 Personal Care Online M 9/26/2010 272016179
## 716 Cereal Offline H 10/21/2014 110442054
## 717 Household Offline C 1/17/2016 746434152
## 718 Vegetables Online L 12/27/2016 826916301
## 719 Beverages Offline H 8/30/2013 419124829
## 720 Office Supplies Online C 7/7/2014 560608565
## 721 Office Supplies Offline L 11/29/2013 109228837
## 722 Clothes Offline C 1/29/2011 693159472
## 723 Snacks Offline L 11/13/2013 860886800
## 724 Fruits Offline C 4/9/2012 131209647
## 725 Office Supplies Online H 6/28/2012 343239343
## 726 Clothes Online H 6/8/2010 706399714
## 727 Office Supplies Online M 8/23/2010 950427091
## 728 Snacks Offline H 12/11/2014 875370299
## 729 Clothes Online C 1/27/2011 801590669
## 730 Personal Care Offline C 5/7/2014 219762027
## 731 Cereal Offline C 11/8/2010 940870702
## 732 Fruits Online M 3/30/2014 346215522
## 733 Clothes Offline C 7/9/2016 837407815
## 734 Meat Online L 7/15/2014 386371409
## 735 Beverages Offline H 10/14/2013 185342633
## 736 Snacks Offline C 1/13/2017 596870315
## 737 Meat Online C 12/22/2012 703815782
## 738 Personal Care Online C 4/16/2010 559352862
## 739 Cosmetics Offline C 2/27/2011 736967885
## 740 Clothes Offline C 1/14/2015 980459678
## 741 Vegetables Offline C 11/16/2014 653939568
## 742 Cosmetics Online H 1/17/2016 991831386
## 743 Cereal Online L 5/29/2017 148871457
## 744 Fruits Online H 2/10/2015 850108611
## 745 Office Supplies Offline M 12/8/2013 940904176
## 746 Office Supplies Offline H 12/10/2015 136931979
## 747 Beverages Offline L 9/4/2016 474178349
## 748 Personal Care Offline L 7/19/2016 458942115
## 749 Beverages Offline C 1/9/2017 917834603
## 750 Personal Care Offline H 11/5/2016 947779643
## 751 Clothes Online L 10/31/2015 166013562
## 752 Beverages Online L 1/25/2011 960085189
## 753 Cosmetics Offline C 11/8/2015 837855851
## 754 Snacks Offline L 6/24/2010 977499377
## 755 Beverages Online L 2/27/2014 377502095
## 756 Meat Offline H 2/5/2013 806662833
## 757 Vegetables Online H 4/15/2017 954092919
## 758 Meat Online L 4/9/2011 479216182
## 759 Personal Care Online H 12/13/2010 461768949
## 760 Meat Online C 5/13/2014 251800048
## 761 Personal Care Offline L 1/16/2013 619670808
## 762 Household Offline H 12/9/2010 606055057
## 763 Baby Food Online L 1/24/2013 671939122
## 764 Cosmetics Offline M 2/25/2014 448621833
## 765 Fruits Online M 7/23/2017 987714517
## 766 Household Online H 5/7/2016 711141002
## 767 Office Supplies Online C 3/24/2012 361137616
## 768 Household Offline H 10/3/2011 750253188
## 769 Office Supplies Online C 12/22/2014 511349046
## 770 Personal Care Offline L 8/23/2011 147599017
## 771 Beverages Online H 4/18/2015 682489430
## 772 Vegetables Offline M 1/11/2014 509819114
## 773 Office Supplies Offline M 2/27/2012 343699395
## 774 Clothes Offline L 4/4/2011 968554103
## 775 Beverages Online M 12/26/2013 989119565
## 776 Vegetables Offline M 9/12/2012 880444610
## 777 Vegetables Offline L 12/19/2015 737890565
## 778 Vegetables Online M 6/26/2014 727131259
## 779 Office Supplies Offline L 3/2/2015 634153020
## 780 Beverages Online H 8/17/2014 315254676
## 781 Personal Care Offline M 7/19/2010 147047555
## 782 Household Online L 1/14/2013 576455485
## 783 Snacks Offline L 7/19/2010 770714795
## 784 Cosmetics Offline H 7/11/2011 867374312
## 785 Fruits Online L 5/4/2010 624295365
## 786 Clothes Offline M 10/13/2013 769651782
## 787 Vegetables Online C 7/27/2014 751929891
## 788 Office Supplies Online H 4/4/2010 989928519
## 789 Meat Offline H 8/17/2014 622758996
## 790 Baby Food Online H 1/4/2016 659845149
## 791 Baby Food Offline H 5/17/2011 830923306
## 792 Beverages Offline L 2/12/2010 936042296
## 793 Household Online L 2/17/2015 395563447
## 794 Meat Offline M 6/7/2011 500160586
## 795 Fruits Online L 5/26/2015 360820043
## 796 Snacks Online C 5/24/2010 958840644
## 797 Baby Food Online M 2/21/2011 195833718
## 798 Personal Care Offline M 6/28/2014 543723094
## 799 Cosmetics Offline H 10/15/2010 494745099
## 800 Vegetables Online H 5/18/2010 411448562
## 801 Personal Care Offline H 2/2/2017 276694810
## 802 Office Supplies Offline M 11/24/2016 143657672
## 803 Baby Food Online L 12/23/2011 585823476
## 804 Clothes Online C 12/5/2016 446991050
## 805 Clothes Offline M 2/16/2017 891271722
## 806 Cosmetics Online C 5/18/2010 453089320
## 807 Baby Food Offline L 9/7/2010 887180173
## 808 Cosmetics Online L 3/12/2014 418593108
## 809 Personal Care Online M 7/16/2010 492689454
## 810 Cosmetics Online M 12/5/2016 825143039
## 811 Vegetables Online L 10/8/2013 751940190
## 812 Baby Food Offline H 8/9/2016 579379737
## 813 Meat Online C 10/6/2011 234073007
## 814 Meat Online C 2/17/2013 612943828
## 815 Fruits Online C 12/14/2012 433228528
## 816 Fruits Online L 11/20/2015 282475936
## 817 Meat Online M 7/7/2012 368547379
## 818 Meat Offline H 6/2/2013 969616687
## 819 Baby Food Online L 2/4/2015 184170186
## 820 Fruits Online C 4/28/2011 681006705
## 821 Baby Food Online L 2/1/2012 249237573
## 822 Vegetables Offline H 1/29/2017 348286616
## 823 Clothes Offline L 12/1/2011 257890164
## 824 Cosmetics Online H 5/8/2017 228097045
## 825 Cereal Online C 5/3/2017 129268586
## 826 Cosmetics Online M 10/31/2015 802078616
## 827 Clothes Offline C 4/11/2010 907513463
## 828 Vegetables Online L 7/17/2010 976871955
## 829 Cereal Offline C 5/31/2012 261765420
## 830 Vegetables Offline L 7/15/2016 784117686
## 831 Cosmetics Offline M 1/14/2017 586165082
## 832 Snacks Online C 11/26/2012 480456435
## 833 Cereal Online L 10/3/2011 899853074
## 834 Baby Food Offline L 11/30/2010 547528827
## 835 Vegetables Online L 5/8/2016 446970021
## 836 Beverages Offline H 2/27/2016 791975486
## 837 Vegetables Offline M 8/24/2014 496656548
## 838 Vegetables Offline C 5/26/2013 345437037
## 839 Vegetables Offline H 1/26/2015 743053281
## 840 Snacks Offline L 1/7/2012 364554107
## 841 Cosmetics Online H 10/21/2012 205300843
## 842 Household Online M 9/16/2015 430967319
## 843 Meat Offline H 6/28/2012 827539861
## 844 Snacks Offline H 12/2/2014 351317298
## 845 Household Offline C 2/4/2013 278910958
## 846 Cosmetics Offline C 2/17/2017 157244670
## 847 Beverages Online L 6/24/2015 953554761
## 848 Cereal Online L 7/30/2016 105390059
## 849 Cosmetics Offline L 10/23/2014 970611894
## 850 Baby Food Offline M 12/16/2016 677394092
## 851 Baby Food Online L 9/28/2015 474222981
## 852 Snacks Online L 4/16/2016 779897391
## 853 Snacks Offline L 3/27/2017 733528649
## 854 Office Supplies Online H 6/25/2014 444540584
## 855 Clothes Online H 7/29/2012 542669522
## 856 Fruits Offline L 5/4/2013 827964293
## 857 Snacks Offline M 2/2/2012 720786225
## 858 Household Offline H 7/24/2016 611809146
## 859 Personal Care Online M 11/4/2012 512019383
## 860 Personal Care Online C 8/5/2014 502715766
## 861 Office Supplies Offline M 10/22/2013 285509622
## 862 Beverages Offline L 12/1/2014 532324779
## 863 Personal Care Offline H 11/2/2015 635397565
## 864 Cereal Offline M 10/7/2011 957276809
## 865 Snacks Online L 2/9/2014 580823838
## 866 Office Supplies Offline H 5/29/2016 459212481
## 867 Baby Food Online L 4/8/2013 265929067
## 868 Beverages Online H 9/20/2011 644772422
## 869 Vegetables Offline C 4/12/2012 959853875
## 870 Vegetables Online C 10/2/2012 645597255
## 871 Baby Food Offline C 1/2/2012 556738889
## 872 Vegetables Online M 9/30/2013 718327605
## 873 Baby Food Offline L 3/10/2015 775724732
## 874 Baby Food Offline H 10/26/2010 444604098
## 875 Beverages Online C 5/2/2011 860952031
## 876 Meat Offline C 2/19/2017 531067359
## 877 Cosmetics Offline M 7/20/2014 281561410
## 878 Personal Care Offline L 6/18/2017 109358012
## 879 Beverages Online L 7/19/2010 531693494
## 880 Clothes Offline C 8/9/2013 336116683
## 881 Cereal Offline M 3/23/2017 630488908
## 882 Fruits Online L 10/31/2016 792983996
## 883 Fruits Online C 7/3/2016 722088277
## 884 Cosmetics Online H 1/7/2010 386600577
## 885 Beverages Offline L 12/6/2014 275632226
## 886 Vegetables Offline H 10/16/2015 948607051
## 887 Cereal Online H 5/10/2013 785261380
## 888 Cereal Online C 3/27/2013 935644042
## 889 Snacks Offline M 7/13/2014 370116364
## 890 Beverages Online C 8/16/2013 829352176
## 891 Household Online M 7/14/2015 974337804
## 892 Household Online H 12/23/2014 436372077
## 893 Cereal Offline M 4/27/2015 267066323
## 894 Fruits Online M 3/14/2017 688344371
## 895 Cosmetics Offline M 10/2/2014 642442548
## 896 Cereal Online C 7/13/2014 941909682
## 897 Beverages Offline C 7/31/2016 219607102
## 898 Personal Care Offline H 8/30/2010 778708636
## 899 Beverages Online M 4/22/2010 942700612
## 900 Household Offline H 3/9/2011 905381858
## 901 Meat Online C 1/13/2010 480863702
## 902 Cosmetics Online L 1/6/2016 453569972
## 903 Baby Food Offline H 8/17/2016 328236997
## 904 Personal Care Offline C 10/22/2011 579913604
## 905 Cosmetics Online H 2/12/2010 403961122
## 906 Cosmetics Offline L 5/29/2017 866053378
## 907 Household Offline C 4/17/2010 852176702
## 908 Baby Food Online M 9/8/2015 218629920
## 909 Baby Food Offline C 2/13/2016 242024362
## 910 Snacks Offline M 2/16/2014 469283854
## 911 Fruits Online C 4/22/2013 967644727
## 912 Cosmetics Offline L 7/15/2014 974655807
## 913 Vegetables Online M 3/7/2012 248178422
## 914 Vegetables Offline L 1/14/2013 416386401
## 915 Snacks Offline L 5/22/2017 927766072
## 916 Vegetables Online M 3/23/2015 401116263
## 917 Fruits Offline H 9/28/2012 675548303
## 918 Baby Food Online L 6/6/2013 960486018
## 919 Clothes Offline L 4/2/2014 985665738
## 920 Clothes Offline C 1/13/2017 551136291
## 921 Cereal Online L 2/3/2017 877259004
## 922 Beverages Offline M 8/5/2014 554707705
## 923 Cereal Offline L 10/6/2010 494468724
## 924 Personal Care Online H 9/10/2011 777840888
## 925 Baby Food Offline C 12/12/2016 206435525
## 926 Office Supplies Online C 10/26/2015 352176463
## 927 Cosmetics Offline C 10/14/2013 607300031
## 928 Baby Food Online H 8/17/2013 434355056
## 929 Fruits Offline M 8/7/2011 716202867
## 930 Personal Care Online H 5/22/2016 606017291
## 931 Cereal Offline H 1/13/2015 677284657
## 932 Fruits Online C 7/22/2014 673803794
## 933 Cereal Offline C 6/25/2015 859686028
## 934 Clothes Online H 8/10/2015 669355189
## 935 Fruits Offline L 10/19/2013 957547605
## 936 Personal Care Online M 10/9/2013 849312102
## 937 Personal Care Offline H 9/26/2012 890010011
## 938 Cereal Online H 10/2/2012 795315158
## 939 Clothes Offline M 12/11/2016 801213872
## 940 Fruits Offline C 7/26/2010 314004981
## 941 Cereal Online C 3/27/2010 160299813
## 942 Beverages Offline C 9/11/2014 337022197
## 943 Snacks Offline M 3/9/2016 461408460
## 944 Office Supplies Offline M 10/19/2011 221007430
## 945 Snacks Offline L 10/31/2014 723680436
## 946 Fruits Offline L 2/23/2013 447601306
## 947 Clothes Offline L 10/25/2010 191256368
## 948 Vegetables Offline L 10/4/2016 823444449
## 949 Beverages Online C 9/4/2010 133276879
## 950 Meat Online H 12/22/2014 480177485
## 951 Household Offline H 4/8/2015 243882596
## 952 Cosmetics Online L 3/2/2017 574441039
## 953 Household Online M 3/14/2012 442214143
## 954 Clothes Offline C 11/22/2011 687875735
## 955 Clothes Offline H 9/8/2013 872412145
## 956 Fruits Offline C 4/23/2012 627122199
## 957 Fruits Online M 2/14/2011 103617227
## 958 Vegetables Offline M 10/6/2010 423821055
## 959 Vegetables Online L 12/8/2012 529970014
## 960 Personal Care Offline H 8/17/2016 334612929
## 961 Beverages Offline M 4/23/2014 270611131
## 962 Office Supplies Online C 11/18/2010 841138446
## 963 Household Online M 4/22/2012 369681203
## 964 Household Offline M 4/5/2014 850038230
## 965 Beverages Online M 6/21/2013 296320855
## 966 Cosmetics Offline L 7/13/2011 392952907
## 967 Snacks Online M 2/1/2011 644670712
## 968 Meat Online L 1/27/2012 626523101
## 969 Vegetables Offline M 6/24/2015 433871400
## 970 Snacks Offline M 1/3/2012 232389438
## 971 Cereal Offline H 2/21/2016 708063542
## 972 Vegetables Offline H 12/4/2016 817192542
## 973 Meat Offline H 1/16/2012 936387765
## 974 Clothes Offline H 8/6/2011 612573039
## 975 Clothes Online M 8/12/2011 812984693
## 976 Meat Offline C 12/18/2012 775171554
## 977 Household Online H 1/10/2010 256994950
## 978 Beverages Offline M 2/28/2017 886628711
## 979 Beverages Online C 12/8/2011 312559163
## 980 Cereal Online L 8/18/2014 753585135
## 981 Beverages Offline H 4/19/2016 448817956
## 982 Clothes Offline M 11/6/2012 407681453
## 983 Snacks Online H 5/27/2016 359911954
## 984 Office Supplies Offline M 8/18/2013 105558288
## 985 Personal Care Offline H 12/31/2014 864981782
## 986 Office Supplies Online C 2/4/2013 328856265
## 987 Clothes Offline H 9/23/2016 308168065
## 988 Household Offline L 11/1/2016 884216010
## 989 Snacks Offline M 12/27/2012 858611428
## 990 Cereal Online L 3/10/2017 903278148
## 991 Beverages Online L 3/17/2012 410452497
## 992 Cereal Offline H 12/17/2015 642683303
## 993 Beverages Offline L 2/18/2017 682831895
## 994 Baby Food Online L 11/5/2016 584072101
## 995 Meat Offline C 4/9/2017 919890248
## 996 Snacks Offline C 4/18/2010 534085166
## 997 Baby Food Offline H 8/1/2011 590768182
## 998 Vegetables Online C 5/12/2011 524363124
## 999 Household Offline L 1/25/2016 289606320
## 1000 Cereal Offline C 4/10/2014 811546599
## Ship.Date Units.Sold Unit.Price Unit.Cost Total.Revenue Total.Cost
## 1 10/31/2014 8446 437.20 263.33 3692591.20 2224085.18
## 2 12/8/2011 3018 154.06 90.93 464953.08 274426.74
## 3 12/9/2016 1517 255.28 159.42 387259.76 241840.14
## 4 5/12/2010 3322 205.70 117.11 683335.40 389039.42
## 5 8/31/2011 9845 9.33 6.92 91853.85 68127.40
## 6 12/28/2014 9528 205.70 117.11 1959909.60 1115824.08
## 7 4/17/2015 2844 205.70 117.11 585010.80 333060.84
## 8 6/28/2012 7299 109.28 35.84 797634.72 261596.16
## 9 3/7/2015 2428 154.06 90.93 374057.68 220778.04
## 10 1/19/2014 4800 154.06 90.93 739488.00 436464.00
## 11 1/19/2016 3012 109.28 35.84 329151.36 107950.08
## 12 3/18/2010 2694 152.58 97.44 411050.52 262503.36
## 13 12/22/2016 1508 668.27 502.54 1007751.16 757830.32
## 14 1/5/2016 4146 437.20 263.33 1812631.20 1091766.18
## 15 2/6/2011 7332 9.33 6.92 68407.56 50737.44
## 16 7/22/2010 4820 109.28 35.84 526729.60 172748.80
## 17 5/12/2016 2397 651.21 524.96 1560950.37 1258329.12
## 18 8/7/2012 2880 47.45 31.79 136656.00 91555.20
## 19 10/3/2014 1117 109.28 35.84 122065.76 40033.28
## 20 9/8/2012 8989 668.27 502.54 6007079.03 4517332.06
## 21 10/15/2012 407 152.58 97.44 62100.06 39658.08
## 22 9/16/2010 6313 109.28 35.84 689884.64 226257.92
## 23 3/9/2011 9681 81.73 56.67 791228.13 548622.27
## 24 1/24/2016 515 109.28 35.84 56279.20 18457.60
## 25 11/13/2012 852 205.70 117.11 175256.40 99777.72
## 26 3/20/2017 9759 47.45 31.79 463064.55 310238.61
## 27 11/4/2014 8334 47.45 31.79 395448.30 264937.86
## 28 2/22/2012 4709 9.33 6.92 43934.97 32586.28
## 29 3/9/2016 9043 421.89 364.69 3815151.27 3297891.67
## 30 1/7/2016 8529 81.73 56.67 697075.17 483338.43
## 31 6/23/2017 2391 47.45 31.79 113452.95 76009.89
## 32 7/9/2015 6884 651.21 524.96 4482929.64 3613824.64
## 33 3/16/2014 293 9.33 6.92 2733.69 2027.56
## 34 4/8/2014 7937 255.28 159.42 2026157.36 1265316.54
## 35 10/24/2010 7163 47.45 31.79 339884.35 227711.77
## 36 5/14/2010 2352 651.21 524.96 1531645.92 1234705.92
## 37 10/22/2013 9915 651.21 524.96 6456747.15 5204978.40
## 38 4/14/2011 3294 154.06 90.93 507473.64 299523.42
## 39 8/12/2016 7963 255.28 159.42 2032794.64 1269461.46
## 40 2/18/2011 6426 651.21 524.96 4184675.46 3373392.96
## 41 6/12/2014 3221 651.21 524.96 2097547.41 1690896.16
## 42 9/2/2013 9913 47.45 31.79 470371.85 315134.27
## 43 11/20/2011 103 421.89 364.69 43454.67 37563.07
## 44 12/30/2016 4419 152.58 97.44 674251.02 430587.36
## 45 4/17/2015 5523 651.21 524.96 3596632.83 2899354.08
## 46 4/21/2013 3107 47.45 31.79 147427.15 98771.53
## 47 9/1/2010 8896 421.89 364.69 3753133.44 3244282.24
## 48 2/15/2012 1643 668.27 502.54 1097967.61 825673.22
## 49 8/30/2015 2135 81.73 56.67 174493.55 120990.45
## 50 1/26/2017 8189 421.89 364.69 3454857.21 2986446.41
## 51 5/31/2012 9654 154.06 90.93 1487295.24 877838.22
## 52 12/20/2010 3410 154.06 90.93 525344.60 310071.30
## 53 1/1/2015 8368 437.20 263.33 3658489.60 2203545.44
## 54 7/28/2016 470 47.45 31.79 22301.50 14941.30
## 55 6/7/2016 7690 9.33 6.92 71747.70 53214.80
## 56 11/5/2012 5033 152.58 97.44 767935.14 490415.52
## 57 3/15/2012 9535 651.21 524.96 6209287.35 5005493.60
## 58 2/13/2011 5263 651.21 524.96 3427318.23 2762864.48
## 59 6/19/2014 8316 154.06 90.93 1281162.96 756173.88
## 60 1/25/2017 1824 81.73 56.67 149075.52 103366.08
## 61 7/29/2014 949 651.21 524.96 617998.29 498187.04
## 62 4/22/2015 7881 437.20 263.33 3445573.20 2075303.73
## 63 4/4/2013 6846 47.45 31.79 324842.70 217634.34
## 64 3/25/2015 9097 109.28 35.84 994120.16 326036.48
## 65 7/29/2013 7921 81.73 56.67 647383.33 448883.07
## 66 1/8/2013 3636 651.21 524.96 2367799.56 1908754.56
## 67 4/3/2012 8590 205.70 117.11 1766963.00 1005974.90
## 68 5/12/2014 2163 651.21 524.96 1408567.23 1135488.48
## 69 2/1/2016 5766 255.28 159.42 1471944.48 919215.72
## 70 6/8/2011 7841 651.21 524.96 5106137.61 4116211.36
## 71 8/22/2010 8862 9.33 6.92 82682.46 61325.04
## 72 8/19/2013 6335 255.28 159.42 1617198.80 1009925.70
## 73 11/6/2013 9794 47.45 31.79 464725.30 311351.26
## 74 2/19/2017 5808 154.06 90.93 894780.48 528121.44
## 75 4/17/2015 2975 421.89 364.69 1255122.75 1084952.75
## 76 5/8/2012 6925 81.73 56.67 565980.25 392439.75
## 77 10/1/2013 5319 421.89 364.69 2244032.91 1939786.11
## 78 6/14/2014 2850 651.21 524.96 1855948.50 1496136.00
## 79 5/17/2010 6241 205.70 117.11 1283773.70 730883.51
## 80 7/19/2017 9247 651.21 524.96 6021738.87 4854305.12
## 81 3/29/2015 7653 205.70 117.11 1574222.10 896242.83
## 82 2/10/2010 4279 152.58 97.44 652889.82 416945.76
## 83 3/17/2010 3972 9.33 6.92 37058.76 27486.24
## 84 2/8/2013 8611 109.28 35.84 941010.08 308618.24
## 85 3/18/2017 2109 152.58 97.44 321791.22 205500.96
## 86 2/23/2011 5408 47.45 31.79 256609.60 171920.32
## 87 3/31/2014 1480 205.70 117.11 304436.00 173322.80
## 88 8/17/2013 332 152.58 97.44 50656.56 32350.08
## 89 9/4/2011 3999 47.45 31.79 189752.55 127128.21
## 90 8/2/2016 1549 109.28 35.84 169274.72 55516.16
## 91 3/23/2014 4079 255.28 159.42 1041287.12 650274.18
## 92 9/13/2010 9721 109.28 35.84 1062310.88 348400.64
## 93 2/6/2013 8635 668.27 502.54 5770511.45 4339432.90
## 94 11/17/2010 8014 81.73 56.67 654984.22 454153.38
## 95 11/20/2016 7081 205.70 117.11 1456561.70 829255.91
## 96 3/23/2011 2091 152.58 97.44 319044.78 203747.04
## 97 1/31/2013 1331 9.33 6.92 12418.23 9210.52
## 98 10/9/2015 117 109.28 35.84 12785.76 4193.28
## 99 12/24/2013 5798 668.27 502.54 3874629.46 2913726.92
## 100 8/22/2014 2755 154.06 90.93 424435.30 250512.15
## 101 12/7/2010 7398 109.28 35.84 808453.44 265144.32
## 102 7/29/2015 3170 154.06 90.93 488370.20 288248.10
## 103 5/18/2012 5544 152.58 97.44 845903.52 540207.36
## 104 7/19/2012 7025 154.06 90.93 1082271.50 638783.25
## 105 5/24/2013 2149 81.73 56.67 175637.77 121783.83
## 106 1/11/2017 2484 81.73 56.67 203017.32 140768.28
## 107 4/6/2011 1629 152.58 97.44 248552.82 158729.76
## 108 11/4/2011 213 437.20 263.33 93123.60 56089.29
## 109 6/26/2012 897 47.45 31.79 42562.65 28515.63
## 110 11/17/2011 3374 109.28 35.84 368710.72 120924.16
## 111 1/29/2010 9367 47.45 31.79 444464.15 297776.93
## 112 9/7/2011 7632 255.28 159.42 1948296.96 1216693.44
## 113 10/26/2014 8954 47.45 31.79 424867.30 284647.66
## 114 9/19/2014 1150 205.70 117.11 236555.00 134676.50
## 115 9/18/2015 4071 651.21 524.96 2651075.91 2137112.16
## 116 7/11/2011 4594 255.28 159.42 1172756.32 732375.48
## 117 2/14/2012 1632 152.58 97.44 249010.56 159022.08
## 118 2/22/2017 1127 668.27 502.54 753140.29 566362.58
## 119 3/12/2012 1052 154.06 90.93 162071.12 95658.36
## 120 7/18/2010 6413 421.89 364.69 2705580.57 2338756.97
## 121 4/15/2011 4245 152.58 97.44 647702.10 413632.80
## 122 10/5/2010 8615 152.58 97.44 1314476.70 839445.60
## 123 2/12/2014 5624 255.28 159.42 1435694.72 896578.08
## 124 10/7/2015 8399 109.28 35.84 917842.72 301020.16
## 125 10/7/2011 2104 9.33 6.92 19630.32 14559.68
## 126 4/21/2010 8929 152.58 97.44 1362386.82 870041.76
## 127 12/11/2012 3098 668.27 502.54 2070300.46 1556868.92
## 128 3/18/2011 5867 109.28 35.84 641145.76 210273.28
## 129 9/22/2012 522 437.20 263.33 228218.40 137458.26
## 130 8/31/2014 7379 152.58 97.44 1125887.82 719009.76
## 131 9/12/2015 8788 651.21 524.96 5722833.48 4613348.48
## 132 5/4/2011 4129 47.45 31.79 195921.05 131260.91
## 133 5/7/2013 4811 47.45 31.79 228281.95 152941.69
## 134 12/31/2015 9279 255.28 159.42 2368743.12 1479258.18
## 135 2/11/2014 8006 668.27 502.54 5350169.62 4023335.24
## 136 4/29/2015 8496 651.21 524.96 5532680.16 4460060.16
## 137 1/27/2013 285 668.27 502.54 190456.95 143223.90
## 138 3/15/2013 9942 81.73 56.67 812559.66 563413.14
## 139 12/10/2014 6064 421.89 364.69 2558340.96 2211480.16
## 140 1/17/2015 4281 421.89 364.69 1806111.09 1561237.89
## 141 3/22/2011 2256 81.73 56.67 184382.88 127847.52
## 142 4/21/2013 4679 152.58 97.44 713921.82 455921.76
## 143 8/19/2017 8275 437.20 263.33 3617830.00 2179055.75
## 144 5/19/2017 6798 9.33 6.92 63425.34 47042.16
## 145 5/23/2014 6035 255.28 159.42 1540614.80 962099.70
## 146 9/30/2015 8803 255.28 159.42 2247229.84 1403374.26
## 147 10/14/2013 9951 152.58 97.44 1518323.58 969625.44
## 148 12/9/2013 1358 205.70 117.11 279340.60 159035.38
## 149 8/9/2014 6936 205.70 117.11 1426735.20 812274.96
## 150 12/30/2011 7627 9.33 6.92 71159.91 52778.84
## 151 4/14/2010 6405 152.58 97.44 977274.90 624103.20
## 152 8/8/2011 3274 205.70 117.11 673461.80 383418.14
## 153 1/15/2011 271 255.28 159.42 69180.88 43202.82
## 154 7/4/2016 6463 109.28 35.84 706276.64 231633.92
## 155 1/5/2014 2949 9.33 6.92 27514.17 20407.08
## 156 3/31/2017 7859 421.89 364.69 3315633.51 2866098.71
## 157 7/27/2010 1353 255.28 159.42 345393.84 215695.26
## 158 8/1/2013 624 152.58 97.44 95209.92 60802.56
## 159 9/16/2016 4897 651.21 524.96 3188975.37 2570729.12
## 160 1/19/2015 424 421.89 364.69 178881.36 154628.56
## 161 5/15/2012 5494 651.21 524.96 3577747.74 2884130.24
## 162 7/19/2017 5423 668.27 502.54 3624028.21 2725274.42
## 163 7/21/2017 7559 81.73 56.67 617797.07 428368.53
## 164 10/2/2011 6283 651.21 524.96 4091552.43 3298323.68
## 165 11/26/2015 8006 154.06 90.93 1233404.36 727985.58
## 166 9/14/2012 6170 651.21 524.96 4017965.70 3239003.20
## 167 12/28/2015 6249 109.28 35.84 682890.72 223964.16
## 168 7/9/2014 748 154.06 90.93 115236.88 68015.64
## 169 11/21/2012 4203 47.45 31.79 199432.35 133613.37
## 170 3/25/2013 8180 651.21 524.96 5326897.80 4294172.80
## 171 3/11/2011 6280 651.21 524.96 4089598.80 3296748.80
## 172 9/1/2014 9131 668.27 502.54 6101973.37 4588692.74
## 173 7/11/2017 9396 81.73 56.67 767935.08 532471.32
## 174 1/3/2011 6765 109.28 35.84 739279.20 242457.60
## 175 1/15/2010 2964 81.73 56.67 242247.72 167969.88
## 176 10/16/2011 6746 651.21 524.96 4393062.66 3541380.16
## 177 3/31/2014 8898 651.21 524.96 5794466.58 4671094.08
## 178 12/1/2012 7237 109.28 35.84 790859.36 259374.08
## 179 12/29/2011 1612 81.73 56.67 131748.76 91352.04
## 180 8/19/2012 8904 47.45 31.79 422494.80 283058.16
## 181 5/15/2017 8022 81.73 56.67 655638.06 454606.74
## 182 9/12/2010 4909 81.73 56.67 401212.57 278193.03
## 183 1/31/2016 7539 81.73 56.67 616162.47 427235.13
## 184 5/15/2016 917 651.21 524.96 597159.57 481388.32
## 185 12/4/2010 2079 421.89 364.69 877109.31 758190.51
## 186 12/16/2010 5093 421.89 364.69 2148685.77 1857366.17
## 187 1/17/2014 6056 152.58 97.44 924024.48 590096.64
## 188 1/5/2015 8099 255.28 159.42 2067512.72 1291142.58
## 189 1/30/2017 6384 437.20 263.33 2791084.80 1681098.72
## 190 4/14/2013 3101 668.27 502.54 2072305.27 1558376.54
## 191 1/16/2013 2476 81.73 56.67 202363.48 140314.92
## 192 3/5/2015 5763 255.28 159.42 1471178.64 918737.46
## 193 4/18/2012 6247 47.45 31.79 296420.15 198592.13
## 194 11/8/2016 4247 154.06 90.93 654292.82 386179.71
## 195 12/23/2011 2111 47.45 31.79 100166.95 67108.69
## 196 4/20/2016 9219 668.27 502.54 6160781.13 4632916.26
## 197 2/28/2011 6982 255.28 159.42 1782364.96 1113070.44
## 198 5/28/2013 3843 109.28 35.84 419963.04 137733.12
## 199 6/5/2010 274 9.33 6.92 2556.42 1896.08
## 200 6/6/2017 3782 205.70 117.11 777957.40 442910.02
## 201 9/15/2012 3901 81.73 56.67 318828.73 221069.67
## 202 4/3/2017 7200 255.28 159.42 1838016.00 1147824.00
## 203 2/23/2015 2278 668.27 502.54 1522319.06 1144786.12
## 204 7/29/2010 4763 81.73 56.67 389279.99 269919.21
## 205 7/14/2016 2317 152.58 97.44 353527.86 225768.48
## 206 9/15/2012 9633 421.89 364.69 4064066.37 3513058.77
## 207 4/19/2010 3434 154.06 90.93 529042.04 312253.62
## 208 1/20/2010 7475 154.06 90.93 1151598.50 679701.75
## 209 3/28/2014 7542 205.70 117.11 1551389.40 883243.62
## 210 1/30/2014 6452 154.06 90.93 993995.12 586680.36
## 211 3/15/2010 9055 668.27 502.54 6051184.85 4550499.70
## 212 3/8/2015 7230 81.73 56.67 590907.90 409724.10
## 213 7/22/2012 4888 651.21 524.96 3183114.48 2566004.48
## 214 4/3/2013 2972 109.28 35.84 324780.16 106516.48
## 215 4/23/2014 4455 668.27 502.54 2977142.85 2238815.70
## 216 9/12/2017 9341 421.89 364.69 3940874.49 3406569.29
## 217 10/24/2010 9669 9.33 6.92 90211.77 66909.48
## 218 12/23/2016 4503 255.28 159.42 1149525.84 717868.26
## 219 5/10/2014 4944 109.28 35.84 540280.32 177192.96
## 220 8/19/2016 9121 154.06 90.93 1405181.26 829372.53
## 221 1/8/2016 7196 81.73 56.67 588129.08 407797.32
## 222 11/4/2016 6360 9.33 6.92 59338.80 44011.20
## 223 12/13/2016 5837 255.28 159.42 1490069.36 930534.54
## 224 9/19/2011 1882 154.06 90.93 289940.92 171130.26
## 225 5/9/2012 2782 109.28 35.84 304016.96 99706.88
## 226 6/11/2012 3853 152.58 97.44 587890.74 375436.32
## 227 2/9/2014 2445 668.27 502.54 1633920.15 1228710.30
## 228 12/28/2016 2936 668.27 502.54 1962040.72 1475457.44
## 229 12/27/2013 1739 255.28 159.42 443931.92 277231.38
## 230 5/22/2010 2296 109.28 35.84 250906.88 82288.64
## 231 7/30/2012 80 255.28 159.42 20422.40 12753.60
## 232 11/24/2016 7597 81.73 56.67 620902.81 430521.99
## 233 10/20/2012 9381 421.89 364.69 3957750.09 3421156.89
## 234 7/23/2017 7002 651.21 524.96 4559772.42 3675769.92
## 235 9/2/2011 4056 437.20 263.33 1773283.20 1068066.48
## 236 6/22/2010 1175 154.06 90.93 181020.50 106842.75
## 237 9/7/2015 1020 651.21 524.96 664234.20 535459.20
## 238 9/8/2010 3282 255.28 159.42 837828.96 523216.44
## 239 7/22/2010 9685 651.21 524.96 6306968.85 5084237.60
## 240 4/23/2012 8985 205.70 117.11 1848214.50 1052233.35
## 241 3/24/2014 1967 205.70 117.11 404611.90 230355.37
## 242 9/1/2011 6449 668.27 502.54 4309673.23 3240880.46
## 243 4/5/2016 2279 255.28 159.42 581783.12 363318.18
## 244 2/25/2014 6338 255.28 159.42 1617964.64 1010403.96
## 245 6/16/2015 7536 81.73 56.67 615917.28 427065.12
## 246 3/27/2012 1816 109.28 35.84 198452.48 65085.44
## 247 10/23/2012 7151 205.70 117.11 1470960.70 837453.61
## 248 3/4/2015 8547 651.21 524.96 5565891.87 4486833.12
## 249 12/22/2010 3039 9.33 6.92 28353.87 21029.88
## 250 7/26/2011 4695 154.06 90.93 723311.70 426916.35
## 251 8/30/2014 9614 47.45 31.79 456184.30 305629.06
## 252 9/3/2014 924 421.89 364.69 389826.36 336973.56
## 253 3/28/2015 3789 154.06 90.93 583733.34 344533.77
## 254 10/27/2016 399 668.27 502.54 266639.73 200513.46
## 255 7/23/2013 4979 668.27 502.54 3327316.33 2502146.66
## 256 2/13/2012 8783 421.89 364.69 3705459.87 3203072.27
## 257 5/30/2012 5098 47.45 31.79 241900.10 162065.42
## 258 11/21/2011 4240 205.70 117.11 872168.00 496546.40
## 259 5/18/2016 8559 668.27 502.54 5719722.93 4301239.86
## 260 2/7/2014 7435 421.89 364.69 3136752.15 2711470.15
## 261 12/15/2016 2278 9.33 6.92 21253.74 15763.76
## 262 3/24/2011 1531 668.27 502.54 1023121.37 769388.74
## 263 11/13/2014 5668 255.28 159.42 1446927.04 903592.56
## 264 7/5/2012 2193 47.45 31.79 104057.85 69715.47
## 265 11/23/2012 642 668.27 502.54 429029.34 322630.68
## 266 4/14/2014 7584 668.27 502.54 5068159.68 3811263.36
## 267 10/6/2015 1616 255.28 159.42 412532.48 257622.72
## 268 3/24/2014 8369 152.58 97.44 1276942.02 815475.36
## 269 10/30/2014 5503 9.33 6.92 51342.99 38080.76
## 270 7/10/2012 7712 154.06 90.93 1188110.72 701252.16
## 271 12/13/2010 1718 109.28 35.84 187743.04 61573.12
## 272 11/7/2010 1276 81.73 56.67 104287.48 72310.92
## 273 5/9/2014 2173 154.06 90.93 334772.38 197590.89
## 274 2/9/2013 7227 152.58 97.44 1102695.66 704198.88
## 275 9/29/2014 1285 668.27 502.54 858726.95 645763.90
## 276 12/23/2016 6227 9.33 6.92 58097.91 43090.84
## 277 12/2/2010 5965 205.70 117.11 1227000.50 698561.15
## 278 1/26/2015 1441 421.89 364.69 607943.49 525518.29
## 279 4/24/2011 5629 109.28 35.84 615137.12 201743.36
## 280 8/21/2016 8534 437.20 263.33 3731064.80 2247258.22
## 281 2/19/2011 2191 668.27 502.54 1464179.57 1101065.14
## 282 4/15/2010 5668 651.21 524.96 3691058.28 2975473.28
## 283 2/9/2015 64 154.06 90.93 9859.84 5819.52
## 284 7/27/2016 3509 651.21 524.96 2285095.89 1842084.64
## 285 6/15/2014 6163 154.06 90.93 949471.78 560401.59
## 286 1/29/2013 5220 47.45 31.79 247689.00 165943.80
## 287 3/2/2010 9902 668.27 502.54 6617209.54 4976151.08
## 288 5/15/2016 6465 154.06 90.93 995997.90 587862.45
## 289 8/10/2012 3195 154.06 90.93 492221.70 290521.35
## 290 3/9/2015 5409 205.70 117.11 1112631.30 633447.99
## 291 3/20/2011 455 47.45 31.79 21589.75 14464.45
## 292 1/26/2015 2715 437.20 263.33 1186998.00 714940.95
## 293 6/28/2012 8598 47.45 31.79 407975.10 273330.42
## 294 1/21/2016 1547 154.06 90.93 238330.82 140668.71
## 295 2/25/2017 7036 154.06 90.93 1083966.16 639783.48
## 296 2/13/2012 7570 255.28 159.42 1932469.60 1206809.40
## 297 2/15/2013 7685 437.20 263.33 3359882.00 2023691.05
## 298 9/22/2014 8948 668.27 502.54 5979679.96 4496727.92
## 299 7/24/2012 4957 205.70 117.11 1019654.90 580514.27
## 300 4/7/2014 6344 437.20 263.33 2773596.80 1670565.52
## 301 2/10/2014 5768 651.21 524.96 3756179.28 3027969.28
## 302 10/12/2010 2923 651.21 524.96 1903486.83 1534458.08
## 303 6/25/2011 9532 651.21 524.96 6207333.72 5003918.72
## 304 5/21/2013 4349 47.45 31.79 206360.05 138254.71
## 305 8/14/2014 8161 47.45 31.79 387239.45 259438.19
## 306 10/30/2010 8786 152.58 97.44 1340567.88 856107.84
## 307 5/14/2013 6071 81.73 56.67 496182.83 344043.57
## 308 2/1/2016 6897 9.33 6.92 64349.01 47727.24
## 309 12/14/2013 175 109.28 35.84 19124.00 6272.00
## 310 3/9/2014 1848 205.70 117.11 380133.60 216419.28
## 311 7/10/2017 9888 109.28 35.84 1080560.64 354385.92
## 312 5/20/2014 9302 668.27 502.54 6216247.54 4674627.08
## 313 6/8/2011 7124 9.33 6.92 66466.92 49298.08
## 314 9/22/2012 7422 154.06 90.93 1143433.32 674882.46
## 315 9/11/2015 6296 437.20 263.33 2752611.20 1657925.68
## 316 11/20/2014 6874 437.20 263.33 3005312.80 1810130.42
## 317 10/21/2013 4319 668.27 502.54 2886258.13 2170470.26
## 318 3/12/2013 822 47.45 31.79 39003.90 26131.38
## 319 8/16/2014 607 255.28 159.42 154954.96 96767.94
## 320 1/16/2017 4928 205.70 117.11 1013689.60 577118.08
## 321 12/10/2012 7073 205.70 117.11 1454916.10 828319.03
## 322 11/27/2014 7358 255.28 159.42 1878350.24 1173012.36
## 323 8/15/2013 8132 421.89 364.69 3430809.48 2965659.08
## 324 6/16/2012 8775 81.73 56.67 717180.75 497279.25
## 325 8/6/2015 699 109.28 35.84 76386.72 25052.16
## 326 3/2/2017 2344 109.28 35.84 256152.32 84008.96
## 327 2/22/2012 4186 47.45 31.79 198625.70 133072.94
## 328 9/21/2015 3729 47.45 31.79 176941.05 118544.91
## 329 6/30/2013 508 255.28 159.42 129682.24 80985.36
## 330 9/22/2011 1093 421.89 364.69 461125.77 398606.17
## 331 12/6/2016 4080 421.89 364.69 1721311.20 1487935.20
## 332 9/21/2010 5100 154.06 90.93 785706.00 463743.00
## 333 7/14/2013 1815 47.45 31.79 86121.75 57698.85
## 334 11/21/2012 8916 154.06 90.93 1373598.96 810731.88
## 335 1/5/2012 3127 154.06 90.93 481745.62 284338.11
## 336 3/14/2012 8203 255.28 159.42 2094061.84 1307722.26
## 337 1/7/2015 9930 109.28 35.84 1085150.40 355891.20
## 338 5/28/2012 1126 81.73 56.67 92027.98 63810.42
## 339 2/15/2012 6639 152.58 97.44 1012978.62 646904.16
## 340 8/12/2011 8349 205.70 117.11 1717389.30 977751.39
## 341 4/8/2017 167 152.58 97.44 25480.86 16272.48
## 342 4/18/2017 3036 651.21 524.96 1977073.56 1593778.56
## 343 4/19/2016 9929 255.28 159.42 2534675.12 1582881.18
## 344 12/26/2015 851 47.45 31.79 40379.95 27053.29
## 345 11/16/2011 7838 9.33 6.92 73128.54 54238.96
## 346 8/2/2011 9958 255.28 159.42 2542078.24 1587504.36
## 347 4/10/2016 8309 437.20 263.33 3632694.80 2188008.97
## 348 1/21/2017 1021 668.27 502.54 682303.67 513093.34
## 349 4/18/2013 8256 9.33 6.92 77028.48 57131.52
## 350 4/20/2017 7205 668.27 502.54 4814885.35 3620800.70
## 351 7/4/2011 7092 81.73 56.67 579629.16 401903.64
## 352 12/31/2013 4173 81.73 56.67 341059.29 236483.91
## 353 5/31/2013 6733 205.70 117.11 1384978.10 788501.63
## 354 11/27/2010 89 81.73 56.67 7273.97 5043.63
## 355 4/21/2016 1591 651.21 524.96 1036075.11 835211.36
## 356 9/12/2013 5618 152.58 97.44 857194.44 547417.92
## 357 5/28/2011 8581 47.45 31.79 407168.45 272789.99
## 358 7/25/2014 3923 255.28 159.42 1001463.44 625404.66
## 359 9/15/2014 7117 47.45 31.79 337701.65 226249.43
## 360 6/19/2015 668 668.27 502.54 446404.36 335696.72
## 361 1/1/2014 9113 205.70 117.11 1874544.10 1067223.43
## 362 6/10/2012 4019 205.70 117.11 826708.30 470665.09
## 363 11/13/2013 8984 437.20 263.33 3927804.80 2365756.72
## 364 1/14/2011 4638 9.33 6.92 43272.54 32094.96
## 365 2/3/2013 3642 668.27 502.54 2433839.34 1830250.68
## 366 4/14/2011 5689 255.28 159.42 1452287.92 906940.38
## 367 10/27/2012 2503 81.73 56.67 204570.19 141845.01
## 368 11/15/2014 2838 47.45 31.79 134663.10 90220.02
## 369 7/24/2015 7480 255.28 159.42 1909494.40 1192461.60
## 370 5/27/2010 4247 205.70 117.11 873607.90 497366.17
## 371 1/9/2011 2988 154.06 90.93 460331.28 271698.84
## 372 12/31/2010 582 109.28 35.84 63600.96 20858.88
## 373 1/1/2013 5940 437.20 263.33 2596968.00 1564180.20
## 374 9/7/2016 5005 81.73 56.67 409058.65 283633.35
## 375 3/20/2015 5751 81.73 56.67 470029.23 325909.17
## 376 1/4/2014 3181 205.70 117.11 654331.70 372526.91
## 377 6/12/2012 4334 421.89 364.69 1828471.26 1580566.46
## 378 4/19/2014 3275 421.89 364.69 1381689.75 1194359.75
## 379 2/18/2017 6103 81.73 56.67 498798.19 345857.01
## 380 7/6/2015 5949 255.28 159.42 1518660.72 948389.58
## 381 12/3/2012 7974 437.20 263.33 3486232.80 2099793.42
## 382 2/13/2010 4369 154.06 90.93 673088.14 397273.17
## 383 2/6/2016 9359 421.89 364.69 3948468.51 3413133.71
## 384 10/23/2014 4199 47.45 31.79 199242.55 133486.21
## 385 1/9/2014 2173 651.21 524.96 1415079.33 1140738.08
## 386 11/25/2010 3601 205.70 117.11 740725.70 421713.11
## 387 6/2/2011 830 81.73 56.67 67835.90 47036.10
## 388 3/23/2011 3241 152.58 97.44 494511.78 315803.04
## 389 10/13/2014 2244 651.21 524.96 1461315.24 1178010.24
## 390 12/14/2015 6283 205.70 117.11 1292413.10 735802.13
## 391 7/18/2017 5829 205.70 117.11 1199025.30 682634.19
## 392 8/18/2011 8390 437.20 263.33 3668108.00 2209338.70
## 393 8/24/2014 3499 421.89 364.69 1476193.11 1276050.31
## 394 2/24/2017 7726 421.89 364.69 3259522.14 2817594.94
## 395 12/9/2010 9669 9.33 6.92 90211.77 66909.48
## 396 5/5/2015 4957 255.28 159.42 1265422.96 790244.94
## 397 10/16/2012 1251 109.28 35.84 136709.28 44835.84
## 398 9/2/2013 3245 421.89 364.69 1369033.05 1183419.05
## 399 8/18/2013 7661 437.20 263.33 3349389.20 2017371.13
## 400 12/17/2013 8254 81.73 56.67 674599.42 467754.18
## 401 3/28/2016 812 651.21 524.96 528782.52 426267.52
## 402 4/4/2012 8150 421.89 364.69 3438403.50 2972223.50
## 403 6/29/2017 5118 437.20 263.33 2237589.60 1347722.94
## 404 5/16/2014 3596 437.20 263.33 1572171.20 946934.68
## 405 8/4/2016 7494 109.28 35.84 818944.32 268584.96
## 406 7/1/2012 7755 421.89 364.69 3271756.95 2828170.95
## 407 2/16/2014 7353 651.21 524.96 4788347.13 3860030.88
## 408 11/21/2015 6293 47.45 31.79 298602.85 200054.47
## 409 2/28/2013 6610 255.28 159.42 1687400.80 1053766.20
## 410 6/7/2013 7373 152.58 97.44 1124972.34 718425.12
## 411 6/3/2010 9679 437.20 263.33 4231658.80 2548771.07
## 412 5/22/2010 1659 437.20 263.33 725314.80 436864.47
## 413 9/9/2012 3473 154.06 90.93 535050.38 315799.89
## 414 5/13/2014 2315 668.27 502.54 1547045.05 1163380.10
## 415 4/5/2013 7408 668.27 502.54 4950544.16 3722816.32
## 416 1/17/2012 5006 255.28 159.42 1277931.68 798056.52
## 417 10/10/2014 3395 255.28 159.42 866675.60 541230.90
## 418 10/2/2014 7894 154.06 90.93 1216149.64 717801.42
## 419 3/28/2014 5851 205.70 117.11 1203550.70 685210.61
## 420 9/27/2012 1646 668.27 502.54 1099972.42 827180.84
## 421 9/22/2010 1689 9.33 6.92 15758.37 11687.88
## 422 8/15/2013 9424 47.45 31.79 447168.80 299588.96
## 423 10/23/2012 323 81.73 56.67 26398.79 18304.41
## 424 10/15/2011 6892 651.21 524.96 4488139.32 3618024.32
## 425 6/6/2015 3667 437.20 263.33 1603212.40 965631.11
## 426 7/27/2010 2215 668.27 502.54 1480218.05 1113126.10
## 427 9/21/2015 6135 421.89 364.69 2588295.15 2237373.15
## 428 12/6/2015 6057 421.89 364.69 2555387.73 2208927.33
## 429 8/16/2012 4641 205.70 117.11 954653.70 543507.51
## 430 5/4/2012 1581 152.58 97.44 241228.98 154052.64
## 431 9/18/2014 8600 255.28 159.42 2195408.00 1371012.00
## 432 11/28/2016 4452 205.70 117.11 915776.40 521373.72
## 433 1/21/2017 9924 437.20 263.33 4338772.80 2613286.92
## 434 7/13/2010 2834 81.73 56.67 231622.82 160602.78
## 435 8/31/2016 3030 154.06 90.93 466801.80 275517.90
## 436 1/12/2014 7391 651.21 524.96 4813093.11 3879979.36
## 437 8/9/2012 4829 109.28 35.84 527713.12 173071.36
## 438 3/2/2012 1287 9.33 6.92 12007.71 8906.04
## 439 4/25/2013 4738 81.73 56.67 387236.74 268502.46
## 440 3/10/2014 186 668.27 502.54 124298.22 93472.44
## 441 11/15/2013 4668 152.58 97.44 712243.44 454849.92
## 442 6/2/2016 2252 47.45 31.79 106857.40 71591.08
## 443 6/2/2011 9036 437.20 263.33 3950539.20 2379449.88
## 444 9/9/2016 8149 205.70 117.11 1676249.30 954329.39
## 445 8/5/2012 4754 152.58 97.44 725365.32 463229.76
## 446 1/11/2015 1042 47.45 31.79 49442.90 33125.18
## 447 6/1/2010 1237 437.20 263.33 540816.40 325739.21
## 448 2/17/2013 6594 47.45 31.79 312885.30 209623.26
## 449 7/9/2015 399 47.45 31.79 18932.55 12684.21
## 450 11/18/2014 2969 154.06 90.93 457404.14 269971.17
## 451 3/13/2017 6653 152.58 97.44 1015114.74 648268.32
## 452 7/16/2010 832 154.06 90.93 128177.92 75653.76
## 453 5/20/2014 6915 154.06 90.93 1065324.90 628780.95
## 454 4/15/2015 3346 421.89 364.69 1411643.94 1220252.74
## 455 10/15/2015 598 651.21 524.96 389423.58 313926.08
## 456 8/30/2015 6176 81.73 56.67 504764.48 349993.92
## 457 3/17/2016 9615 437.20 263.33 4203678.00 2531917.95
## 458 7/23/2015 7485 668.27 502.54 5002000.95 3761511.90
## 459 12/6/2012 8382 205.70 117.11 1724177.40 981616.02
## 460 10/19/2012 7938 152.58 97.44 1211180.04 773478.72
## 461 8/7/2012 3812 109.28 35.84 416575.36 136622.08
## 462 11/11/2014 698 47.45 31.79 33120.10 22189.42
## 463 10/18/2015 5320 437.20 263.33 2325904.00 1400915.60
## 464 2/20/2016 1431 651.21 524.96 931881.51 751217.76
## 465 4/19/2010 4818 9.33 6.92 44951.94 33340.56
## 466 8/28/2012 8299 81.73 56.67 678277.27 470304.33
## 467 11/2/2015 6722 109.28 35.84 734580.16 240916.48
## 468 7/18/2017 1968 651.21 524.96 1281581.28 1033121.28
## 469 4/30/2016 7946 47.45 31.79 377037.70 252603.34
## 470 9/9/2015 5600 109.28 35.84 611968.00 200704.00
## 471 7/4/2012 7903 205.70 117.11 1625647.10 925520.33
## 472 5/5/2016 4860 437.20 263.33 2124792.00 1279783.80
## 473 9/21/2014 8508 255.28 159.42 2171922.24 1356345.36
## 474 9/10/2015 7913 152.58 97.44 1207365.54 771042.72
## 475 7/20/2012 4174 651.21 524.96 2718150.54 2191183.04
## 476 9/13/2011 5421 152.58 97.44 827136.18 528222.24
## 477 7/1/2012 1816 668.27 502.54 1213578.32 912612.64
## 478 12/24/2011 550 47.45 31.79 26097.50 17484.50
## 479 6/4/2015 848 47.45 31.79 40237.60 26957.92
## 480 8/22/2010 8963 81.73 56.67 732545.99 507933.21
## 481 5/27/2016 3183 437.20 263.33 1391607.60 838179.39
## 482 6/8/2011 8825 437.20 263.33 3858290.00 2323887.25
## 483 9/20/2012 3237 47.45 31.79 153595.65 102904.23
## 484 5/2/2012 799 109.28 35.84 87314.72 28636.16
## 485 8/9/2010 7922 668.27 502.54 5294034.94 3981121.88
## 486 3/26/2013 8049 255.28 159.42 2054748.72 1283171.58
## 487 3/10/2011 6654 421.89 364.69 2807256.06 2426647.26
## 488 12/16/2015 6240 651.21 524.96 4063550.40 3275750.40
## 489 2/16/2017 1345 651.21 524.96 875877.45 706071.20
## 490 10/28/2016 3536 651.21 524.96 2302678.56 1856258.56
## 491 6/2/2010 6411 255.28 159.42 1636600.08 1022041.62
## 492 7/10/2013 600 47.45 31.79 28470.00 19074.00
## 493 7/27/2012 8765 668.27 502.54 5857386.55 4404763.10
## 494 10/22/2013 597 152.58 97.44 91090.26 58171.68
## 495 1/6/2017 7821 81.73 56.67 639210.33 443216.07
## 496 10/15/2011 9191 421.89 364.69 3877590.99 3351865.79
## 497 4/2/2011 5494 81.73 56.67 449024.62 311344.98
## 498 1/26/2011 4546 9.33 6.92 42414.18 31458.32
## 499 2/22/2015 6197 651.21 524.96 4035548.37 3253177.12
## 500 6/25/2017 7325 9.33 6.92 68342.25 50689.00
## 501 8/15/2012 6844 421.89 364.69 2887415.16 2495938.36
## 502 6/30/2015 694 205.70 117.11 142755.80 81274.34
## 503 11/1/2011 6850 152.58 97.44 1045173.00 667464.00
## 504 10/12/2014 316 651.21 524.96 205782.36 165887.36
## 505 11/7/2015 8128 651.21 524.96 5293034.88 4266874.88
## 506 3/31/2011 4355 421.89 364.69 1837330.95 1588224.95
## 507 10/28/2013 5093 47.45 31.79 241662.85 161906.47
## 508 9/14/2010 3475 154.06 90.93 535358.50 315981.75
## 509 9/4/2012 4659 109.28 35.84 509135.52 166978.56
## 510 10/12/2012 840 668.27 502.54 561346.80 422133.60
## 511 12/29/2012 6240 255.28 159.42 1592947.20 994780.80
## 512 1/2/2012 2114 205.70 117.11 434849.80 247570.54
## 513 7/25/2017 1749 668.27 502.54 1168804.23 878942.46
## 514 11/4/2011 5462 152.58 97.44 833391.96 532217.28
## 515 10/26/2015 5602 154.06 90.93 863044.12 509389.86
## 516 4/9/2010 1547 47.45 31.79 73405.15 49179.13
## 517 7/14/2014 4711 154.06 90.93 725776.66 428371.23
## 518 1/13/2015 3534 437.20 263.33 1545064.80 930608.22
## 519 6/10/2014 8491 47.45 31.79 402897.95 269928.89
## 520 9/3/2012 7086 437.20 263.33 3097999.20 1865956.38
## 521 10/1/2010 8856 255.28 159.42 2260759.68 1411823.52
## 522 5/17/2014 368 255.28 159.42 93943.04 58666.56
## 523 6/23/2015 221 9.33 6.92 2061.93 1529.32
## 524 9/2/2010 4044 152.58 97.44 617033.52 394047.36
## 525 9/5/2012 9499 47.45 31.79 450727.55 301973.21
## 526 8/9/2016 1277 421.89 364.69 538753.53 465709.13
## 527 10/19/2010 6104 154.06 90.93 940382.24 555036.72
## 528 4/16/2011 7733 154.06 90.93 1191345.98 703161.69
## 529 5/5/2012 1950 9.33 6.92 18193.50 13494.00
## 530 6/22/2013 1574 152.58 97.44 240160.92 153370.56
## 531 9/25/2014 1452 421.89 364.69 612584.28 529529.88
## 532 9/11/2013 3465 152.58 97.44 528689.70 337629.60
## 533 8/15/2016 1523 9.33 6.92 14209.59 10539.16
## 534 9/20/2011 6569 9.33 6.92 61288.77 45457.48
## 535 4/19/2011 1578 47.45 31.79 74876.10 50164.62
## 536 3/18/2017 6552 421.89 364.69 2764223.28 2389448.88
## 537 12/23/2016 3530 437.20 263.33 1543316.00 929554.90
## 538 12/5/2010 1578 255.28 159.42 402831.84 251564.76
## 539 3/27/2015 1794 152.58 97.44 273728.52 174807.36
## 540 7/25/2013 2309 668.27 502.54 1543035.43 1160364.86
## 541 11/9/2012 3284 437.20 263.33 1435764.80 864775.72
## 542 7/30/2017 1910 9.33 6.92 17820.30 13217.20
## 543 7/27/2010 7413 651.21 524.96 4827419.73 3891528.48
## 544 3/21/2017 6046 154.06 90.93 931446.76 549762.78
## 545 2/25/2011 6096 421.89 364.69 2571841.44 2223150.24
## 546 2/8/2016 2880 9.33 6.92 26870.40 19929.60
## 547 8/13/2011 3747 255.28 159.42 956534.16 597346.74
## 548 5/4/2012 3077 47.45 31.79 146003.65 97817.83
## 549 1/12/2011 7281 154.06 90.93 1121710.86 662061.33
## 550 4/3/2013 9800 9.33 6.92 91434.00 67816.00
## 551 4/4/2010 6110 668.27 502.54 4083129.70 3070519.40
## 552 3/30/2013 8714 81.73 56.67 712195.22 493822.38
## 553 12/12/2011 2149 47.45 31.79 101970.05 68316.71
## 554 12/2/2015 7982 651.21 524.96 5197958.22 4190230.72
## 555 2/5/2013 9812 668.27 502.54 6557065.24 4930922.48
## 556 9/3/2011 8269 81.73 56.67 675825.37 468604.23
## 557 12/5/2012 6014 421.89 364.69 2537246.46 2193245.66
## 558 9/9/2015 2739 255.28 159.42 699211.92 436651.38
## 559 4/19/2012 168 154.06 90.93 25882.08 15276.24
## 560 8/24/2014 7055 205.70 117.11 1451213.50 826211.05
## 561 7/28/2013 4188 9.33 6.92 39074.04 28980.96
## 562 2/28/2012 9383 437.20 263.33 4102247.60 2470825.39
## 563 4/26/2014 2488 109.28 35.84 271888.64 89169.92
## 564 10/8/2013 385 9.33 6.92 3592.05 2664.20
## 565 1/18/2013 1983 651.21 524.96 1291349.43 1040995.68
## 566 12/8/2011 3226 437.20 263.33 1410407.20 849502.58
## 567 11/25/2010 2087 9.33 6.92 19471.71 14442.04
## 568 12/4/2015 3570 651.21 524.96 2324819.70 1874107.20
## 569 9/1/2010 4713 437.20 263.33 2060523.60 1241074.29
## 570 5/1/2014 9582 9.33 6.92 89400.06 66307.44
## 571 10/12/2016 4276 47.45 31.79 202896.20 135934.04
## 572 9/15/2012 1925 109.28 35.84 210364.00 68992.00
## 573 3/5/2013 7689 152.58 97.44 1173187.62 749216.16
## 574 1/30/2011 3762 81.73 56.67 307468.26 213192.54
## 575 11/6/2015 4368 205.70 117.11 898497.60 511536.48
## 576 2/23/2011 760 651.21 524.96 494919.60 398969.60
## 577 6/13/2012 6225 81.73 56.67 508769.25 352770.75
## 578 10/14/2016 1080 421.89 364.69 455641.20 393865.20
## 579 12/26/2014 7675 47.45 31.79 364178.75 243988.25
## 580 7/21/2010 5388 109.28 35.84 588800.64 193105.92
## 581 2/6/2015 5631 81.73 56.67 460221.63 319108.77
## 582 5/1/2015 6847 205.70 117.11 1408427.90 801852.17
## 583 8/24/2013 9509 668.27 502.54 6354579.43 4778652.86
## 584 2/5/2010 1122 47.45 31.79 53238.90 35668.38
## 585 4/11/2013 1222 205.70 117.11 251365.40 143108.42
## 586 9/29/2013 6377 81.73 56.67 521192.21 361384.59
## 587 12/31/2010 5185 421.89 364.69 2187499.65 1890917.65
## 588 9/1/2016 3275 205.70 117.11 673667.50 383535.25
## 589 4/25/2013 8310 154.06 90.93 1280238.60 755628.30
## 590 3/11/2011 4981 9.33 6.92 46472.73 34468.52
## 591 10/16/2013 13 668.27 502.54 8687.51 6533.02
## 592 6/5/2014 7159 421.89 364.69 3020310.51 2610815.71
## 593 12/9/2014 2207 421.89 364.69 931111.23 804870.83
## 594 9/13/2014 7973 9.33 6.92 74388.09 55173.16
## 595 11/25/2013 9306 651.21 524.96 6060160.26 4885277.76
## 596 4/5/2010 8086 421.89 364.69 3411402.54 2948883.34
## 597 4/29/2017 8225 152.58 97.44 1254970.50 801444.00
## 598 11/14/2015 664 47.45 31.79 31506.80 21108.56
## 599 8/23/2010 8377 47.45 31.79 397488.65 266304.83
## 600 11/30/2010 1370 205.70 117.11 281809.00 160440.70
## 601 1/26/2012 1677 421.89 364.69 707509.53 611585.13
## 602 2/25/2014 8367 154.06 90.93 1289020.02 760811.31
## 603 10/3/2010 2539 154.06 90.93 391158.34 230871.27
## 604 11/4/2015 2321 668.27 502.54 1551054.67 1166395.34
## 605 8/17/2013 7876 152.58 97.44 1201720.08 767437.44
## 606 2/26/2016 6396 152.58 97.44 975901.68 623226.24
## 607 9/11/2013 7103 205.70 117.11 1461087.10 831832.33
## 608 8/20/2016 6254 154.06 90.93 963491.24 568676.22
## 609 9/29/2013 2134 255.28 159.42 544767.52 340202.28
## 610 10/2/2013 61 421.89 364.69 25735.29 22246.09
## 611 1/23/2011 7383 437.20 263.33 3227847.60 1944165.39
## 612 10/4/2012 8480 154.06 90.93 1306428.80 771086.40
## 613 11/14/2011 9764 437.20 263.33 4268820.80 2571154.12
## 614 9/9/2013 4676 668.27 502.54 3124830.52 2349877.04
## 615 3/4/2017 8691 47.45 31.79 412387.95 276286.89
## 616 10/21/2010 4312 255.28 159.42 1100767.36 687419.04
## 617 8/10/2014 6077 81.73 56.67 496673.21 344383.59
## 618 6/4/2015 5553 81.73 56.67 453846.69 314688.51
## 619 6/21/2016 6338 81.73 56.67 518004.74 359174.46
## 620 5/16/2010 9063 651.21 524.96 5901916.23 4757712.48
## 621 11/2/2013 6388 651.21 524.96 4159929.48 3353444.48
## 622 9/9/2010 8005 154.06 90.93 1233250.30 727894.65
## 623 7/25/2015 5639 9.33 6.92 52611.87 39021.88
## 624 6/27/2010 8044 152.58 97.44 1227353.52 783807.36
## 625 6/11/2016 6007 255.28 159.42 1533466.96 957635.94
## 626 8/30/2013 7344 437.20 263.33 3210796.80 1933895.52
## 627 10/6/2013 1905 154.06 90.93 293484.30 173221.65
## 628 8/10/2010 6569 421.89 364.69 2771395.41 2395648.61
## 629 1/10/2014 248 421.89 364.69 104628.72 90443.12
## 630 3/23/2016 8883 651.21 524.96 5784698.43 4663219.68
## 631 7/9/2010 449 152.58 97.44 68508.42 43750.56
## 632 6/23/2017 9950 81.73 56.67 813213.50 563866.50
## 633 6/19/2013 4423 437.20 263.33 1933735.60 1164708.59
## 634 4/5/2010 7934 9.33 6.92 74024.22 54903.28
## 635 7/30/2012 6583 205.70 117.11 1354123.10 770935.13
## 636 4/5/2015 3500 154.06 90.93 539210.00 318255.00
## 637 3/23/2014 3844 205.70 117.11 790710.80 450170.84
## 638 7/5/2017 9810 109.28 35.84 1072036.80 351590.40
## 639 9/6/2011 5620 154.06 90.93 865817.20 511026.60
## 640 12/24/2010 2530 255.28 159.42 645858.40 403332.60
## 641 4/27/2015 3825 668.27 502.54 2556132.75 1922215.50
## 642 7/28/2014 9823 154.06 90.93 1513331.38 893205.39
## 643 9/16/2014 2873 109.28 35.84 313961.44 102968.32
## 644 3/31/2011 2354 109.28 35.84 257245.12 84367.36
## 645 3/19/2016 9677 255.28 159.42 2470344.56 1542707.34
## 646 1/16/2016 3286 205.70 117.11 675930.20 384823.46
## 647 4/7/2013 3653 81.73 56.67 298559.69 207015.51
## 648 7/4/2015 8283 152.58 97.44 1263820.14 807095.52
## 649 3/20/2016 6714 154.06 90.93 1034358.84 610504.02
## 650 7/10/2013 5511 154.06 90.93 849024.66 501115.23
## 651 5/14/2014 3273 255.28 159.42 835531.44 521781.66
## 652 7/3/2015 5632 421.89 364.69 2376084.48 2053934.08
## 653 7/2/2014 246 152.58 97.44 37534.68 23970.24
## 654 11/24/2013 1810 437.20 263.33 791332.00 476627.30
## 655 5/2/2017 7047 437.20 263.33 3080948.40 1855686.51
## 656 7/17/2010 9711 47.45 31.79 460786.95 308712.69
## 657 7/7/2010 5588 152.58 97.44 852617.04 544494.72
## 658 6/24/2016 7497 47.45 31.79 355732.65 238329.63
## 659 10/5/2013 285 421.89 364.69 120238.65 103936.65
## 660 10/23/2014 5833 9.33 6.92 54421.89 40364.36
## 661 11/13/2010 8052 421.89 364.69 3397058.28 2936483.88
## 662 1/1/2013 7884 109.28 35.84 861563.52 282562.56
## 663 5/26/2010 8302 205.70 117.11 1707721.40 972247.22
## 664 9/29/2012 9312 152.58 97.44 1420824.96 907361.28
## 665 2/22/2015 2950 205.70 117.11 606815.00 345474.50
## 666 3/21/2010 8282 47.45 31.79 392980.90 263284.78
## 667 5/27/2014 6409 437.20 263.33 2802014.80 1687681.97
## 668 2/5/2011 5459 152.58 97.44 832934.22 531924.96
## 669 10/24/2014 5594 668.27 502.54 3738302.38 2811208.76
## 670 2/22/2015 4006 421.89 364.69 1690091.34 1460948.14
## 671 5/18/2017 9919 47.45 31.79 470656.55 315325.01
## 672 8/11/2016 9587 421.89 364.69 4044659.43 3496283.03
## 673 1/12/2017 1297 668.27 502.54 866746.19 651794.38
## 674 10/24/2011 366 47.45 31.79 17366.70 11635.14
## 675 12/3/2010 4144 81.73 56.67 338689.12 234840.48
## 676 9/22/2013 7008 255.28 159.42 1789002.24 1117215.36
## 677 2/15/2013 5372 437.20 263.33 2348638.40 1414608.76
## 678 9/4/2014 2677 154.06 90.93 412418.62 243419.61
## 679 1/24/2017 4396 651.21 524.96 2862719.16 2307724.16
## 680 8/17/2016 3036 421.89 364.69 1280858.04 1107198.84
## 681 4/2/2010 3131 651.21 524.96 2038938.51 1643649.76
## 682 6/25/2015 6249 47.45 31.79 296515.05 198655.71
## 683 7/17/2012 5990 668.27 502.54 4002937.30 3010214.60
## 684 1/20/2017 2982 651.21 524.96 1941908.22 1565430.72
## 685 4/20/2015 9886 81.73 56.67 807982.78 560239.62
## 686 7/13/2013 6397 152.58 97.44 976054.26 623323.68
## 687 9/3/2011 4236 651.21 524.96 2758525.56 2223730.56
## 688 4/24/2014 2158 109.28 35.84 235826.24 77342.72
## 689 2/27/2012 951 255.28 159.42 242771.28 151608.42
## 690 9/19/2015 8431 651.21 524.96 5490351.51 4425937.76
## 691 10/5/2013 4447 255.28 159.42 1135230.16 708940.74
## 692 6/7/2015 5879 152.58 97.44 897017.82 572849.76
## 693 6/1/2015 1637 152.58 97.44 249773.46 159509.28
## 694 8/19/2013 7665 152.58 97.44 1169525.70 746877.60
## 695 7/21/2010 1936 81.73 56.67 158229.28 109713.12
## 696 11/14/2011 9455 47.45 31.79 448639.75 300574.45
## 697 10/27/2016 7258 9.33 6.92 67717.14 50225.36
## 698 3/3/2014 9412 154.06 90.93 1450012.72 855833.16
## 699 5/12/2016 2016 421.89 364.69 850530.24 735215.04
## 700 10/16/2010 8200 437.20 263.33 3585040.00 2159306.00
## 701 9/7/2015 3124 81.73 56.67 255324.52 177037.08
## 702 8/19/2016 8983 205.70 117.11 1847803.10 1051999.13
## 703 7/1/2015 9998 109.28 35.84 1092581.44 358328.32
## 704 2/1/2011 7425 109.28 35.84 811404.00 266112.00
## 705 3/4/2011 4550 47.45 31.79 215897.50 144644.50
## 706 11/27/2012 1691 154.06 90.93 260515.46 153762.63
## 707 11/5/2014 1196 109.28 35.84 130698.88 42864.64
## 708 6/28/2012 2444 255.28 159.42 623904.32 389622.48
## 709 3/4/2010 6848 81.73 56.67 559687.04 388076.16
## 710 3/2/2017 2849 154.06 90.93 438916.94 259059.57
## 711 6/7/2013 921 81.73 56.67 75273.33 52193.07
## 712 11/23/2013 8569 255.28 159.42 2187494.32 1366069.98
## 713 2/19/2012 5330 109.28 35.84 582462.40 191027.20
## 714 11/9/2013 7769 9.33 6.92 72484.77 53761.48
## 715 11/8/2010 4487 81.73 56.67 366722.51 254278.29
## 716 11/20/2014 1113 205.70 117.11 228944.10 130343.43
## 717 2/5/2016 5308 668.27 502.54 3547177.16 2667482.32
## 718 1/7/2017 1764 154.06 90.93 271761.84 160400.52
## 719 9/19/2013 7206 47.45 31.79 341924.70 229078.74
## 720 8/24/2014 5387 651.21 524.96 3508068.27 2827959.52
## 721 12/7/2013 2095 651.21 524.96 1364284.95 1099791.20
## 722 2/5/2011 146 109.28 35.84 15954.88 5232.64
## 723 11/23/2013 4390 152.58 97.44 669826.20 427761.60
## 724 5/3/2012 6705 9.33 6.92 62557.65 46398.60
## 725 7/13/2012 1004 651.21 524.96 653814.84 527059.84
## 726 7/19/2010 8228 109.28 35.84 899155.84 294891.52
## 727 9/14/2010 1352 651.21 524.96 880435.92 709745.92
## 728 12/28/2014 379 152.58 97.44 57827.82 36929.76
## 729 3/15/2011 7347 109.28 35.84 802880.16 263316.48
## 730 5/28/2014 1322 81.73 56.67 108047.06 74917.74
## 731 11/21/2010 3404 205.70 117.11 700202.80 398642.44
## 732 5/4/2014 1721 9.33 6.92 16056.93 11909.32
## 733 7/20/2016 6436 109.28 35.84 703326.08 230666.24
## 734 7/19/2014 4741 421.89 364.69 2000180.49 1728995.29
## 735 11/24/2013 5859 47.45 31.79 278009.55 186257.61
## 736 2/18/2017 6045 152.58 97.44 922346.10 589024.80
## 737 1/7/2013 3585 421.89 364.69 1512475.65 1307413.65
## 738 6/4/2010 3797 81.73 56.67 310328.81 215175.99
## 739 3/12/2011 4029 437.20 263.33 1761478.80 1060956.57
## 740 2/9/2015 8661 109.28 35.84 946474.08 310410.24
## 741 12/6/2014 4105 154.06 90.93 632416.30 373267.65
## 742 1/29/2016 3803 437.20 263.33 1662671.60 1001443.99
## 743 7/6/2017 3227 205.70 117.11 663793.90 377913.97
## 744 2/25/2015 4884 9.33 6.92 45567.72 33797.28
## 745 1/7/2014 3309 651.21 524.96 2154853.89 1737092.64
## 746 12/13/2015 70 651.21 524.96 45584.70 36747.20
## 747 9/26/2016 8766 47.45 31.79 415946.70 278671.14
## 748 7/29/2016 25 81.73 56.67 2043.25 1416.75
## 749 1/13/2017 6510 47.45 31.79 308899.50 206952.90
## 750 12/5/2016 7913 81.73 56.67 646729.49 448429.71
## 751 11/26/2015 5957 109.28 35.84 650980.96 213498.88
## 752 2/13/2011 9397 47.45 31.79 445887.65 298730.63
## 753 11/8/2015 9020 437.20 263.33 3943544.00 2375236.60
## 754 8/12/2010 2643 152.58 97.44 403268.94 257533.92
## 755 3/3/2014 114 47.45 31.79 5409.30 3624.06
## 756 3/27/2013 8313 421.89 364.69 3507171.57 3031667.97
## 757 5/11/2017 6152 154.06 90.93 947777.12 559401.36
## 758 4/26/2011 9572 421.89 364.69 4038331.08 3490812.68
## 759 12/30/2010 6548 81.73 56.67 535168.04 371075.16
## 760 5/22/2014 2085 421.89 364.69 879640.65 760378.65
## 761 2/25/2013 3217 81.73 56.67 262925.41 182307.39
## 762 1/23/2011 4014 668.27 502.54 2682435.78 2017195.56
## 763 2/14/2013 573 255.28 159.42 146275.44 91347.66
## 764 3/3/2014 6025 437.20 263.33 2634130.00 1586563.25
## 765 9/11/2017 5530 9.33 6.92 51594.90 38267.60
## 766 6/14/2016 1280 668.27 502.54 855385.60 643251.20
## 767 4/18/2012 7501 651.21 524.96 4884726.21 3937724.96
## 768 11/21/2011 5446 668.27 502.54 3639398.42 2736832.84
## 769 1/2/2015 8401 651.21 524.96 5470815.21 4410188.96
## 770 8/28/2011 6684 81.73 56.67 546283.32 378782.28
## 771 5/23/2015 2644 47.45 31.79 125457.80 84052.76
## 772 2/23/2014 5660 154.06 90.93 871979.60 514663.80
## 773 4/2/2012 7144 651.21 524.96 4652244.24 3750314.24
## 774 4/8/2011 5537 109.28 35.84 605083.36 198446.08
## 775 1/6/2014 1315 47.45 31.79 62396.75 41803.85
## 776 10/31/2012 1980 154.06 90.93 305038.80 180041.40
## 777 1/15/2016 7071 154.06 90.93 1089358.26 642966.03
## 778 8/9/2014 3153 154.06 90.93 485751.18 286702.29
## 779 3/11/2015 8826 651.21 524.96 5747579.46 4633296.96
## 780 9/8/2014 9719 47.45 31.79 461166.55 308967.01
## 781 9/3/2010 3494 81.73 56.67 285564.62 198004.98
## 782 2/13/2013 4843 668.27 502.54 3236431.61 2433801.22
## 783 8/26/2010 490 152.58 97.44 74764.20 47745.60
## 784 8/3/2011 4189 437.20 263.33 1831430.80 1103089.37
## 785 6/23/2010 1727 9.33 6.92 16112.91 11950.84
## 786 11/3/2013 5921 109.28 35.84 647046.88 212208.64
## 787 8/1/2014 1619 154.06 90.93 249423.14 147215.67
## 788 4/11/2010 702 651.21 524.96 457149.42 368521.92
## 789 10/1/2014 7081 421.89 364.69 2987403.09 2582369.89
## 790 1/29/2016 1698 255.28 159.42 433465.44 270695.16
## 791 6/5/2011 7526 255.28 159.42 1921237.28 1199794.92
## 792 3/17/2010 4571 47.45 31.79 216893.95 145312.09
## 793 3/30/2015 4869 668.27 502.54 3253806.63 2446867.26
## 794 6/7/2011 7487 421.89 364.69 3158690.43 2730434.03
## 795 7/2/2015 3524 9.33 6.92 32878.92 24386.08
## 796 6/2/2010 1109 152.58 97.44 169211.22 108060.96
## 797 4/7/2011 404 255.28 159.42 103133.12 64405.68
## 798 7/2/2014 8601 81.73 56.67 702959.73 487418.67
## 799 10/30/2010 4924 437.20 263.33 2152772.80 1296636.92
## 800 6/30/2010 5628 154.06 90.93 867049.68 511754.04
## 801 2/16/2017 8998 81.73 56.67 735406.54 509916.66
## 802 1/8/2017 352 651.21 524.96 229225.92 184785.92
## 803 1/6/2012 7040 255.28 159.42 1797171.20 1122316.80
## 804 1/16/2017 3440 109.28 35.84 375923.20 123289.60
## 805 2/22/2017 5963 109.28 35.84 651636.64 213713.92
## 806 6/16/2010 8053 437.20 263.33 3520771.60 2120596.49
## 807 10/18/2010 5183 255.28 159.42 1323116.24 826273.86
## 808 3/25/2014 9858 437.20 263.33 4309917.60 2595907.14
## 809 8/16/2010 6613 81.73 56.67 540480.49 374758.71
## 810 12/20/2016 7017 437.20 263.33 3067832.40 1847786.61
## 811 10/10/2013 4667 154.06 90.93 718998.02 424370.31
## 812 8/26/2016 194 255.28 159.42 49524.32 30927.48
## 813 11/20/2011 6259 421.89 364.69 2640609.51 2282594.71
## 814 3/1/2013 2554 421.89 364.69 1077507.06 931418.26
## 815 12/21/2012 804 9.33 6.92 7501.32 5563.68
## 816 11/28/2015 9762 9.33 6.92 91079.46 67553.04
## 817 7/12/2012 214 421.89 364.69 90284.46 78043.66
## 818 6/28/2013 9980 421.89 364.69 4210462.20 3639606.20
## 819 2/17/2015 8906 255.28 159.42 2273523.68 1419794.52
## 820 6/14/2011 3872 9.33 6.92 36125.76 26794.24
## 821 2/21/2012 3791 255.28 159.42 967766.48 604361.22
## 822 2/13/2017 4604 154.06 90.93 709292.24 418641.72
## 823 12/29/2011 4285 109.28 35.84 468264.80 153574.40
## 824 6/17/2017 7839 437.20 263.33 3427210.80 2064243.87
## 825 6/21/2017 2302 205.70 117.11 473521.40 269587.22
## 826 12/9/2015 1741 437.20 263.33 761165.20 458457.53
## 827 4/19/2010 2256 109.28 35.84 246535.68 80855.04
## 828 8/31/2010 6975 154.06 90.93 1074568.50 634236.75
## 829 7/17/2012 1060 205.70 117.11 218042.00 124136.60
## 830 7/17/2016 6703 154.06 90.93 1032664.18 609503.79
## 831 1/27/2017 8128 437.20 263.33 3553561.60 2140346.24
## 832 12/16/2012 6591 152.58 97.44 1005654.78 642227.04
## 833 10/26/2011 5376 205.70 117.11 1105843.20 629583.36
## 834 12/15/2010 4802 255.28 159.42 1225854.56 765534.84
## 835 5/9/2016 7217 154.06 90.93 1111851.02 656241.81
## 836 3/20/2016 2001 47.45 31.79 94947.45 63611.79
## 837 9/29/2014 564 154.06 90.93 86889.84 51284.52
## 838 6/30/2013 1351 154.06 90.93 208135.06 122846.43
## 839 2/23/2015 4833 154.06 90.93 744571.98 439464.69
## 840 1/18/2012 8516 152.58 97.44 1299371.28 829799.04
## 841 12/3/2012 1937 437.20 263.33 846856.40 510070.21
## 842 10/5/2015 1661 668.27 502.54 1109996.47 834718.94
## 843 7/1/2012 6289 421.89 364.69 2653266.21 2293535.41
## 844 1/14/2015 1450 152.58 97.44 221241.00 141288.00
## 845 2/4/2013 4805 668.27 502.54 3211037.35 2414704.70
## 846 3/15/2017 1047 437.20 263.33 457748.40 275706.51
## 847 7/28/2015 6899 47.45 31.79 327357.55 219319.21
## 848 8/25/2016 6115 205.70 117.11 1257855.50 716127.65
## 849 11/10/2014 4483 437.20 263.33 1959967.60 1180508.39
## 850 12/29/2016 4820 255.28 159.42 1230449.60 768404.40
## 851 10/26/2015 1973 255.28 159.42 503667.44 314535.66
## 852 5/5/2016 7824 152.58 97.44 1193785.92 762370.56
## 853 3/30/2017 6283 152.58 97.44 958660.14 612215.52
## 854 8/2/2014 8292 651.21 524.96 5399833.32 4352968.32
## 855 9/11/2012 6826 109.28 35.84 745945.28 244643.84
## 856 6/1/2013 1888 9.33 6.92 17615.04 13064.96
## 857 2/15/2012 5516 152.58 97.44 841631.28 537479.04
## 858 8/1/2016 6777 668.27 502.54 4528865.79 3405713.58
## 859 12/12/2012 6769 81.73 56.67 553230.37 383599.23
## 860 8/17/2014 3621 81.73 56.67 295944.33 205202.07
## 861 10/28/2013 7497 651.21 524.96 4882121.37 3935625.12
## 862 1/3/2015 5586 47.45 31.79 265055.70 177578.94
## 863 11/21/2015 7114 81.73 56.67 581427.22 403150.38
## 864 11/4/2011 8335 205.70 117.11 1714509.50 976111.85
## 865 3/21/2014 7536 152.58 97.44 1149842.88 734307.84
## 866 6/16/2016 33 651.21 524.96 21489.93 17323.68
## 867 5/23/2013 3175 255.28 159.42 810514.00 506158.50
## 868 10/26/2011 1343 47.45 31.79 63725.35 42693.97
## 869 5/4/2012 947 154.06 90.93 145894.82 86110.71
## 870 10/25/2012 5429 154.06 90.93 836391.74 493658.97
## 871 1/25/2012 264 255.28 159.42 67393.92 42086.88
## 872 11/10/2013 7956 154.06 90.93 1225701.36 723439.08
## 873 3/20/2015 3041 255.28 159.42 776306.48 484796.22
## 874 10/31/2010 7088 255.28 159.42 1809424.64 1129968.96
## 875 5/13/2011 3693 47.45 31.79 175232.85 117400.47
## 876 2/20/2017 3488 421.89 364.69 1471552.32 1272038.72
## 877 8/2/2014 9133 437.20 263.33 3992947.60 2404992.89
## 878 7/10/2017 321 81.73 56.67 26235.33 18191.07
## 879 8/6/2010 8775 47.45 31.79 416373.75 278957.25
## 880 9/4/2013 3251 109.28 35.84 355269.28 116515.84
## 881 4/30/2017 4534 205.70 117.11 932643.80 530976.74
## 882 12/2/2016 441 9.33 6.92 4114.53 3051.72
## 883 7/3/2016 822 9.33 6.92 7669.26 5688.24
## 884 1/29/2010 2557 437.20 263.33 1117920.40 673334.81
## 885 1/18/2015 4556 47.45 31.79 216182.20 144835.24
## 886 11/27/2015 2761 154.06 90.93 425359.66 251057.73
## 887 5/26/2013 5147 205.70 117.11 1058737.90 602765.17
## 888 5/15/2013 6719 205.70 117.11 1382098.30 786862.09
## 889 8/17/2014 4512 152.58 97.44 688440.96 439649.28
## 890 8/26/2013 2594 47.45 31.79 123085.30 82463.26
## 891 8/7/2015 7063 668.27 502.54 4719991.01 3549440.02
## 892 1/3/2015 1050 668.27 502.54 701683.50 527667.00
## 893 5/19/2015 9715 205.70 117.11 1998375.50 1137723.65
## 894 4/28/2017 5251 9.33 6.92 48991.83 36336.92
## 895 11/2/2014 1881 437.20 263.33 822373.20 495323.73
## 896 8/1/2014 861 205.70 117.11 177107.70 100831.71
## 897 8/13/2016 5477 47.45 31.79 259883.65 174113.83
## 898 9/2/2010 6045 81.73 56.67 494057.85 342570.15
## 899 6/6/2010 4915 47.45 31.79 233216.75 156247.85
## 900 4/8/2011 1466 668.27 502.54 979683.82 736723.64
## 901 1/28/2010 7110 421.89 364.69 2999637.90 2592945.90
## 902 2/19/2016 289 437.20 263.33 126350.80 76102.37
## 903 9/10/2016 1476 255.28 159.42 376793.28 235303.92
## 904 10/23/2011 8177 81.73 56.67 668306.21 463390.59
## 905 3/20/2010 9928 437.20 263.33 4340521.60 2614340.24
## 906 6/22/2017 3295 437.20 263.33 1440574.00 867672.35
## 907 5/13/2010 6878 668.27 502.54 4596361.06 3456470.12
## 908 10/20/2015 6307 255.28 159.42 1610050.96 1005461.94
## 909 3/17/2016 9242 255.28 159.42 2359297.76 1473359.64
## 910 2/16/2014 376 152.58 97.44 57370.08 36637.44
## 911 4/30/2013 6433 9.33 6.92 60019.89 44516.36
## 912 7/23/2014 1167 437.20 263.33 510212.40 307306.11
## 913 3/22/2012 365 154.06 90.93 56231.90 33189.45
## 914 2/16/2013 6844 154.06 90.93 1054386.64 622324.92
## 915 6/20/2017 5453 152.58 97.44 832018.74 531340.32
## 916 3/31/2015 8071 154.06 90.93 1243418.26 733896.03
## 917 11/6/2012 8610 9.33 6.92 80331.30 59581.20
## 918 7/4/2013 8012 255.28 159.42 2045303.36 1277273.04
## 919 5/19/2014 9250 109.28 35.84 1010840.00 331520.00
## 920 1/13/2017 2331 109.28 35.84 254731.68 83543.04
## 921 2/16/2017 9289 205.70 117.11 1910747.30 1087834.79
## 922 9/19/2014 9192 47.45 31.79 436160.40 292213.68
## 923 10/23/2010 3139 205.70 117.11 645692.30 367608.29
## 924 10/23/2011 9259 81.73 56.67 756738.07 524707.53
## 925 1/27/2017 7714 255.28 159.42 1969229.92 1229765.88
## 926 12/5/2015 5696 651.21 524.96 3709292.16 2990172.16
## 927 10/14/2013 2429 437.20 263.33 1061958.80 639628.57
## 928 9/28/2013 4168 255.28 159.42 1064007.04 664462.56
## 929 9/20/2011 9199 9.33 6.92 85826.67 63657.08
## 930 6/12/2016 2838 81.73 56.67 231949.74 160829.46
## 931 1/15/2015 2436 205.70 117.11 501085.20 285279.96
## 932 7/29/2014 2371 9.33 6.92 22121.43 16407.32
## 933 7/10/2015 9055 205.70 117.11 1862613.50 1060431.05
## 934 9/26/2015 5930 109.28 35.84 648030.40 212531.20
## 935 11/21/2013 8470 9.33 6.92 79025.10 58612.40
## 936 11/23/2013 9180 81.73 56.67 750281.40 520230.60
## 937 10/14/2012 2595 81.73 56.67 212089.35 147058.65
## 938 10/26/2012 284 205.70 117.11 58418.80 33259.24
## 939 1/28/2017 5844 109.28 35.84 638632.32 209448.96
## 940 8/9/2010 9907 9.33 6.92 92432.31 68556.44
## 941 4/6/2010 5132 205.70 117.11 1055652.40 601008.52
## 942 9/22/2014 1212 47.45 31.79 57509.40 38529.48
## 943 3/15/2016 9872 152.58 97.44 1506269.76 961927.68
## 944 11/10/2011 9865 651.21 524.96 6424186.65 5178730.40
## 945 12/20/2014 1978 152.58 97.44 301803.24 192736.32
## 946 3/11/2013 4028 9.33 6.92 37581.24 27873.76
## 947 11/9/2010 5864 109.28 35.84 640817.92 210165.76
## 948 10/30/2016 4366 154.06 90.93 672625.96 397000.38
## 949 10/17/2010 8445 47.45 31.79 400715.25 268466.55
## 950 2/7/2015 4043 421.89 364.69 1705701.27 1474441.67
## 951 5/11/2015 9135 668.27 502.54 6104646.45 4590702.90
## 952 4/6/2017 8724 437.20 263.33 3814132.80 2297290.92
## 953 5/3/2012 9847 668.27 502.54 6580454.69 4948511.38
## 954 12/2/2011 6571 109.28 35.84 718078.88 235504.64
## 955 9/25/2013 4995 109.28 35.84 545853.60 179020.80
## 956 4/29/2012 8250 9.33 6.92 76972.50 57090.00
## 957 3/12/2011 1495 9.33 6.92 13948.35 10345.40
## 958 10/22/2010 6923 154.06 90.93 1066557.38 629508.39
## 959 1/3/2013 8759 154.06 90.93 1349411.54 796455.87
## 960 10/3/2016 8256 81.73 56.67 674762.88 467867.52
## 961 5/24/2014 8702 47.45 31.79 412909.90 276636.58
## 962 12/8/2010 413 651.21 524.96 268949.73 216808.48
## 963 5/9/2012 5738 668.27 502.54 3834533.26 2883574.52
## 964 4/21/2014 4057 668.27 502.54 2711171.39 2038804.78
## 965 7/13/2013 6781 47.45 31.79 321758.45 215567.99
## 966 8/13/2011 2352 437.20 263.33 1028294.40 619352.16
## 967 3/21/2011 1245 152.58 97.44 189962.10 121312.80
## 968 2/16/2012 963 421.89 364.69 406280.07 351196.47
## 969 7/1/2015 1044 154.06 90.93 160838.64 94930.92
## 970 1/8/2012 8054 152.58 97.44 1228879.32 784781.76
## 971 3/19/2016 592 205.70 117.11 121774.40 69329.12
## 972 12/22/2016 4288 154.06 90.93 660609.28 389907.84
## 973 2/29/2012 6803 421.89 364.69 2870117.67 2480986.07
## 974 8/9/2011 2830 109.28 35.84 309262.40 101427.20
## 975 8/22/2011 9092 109.28 35.84 993573.76 325857.28
## 976 1/5/2013 9344 421.89 364.69 3942140.16 3407663.36
## 977 2/19/2010 9372 668.27 502.54 6263026.44 4709804.88
## 978 3/31/2017 1993 47.45 31.79 94567.85 63357.47
## 979 12/16/2011 2057 47.45 31.79 97604.65 65392.03
## 980 9/13/2014 1443 205.70 117.11 296825.10 168989.73
## 981 4/22/2016 4062 47.45 31.79 192741.90 129130.98
## 982 12/24/2012 856 109.28 35.84 93543.68 30679.04
## 983 6/23/2016 4800 152.58 97.44 732384.00 467712.00
## 984 8/19/2013 5898 651.21 524.96 3840836.58 3096214.08
## 985 2/11/2015 6186 81.73 56.67 505581.78 350560.62
## 986 2/12/2013 4732 651.21 524.96 3081525.72 2484110.72
## 987 10/18/2016 2633 109.28 35.84 287734.24 94366.72
## 988 11/2/2016 8021 668.27 502.54 5360193.67 4030873.34
## 989 1/9/2013 1057 152.58 97.44 161277.06 102994.08
## 990 4/3/2017 8932 205.70 117.11 1837312.40 1046026.52
## 991 3/26/2012 870 47.45 31.79 41281.50 27657.30
## 992 1/20/2016 3126 205.70 117.11 643018.20 366085.86
## 993 3/16/2017 3987 47.45 31.79 189183.15 126746.73
## 994 11/5/2016 8769 255.28 159.42 2238550.32 1397953.98
## 995 5/18/2017 4821 421.89 364.69 2033931.69 1758170.49
## 996 4/25/2010 6524 152.58 97.44 995431.92 635698.56
## 997 9/7/2011 288 255.28 159.42 73520.64 45912.96
## 998 6/28/2011 9556 154.06 90.93 1472197.36 868927.08
## 999 2/14/2016 9801 668.27 502.54 6549714.27 4925394.54
## 1000 5/8/2014 3528 205.70 117.11 725709.60 413164.08
## Total.Profit Item.TypeBaby Food Item.TypeBeverages Item.TypeCereal
## 1 1468506.02 0 0 0
## 2 190526.34 0 0 0
## 3 145419.62 1 0 0
## 4 294295.98 0 0 1
## 5 23726.45 0 0 0
## 6 844085.52 0 0 1
## 7 251949.96 0 0 1
## 8 536038.56 0 0 0
## 9 153279.64 0 0 0
## 10 303024.00 0 0 0
## 11 221201.28 0 0 0
## 12 148547.16 0 0 0
## 13 249920.84 0 0 0
## 14 720865.02 0 0 0
## 15 17670.12 0 0 0
## 16 353980.80 0 0 0
## 17 302621.25 0 0 0
## 18 45100.80 0 1 0
## 19 82032.48 0 0 0
## 20 1489746.97 0 0 0
## 21 22441.98 0 0 0
## 22 463626.72 0 0 0
## 23 242605.86 0 0 0
## 24 37821.60 0 0 0
## 25 75478.68 0 0 1
## 26 152825.94 0 1 0
## 27 130510.44 0 1 0
## 28 11348.69 0 0 0
## 29 517259.60 0 0 0
## 30 213736.74 0 0 0
## 31 37443.06 0 1 0
## 32 869105.00 0 0 0
## 33 706.13 0 0 0
## 34 760840.82 1 0 0
## 35 112172.58 0 1 0
## 36 296940.00 0 0 0
## 37 1251768.75 0 0 0
## 38 207950.22 0 0 0
## 39 763333.18 1 0 0
## 40 811282.50 0 0 0
## 41 406651.25 0 0 0
## 42 155237.58 0 1 0
## 43 5891.60 0 0 0
## 44 243663.66 0 0 0
## 45 697278.75 0 0 0
## 46 48655.62 0 1 0
## 47 508851.20 0 0 0
## 48 272294.39 0 0 0
## 49 53503.10 0 0 0
## 50 468410.80 0 0 0
## 51 609457.02 0 0 0
## 52 215273.30 0 0 0
## 53 1454944.16 0 0 0
## 54 7360.20 0 1 0
## 55 18532.90 0 0 0
## 56 277519.62 0 0 0
## 57 1203793.75 0 0 0
## 58 664453.75 0 0 0
## 59 524989.08 0 0 0
## 60 45709.44 0 0 0
## 61 119811.25 0 0 0
## 62 1370269.47 0 0 0
## 63 107208.36 0 1 0
## 64 668083.68 0 0 0
## 65 198500.26 0 0 0
## 66 459045.00 0 0 0
## 67 760988.10 0 0 1
## 68 273078.75 0 0 0
## 69 552728.76 1 0 0
## 70 989926.25 0 0 0
## 71 21357.42 0 0 0
## 72 607273.10 1 0 0
## 73 153374.04 0 1 0
## 74 366659.04 0 0 0
## 75 170170.00 0 0 0
## 76 173540.50 0 0 0
## 77 304246.80 0 0 0
## 78 359812.50 0 0 0
## 79 552890.19 0 0 1
## 80 1167433.75 0 0 0
## 81 677979.27 0 0 1
## 82 235944.06 0 0 0
## 83 9572.52 0 0 0
## 84 632391.84 0 0 0
## 85 116290.26 0 0 0
## 86 84689.28 0 1 0
## 87 131113.20 0 0 1
## 88 18306.48 0 0 0
## 89 62624.34 0 1 0
## 90 113758.56 0 0 0
## 91 391012.94 1 0 0
## 92 713910.24 0 0 0
## 93 1431078.55 0 0 0
## 94 200830.84 0 0 0
## 95 627305.79 0 0 1
## 96 115297.74 0 0 0
## 97 3207.71 0 0 0
## 98 8592.48 0 0 0
## 99 960902.54 0 0 0
## 100 173923.15 0 0 0
## 101 543309.12 0 0 0
## 102 200122.10 0 0 0
## 103 305696.16 0 0 0
## 104 443488.25 0 0 0
## 105 53853.94 0 0 0
## 106 62249.04 0 0 0
## 107 89823.06 0 0 0
## 108 37034.31 0 0 0
## 109 14047.02 0 1 0
## 110 247786.56 0 0 0
## 111 146687.22 0 1 0
## 112 731603.52 1 0 0
## 113 140219.64 0 1 0
## 114 101878.50 0 0 1
## 115 513963.75 0 0 0
## 116 440380.84 1 0 0
## 117 89988.48 0 0 0
## 118 186777.71 0 0 0
## 119 66412.76 0 0 0
## 120 366823.60 0 0 0
## 121 234069.30 0 0 0
## 122 475031.10 0 0 0
## 123 539116.64 1 0 0
## 124 616822.56 0 0 0
## 125 5070.64 0 0 0
## 126 492345.06 0 0 0
## 127 513431.54 0 0 0
## 128 430872.48 0 0 0
## 129 90760.14 0 0 0
## 130 406878.06 0 0 0
## 131 1109485.00 0 0 0
## 132 64660.14 0 1 0
## 133 75340.26 0 1 0
## 134 889484.94 1 0 0
## 135 1326834.38 0 0 0
## 136 1072620.00 0 0 0
## 137 47233.05 0 0 0
## 138 249146.52 0 0 0
## 139 346860.80 0 0 0
## 140 244873.20 0 0 0
## 141 56535.36 0 0 0
## 142 258000.06 0 0 0
## 143 1438774.25 0 0 0
## 144 16383.18 0 0 0
## 145 578515.10 1 0 0
## 146 843855.58 1 0 0
## 147 548698.14 0 0 0
## 148 120305.22 0 0 1
## 149 614460.24 0 0 1
## 150 18381.07 0 0 0
## 151 353171.70 0 0 0
## 152 290043.66 0 0 1
## 153 25978.06 1 0 0
## 154 474642.72 0 0 0
## 155 7107.09 0 0 0
## 156 449534.80 0 0 0
## 157 129698.58 1 0 0
## 158 34407.36 0 0 0
## 159 618246.25 0 0 0
## 160 24252.80 0 0 0
## 161 693617.50 0 0 0
## 162 898753.79 0 0 0
## 163 189428.54 0 0 0
## 164 793228.75 0 0 0
## 165 505418.78 0 0 0
## 166 778962.50 0 0 0
## 167 458926.56 0 0 0
## 168 47221.24 0 0 0
## 169 65818.98 0 1 0
## 170 1032725.00 0 0 0
## 171 792850.00 0 0 0
## 172 1513280.63 0 0 0
## 173 235463.76 0 0 0
## 174 496821.60 0 0 0
## 175 74277.84 0 0 0
## 176 851682.50 0 0 0
## 177 1123372.50 0 0 0
## 178 531485.28 0 0 0
## 179 40396.72 0 0 0
## 180 139436.64 0 1 0
## 181 201031.32 0 0 0
## 182 123019.54 0 0 0
## 183 188927.34 0 0 0
## 184 115771.25 0 0 0
## 185 118918.80 0 0 0
## 186 291319.60 0 0 0
## 187 333927.84 0 0 0
## 188 776370.14 1 0 0
## 189 1109986.08 0 0 0
## 190 513928.73 0 0 0
## 191 62048.56 0 0 0
## 192 552441.18 1 0 0
## 193 97828.02 0 1 0
## 194 268113.11 0 0 0
## 195 33058.26 0 1 0
## 196 1527864.87 0 0 0
## 197 669294.52 1 0 0
## 198 282229.92 0 0 0
## 199 660.34 0 0 0
## 200 335047.38 0 0 1
## 201 97759.06 0 0 0
## 202 690192.00 1 0 0
## 203 377532.94 0 0 0
## 204 119360.78 0 0 0
## 205 127759.38 0 0 0
## 206 551007.60 0 0 0
## 207 216788.42 0 0 0
## 208 471896.75 0 0 0
## 209 668145.78 0 0 1
## 210 407314.76 0 0 0
## 211 1500685.15 0 0 0
## 212 181183.80 0 0 0
## 213 617110.00 0 0 0
## 214 218263.68 0 0 0
## 215 738327.15 0 0 0
## 216 534305.20 0 0 0
## 217 23302.29 0 0 0
## 218 431657.58 1 0 0
## 219 363087.36 0 0 0
## 220 575808.73 0 0 0
## 221 180331.76 0 0 0
## 222 15327.60 0 0 0
## 223 559534.82 1 0 0
## 224 118810.66 0 0 0
## 225 204310.08 0 0 0
## 226 212454.42 0 0 0
## 227 405209.85 0 0 0
## 228 486583.28 0 0 0
## 229 166700.54 1 0 0
## 230 168618.24 0 0 0
## 231 7668.80 1 0 0
## 232 190380.82 0 0 0
## 233 536593.20 0 0 0
## 234 884002.50 0 0 0
## 235 705216.72 0 0 0
## 236 74177.75 0 0 0
## 237 128775.00 0 0 0
## 238 314612.52 1 0 0
## 239 1222731.25 0 0 0
## 240 795981.15 0 0 1
## 241 174256.53 0 0 1
## 242 1068792.77 0 0 0
## 243 218464.94 1 0 0
## 244 607560.68 1 0 0
## 245 188852.16 0 0 0
## 246 133367.04 0 0 0
## 247 633507.09 0 0 1
## 248 1079058.75 0 0 0
## 249 7323.99 0 0 0
## 250 296395.35 0 0 0
## 251 150555.24 0 1 0
## 252 52852.80 0 0 0
## 253 239199.57 0 0 0
## 254 66126.27 0 0 0
## 255 825169.67 0 0 0
## 256 502387.60 0 0 0
## 257 79834.68 0 1 0
## 258 375621.60 0 0 1
## 259 1418483.07 0 0 0
## 260 425282.00 0 0 0
## 261 5489.98 0 0 0
## 262 253732.63 0 0 0
## 263 543334.48 1 0 0
## 264 34342.38 0 1 0
## 265 106398.66 0 0 0
## 266 1256896.32 0 0 0
## 267 154909.76 1 0 0
## 268 461466.66 0 0 0
## 269 13262.23 0 0 0
## 270 486858.56 0 0 0
## 271 126169.92 0 0 0
## 272 31976.56 0 0 0
## 273 137181.49 0 0 0
## 274 398496.78 0 0 0
## 275 212963.05 0 0 0
## 276 15007.07 0 0 0
## 277 528439.35 0 0 1
## 278 82425.20 0 0 0
## 279 413393.76 0 0 0
## 280 1483806.58 0 0 0
## 281 363114.43 0 0 0
## 282 715585.00 0 0 0
## 283 4040.32 0 0 0
## 284 443011.25 0 0 0
## 285 389070.19 0 0 0
## 286 81745.20 0 1 0
## 287 1641058.46 0 0 0
## 288 408135.45 0 0 0
## 289 201700.35 0 0 0
## 290 479183.31 0 0 1
## 291 7125.30 0 1 0
## 292 472057.05 0 0 0
## 293 134644.68 0 1 0
## 294 97662.11 0 0 0
## 295 444182.68 0 0 0
## 296 725660.20 1 0 0
## 297 1336190.95 0 0 0
## 298 1482952.04 0 0 0
## 299 439140.63 0 0 1
## 300 1103031.28 0 0 0
## 301 728210.00 0 0 0
## 302 369028.75 0 0 0
## 303 1203415.00 0 0 0
## 304 68105.34 0 1 0
## 305 127801.26 0 1 0
## 306 484460.04 0 0 0
## 307 152139.26 0 0 0
## 308 16621.77 0 0 0
## 309 12852.00 0 0 0
## 310 163714.32 0 0 1
## 311 726174.72 0 0 0
## 312 1541620.46 0 0 0
## 313 17168.84 0 0 0
## 314 468550.86 0 0 0
## 315 1094685.52 0 0 0
## 316 1195182.38 0 0 0
## 317 715787.87 0 0 0
## 318 12872.52 0 1 0
## 319 58187.02 1 0 0
## 320 436571.52 0 0 1
## 321 626597.07 0 0 1
## 322 705337.88 1 0 0
## 323 465150.40 0 0 0
## 324 219901.50 0 0 0
## 325 51334.56 0 0 0
## 326 172143.36 0 0 0
## 327 65552.76 0 1 0
## 328 58396.14 0 1 0
## 329 48696.88 1 0 0
## 330 62519.60 0 0 0
## 331 233376.00 0 0 0
## 332 321963.00 0 0 0
## 333 28422.90 0 1 0
## 334 562867.08 0 0 0
## 335 197407.51 0 0 0
## 336 786339.58 1 0 0
## 337 729259.20 0 0 0
## 338 28217.56 0 0 0
## 339 366074.46 0 0 0
## 340 739637.91 0 0 1
## 341 9208.38 0 0 0
## 342 383295.00 0 0 0
## 343 951793.94 1 0 0
## 344 13326.66 0 1 0
## 345 18889.58 0 0 0
## 346 954573.88 1 0 0
## 347 1444685.83 0 0 0
## 348 169210.33 0 0 0
## 349 19896.96 0 0 0
## 350 1194084.65 0 0 0
## 351 177725.52 0 0 0
## 352 104575.38 0 0 0
## 353 596476.47 0 0 1
## 354 2230.34 0 0 0
## 355 200863.75 0 0 0
## 356 309776.52 0 0 0
## 357 134378.46 0 1 0
## 358 376058.78 1 0 0
## 359 111452.22 0 1 0
## 360 110707.64 0 0 0
## 361 807320.67 0 0 1
## 362 356043.21 0 0 1
## 363 1562048.08 0 0 0
## 364 11177.58 0 0 0
## 365 603588.66 0 0 0
## 366 545347.54 1 0 0
## 367 62725.18 0 0 0
## 368 44443.08 0 1 0
## 369 717032.80 1 0 0
## 370 376241.73 0 0 1
## 371 188632.44 0 0 0
## 372 42742.08 0 0 0
## 373 1032787.80 0 0 0
## 374 125425.30 0 0 0
## 375 144120.06 0 0 0
## 376 281804.79 0 0 1
## 377 247904.80 0 0 0
## 378 187330.00 0 0 0
## 379 152941.18 0 0 0
## 380 570271.14 1 0 0
## 381 1386439.38 0 0 0
## 382 275814.97 0 0 0
## 383 535334.80 0 0 0
## 384 65756.34 0 1 0
## 385 274341.25 0 0 0
## 386 319012.59 0 0 1
## 387 20799.80 0 0 0
## 388 178708.74 0 0 0
## 389 283305.00 0 0 0
## 390 556610.97 0 0 1
## 391 516391.11 0 0 1
## 392 1458769.30 0 0 0
## 393 200142.80 0 0 0
## 394 441927.20 0 0 0
## 395 23302.29 0 0 0
## 396 475178.02 1 0 0
## 397 91873.44 0 0 0
## 398 185614.00 0 0 0
## 399 1332018.07 0 0 0
## 400 206845.24 0 0 0
## 401 102515.00 0 0 0
## 402 466180.00 0 0 0
## 403 889866.66 0 0 0
## 404 625236.52 0 0 0
## 405 550359.36 0 0 0
## 406 443586.00 0 0 0
## 407 928316.25 0 0 0
## 408 98548.38 0 1 0
## 409 633634.60 1 0 0
## 410 406547.22 0 0 0
## 411 1682887.73 0 0 0
## 412 288450.33 0 0 0
## 413 219250.49 0 0 0
## 414 383664.95 0 0 0
## 415 1227727.84 0 0 0
## 416 479875.16 1 0 0
## 417 325444.70 1 0 0
## 418 498348.22 0 0 0
## 419 518340.09 0 0 1
## 420 272791.58 0 0 0
## 421 4070.49 0 0 0
## 422 147579.84 0 1 0
## 423 8094.38 0 0 0
## 424 870115.00 0 0 0
## 425 637581.29 0 0 0
## 426 367091.95 0 0 0
## 427 350922.00 0 0 0
## 428 346460.40 0 0 0
## 429 411146.19 0 0 1
## 430 87176.34 0 0 0
## 431 824396.00 1 0 0
## 432 394402.68 0 0 1
## 433 1725485.88 0 0 0
## 434 71020.04 0 0 0
## 435 191283.90 0 0 0
## 436 933113.75 0 0 0
## 437 354641.76 0 0 0
## 438 3101.67 0 0 0
## 439 118734.28 0 0 0
## 440 30825.78 0 0 0
## 441 257393.52 0 0 0
## 442 35266.32 0 1 0
## 443 1571089.32 0 0 0
## 444 721919.91 0 0 1
## 445 262135.56 0 0 0
## 446 16317.72 0 1 0
## 447 215077.19 0 0 0
## 448 103262.04 0 1 0
## 449 6248.34 0 1 0
## 450 187432.97 0 0 0
## 451 366846.42 0 0 0
## 452 52524.16 0 0 0
## 453 436543.95 0 0 0
## 454 191391.20 0 0 0
## 455 75497.50 0 0 0
## 456 154770.56 0 0 0
## 457 1671760.05 0 0 0
## 458 1240489.05 0 0 0
## 459 742561.38 0 0 1
## 460 437701.32 0 0 0
## 461 279953.28 0 0 0
## 462 10930.68 0 1 0
## 463 924988.40 0 0 0
## 464 180663.75 0 0 0
## 465 11611.38 0 0 0
## 466 207972.94 0 0 0
## 467 493663.68 0 0 0
## 468 248460.00 0 0 0
## 469 124434.36 0 1 0
## 470 411264.00 0 0 0
## 471 700126.77 0 0 1
## 472 845008.20 0 0 0
## 473 815576.88 1 0 0
## 474 436322.82 0 0 0
## 475 526967.50 0 0 0
## 476 298913.94 0 0 0
## 477 300965.68 0 0 0
## 478 8613.00 0 1 0
## 479 13279.68 0 1 0
## 480 224612.78 0 0 0
## 481 553428.21 0 0 0
## 482 1534402.75 0 0 0
## 483 50691.42 0 1 0
## 484 58678.56 0 0 0
## 485 1312913.06 0 0 0
## 486 771577.14 1 0 0
## 487 380608.80 0 0 0
## 488 787800.00 0 0 0
## 489 169806.25 0 0 0
## 490 446420.00 0 0 0
## 491 614558.46 1 0 0
## 492 9396.00 0 1 0
## 493 1452623.45 0 0 0
## 494 32918.58 0 0 0
## 495 195994.26 0 0 0
## 496 525725.20 0 0 0
## 497 137679.64 0 0 0
## 498 10955.86 0 0 0
## 499 782371.25 0 0 0
## 500 17653.25 0 0 0
## 501 391476.80 0 0 0
## 502 61481.46 0 0 1
## 503 377709.00 0 0 0
## 504 39895.00 0 0 0
## 505 1026160.00 0 0 0
## 506 249106.00 0 0 0
## 507 79756.38 0 1 0
## 508 219376.75 0 0 0
## 509 342156.96 0 0 0
## 510 139213.20 0 0 0
## 511 598166.40 1 0 0
## 512 187279.26 0 0 1
## 513 289861.77 0 0 0
## 514 301174.68 0 0 0
## 515 353654.26 0 0 0
## 516 24226.02 0 1 0
## 517 297405.43 0 0 0
## 518 614456.58 0 0 0
## 519 132969.06 0 1 0
## 520 1232042.82 0 0 0
## 521 848936.16 1 0 0
## 522 35276.48 1 0 0
## 523 532.61 0 0 0
## 524 222986.16 0 0 0
## 525 148754.34 0 1 0
## 526 73044.40 0 0 0
## 527 385345.52 0 0 0
## 528 488184.29 0 0 0
## 529 4699.50 0 0 0
## 530 86790.36 0 0 0
## 531 83054.40 0 0 0
## 532 191060.10 0 0 0
## 533 3670.43 0 0 0
## 534 15831.29 0 0 0
## 535 24711.48 0 1 0
## 536 374774.40 0 0 0
## 537 613761.10 0 0 0
## 538 151267.08 1 0 0
## 539 98921.16 0 0 0
## 540 382670.57 0 0 0
## 541 570989.08 0 0 0
## 542 4603.10 0 0 0
## 543 935891.25 0 0 0
## 544 381683.98 0 0 0
## 545 348691.20 0 0 0
## 546 6940.80 0 0 0
## 547 359187.42 1 0 0
## 548 48185.82 0 1 0
## 549 459649.53 0 0 0
## 550 23618.00 0 0 0
## 551 1012610.30 0 0 0
## 552 218372.84 0 0 0
## 553 33653.34 0 1 0
## 554 1007727.50 0 0 0
## 555 1626142.76 0 0 0
## 556 207221.14 0 0 0
## 557 344000.80 0 0 0
## 558 262560.54 1 0 0
## 559 10605.84 0 0 0
## 560 625002.45 0 0 1
## 561 10093.08 0 0 0
## 562 1631422.21 0 0 0
## 563 182718.72 0 0 0
## 564 927.85 0 0 0
## 565 250353.75 0 0 0
## 566 560904.62 0 0 0
## 567 5029.67 0 0 0
## 568 450712.50 0 0 0
## 569 819449.31 0 0 0
## 570 23092.62 0 0 0
## 571 66962.16 0 1 0
## 572 141372.00 0 0 0
## 573 423971.46 0 0 0
## 574 94275.72 0 0 0
## 575 386961.12 0 0 1
## 576 95950.00 0 0 0
## 577 155998.50 0 0 0
## 578 61776.00 0 0 0
## 579 120190.50 0 1 0
## 580 395694.72 0 0 0
## 581 141112.86 0 0 0
## 582 606575.73 0 0 1
## 583 1575926.57 0 0 0
## 584 17570.52 0 1 0
## 585 108256.98 0 0 1
## 586 159807.62 0 0 0
## 587 296582.00 0 0 0
## 588 290132.25 0 0 1
## 589 524610.30 0 0 0
## 590 12004.21 0 0 0
## 591 2154.49 0 0 0
## 592 409494.80 0 0 0
## 593 126240.40 0 0 0
## 594 19214.93 0 0 0
## 595 1174882.50 0 0 0
## 596 462519.20 0 0 0
## 597 453526.50 0 0 0
## 598 10398.24 0 1 0
## 599 131183.82 0 1 0
## 600 121368.30 0 0 1
## 601 95924.40 0 0 0
## 602 528208.71 0 0 0
## 603 160287.07 0 0 0
## 604 384659.33 0 0 0
## 605 434282.64 0 0 0
## 606 352675.44 0 0 0
## 607 629254.77 0 0 1
## 608 394815.02 0 0 0
## 609 204565.24 1 0 0
## 610 3489.20 0 0 0
## 611 1283682.21 0 0 0
## 612 535342.40 0 0 0
## 613 1697666.68 0 0 0
## 614 774953.48 0 0 0
## 615 136101.06 0 1 0
## 616 413348.32 1 0 0
## 617 152289.62 0 0 0
## 618 139158.18 0 0 0
## 619 158830.28 0 0 0
## 620 1144203.75 0 0 0
## 621 806485.00 0 0 0
## 622 505355.65 0 0 0
## 623 13589.99 0 0 0
## 624 443546.16 0 0 0
## 625 575831.02 1 0 0
## 626 1276901.28 0 0 0
## 627 120262.65 0 0 0
## 628 375746.80 0 0 0
## 629 14185.60 0 0 0
## 630 1121478.75 0 0 0
## 631 24757.86 0 0 0
## 632 249347.00 0 0 0
## 633 769027.01 0 0 0
## 634 19120.94 0 0 0
## 635 583187.97 0 0 1
## 636 220955.00 0 0 0
## 637 340539.96 0 0 1
## 638 720446.40 0 0 0
## 639 354790.60 0 0 0
## 640 242525.80 1 0 0
## 641 633917.25 0 0 0
## 642 620125.99 0 0 0
## 643 210993.12 0 0 0
## 644 172877.76 0 0 0
## 645 927637.22 1 0 0
## 646 291106.74 0 0 1
## 647 91544.18 0 0 0
## 648 456724.62 0 0 0
## 649 423854.82 0 0 0
## 650 347909.43 0 0 0
## 651 313749.78 1 0 0
## 652 322150.40 0 0 0
## 653 13564.44 0 0 0
## 654 314704.70 0 0 0
## 655 1225261.89 0 0 0
## 656 152074.26 0 1 0
## 657 308122.32 0 0 0
## 658 117403.02 0 1 0
## 659 16302.00 0 0 0
## 660 14057.53 0 0 0
## 661 460574.40 0 0 0
## 662 579000.96 0 0 0
## 663 735474.18 0 0 1
## 664 513463.68 0 0 0
## 665 261340.50 0 0 1
## 666 129696.12 0 1 0
## 667 1114332.83 0 0 0
## 668 301009.26 0 0 0
## 669 927093.62 0 0 0
## 670 229143.20 0 0 0
## 671 155331.54 0 1 0
## 672 548376.40 0 0 0
## 673 214951.81 0 0 0
## 674 5731.56 0 1 0
## 675 103848.64 0 0 0
## 676 671786.88 1 0 0
## 677 934029.64 0 0 0
## 678 168999.01 0 0 0
## 679 554995.00 0 0 0
## 680 173659.20 0 0 0
## 681 395288.75 0 0 0
## 682 97859.34 0 1 0
## 683 992722.70 0 0 0
## 684 376477.50 0 0 0
## 685 247743.16 0 0 0
## 686 352730.58 0 0 0
## 687 534795.00 0 0 0
## 688 158483.52 0 0 0
## 689 91162.86 1 0 0
## 690 1064413.75 0 0 0
## 691 426289.42 1 0 0
## 692 324168.06 0 0 0
## 693 90264.18 0 0 0
## 694 422648.10 0 0 0
## 695 48516.16 0 0 0
## 696 148065.30 0 1 0
## 697 17491.78 0 0 0
## 698 594179.56 0 0 0
## 699 115315.20 0 0 0
## 700 1425734.00 0 0 0
## 701 78287.44 0 0 0
## 702 795803.97 0 0 1
## 703 734253.12 0 0 0
## 704 545292.00 0 0 0
## 705 71253.00 0 1 0
## 706 106752.83 0 0 0
## 707 87834.24 0 0 0
## 708 234281.84 1 0 0
## 709 171610.88 0 0 0
## 710 179857.37 0 0 0
## 711 23080.26 0 0 0
## 712 821424.34 1 0 0
## 713 391435.20 0 0 0
## 714 18723.29 0 0 0
## 715 112444.22 0 0 0
## 716 98600.67 0 0 1
## 717 879694.84 0 0 0
## 718 111361.32 0 0 0
## 719 112845.96 0 1 0
## 720 680108.75 0 0 0
## 721 264493.75 0 0 0
## 722 10722.24 0 0 0
## 723 242064.60 0 0 0
## 724 16159.05 0 0 0
## 725 126755.00 0 0 0
## 726 604264.32 0 0 0
## 727 170690.00 0 0 0
## 728 20898.06 0 0 0
## 729 539563.68 0 0 0
## 730 33129.32 0 0 0
## 731 301560.36 0 0 1
## 732 4147.61 0 0 0
## 733 472659.84 0 0 0
## 734 271185.20 0 0 0
## 735 91751.94 0 1 0
## 736 333321.30 0 0 0
## 737 205062.00 0 0 0
## 738 95152.82 0 0 0
## 739 700522.23 0 0 0
## 740 636063.84 0 0 0
## 741 259148.65 0 0 0
## 742 661227.61 0 0 0
## 743 285879.93 0 0 1
## 744 11770.44 0 0 0
## 745 417761.25 0 0 0
## 746 8837.50 0 0 0
## 747 137275.56 0 1 0
## 748 626.50 0 0 0
## 749 101946.60 0 1 0
## 750 198299.78 0 0 0
## 751 437482.08 0 0 0
## 752 147157.02 0 1 0
## 753 1568307.40 0 0 0
## 754 145735.02 0 0 0
## 755 1785.24 0 1 0
## 756 475503.60 0 0 0
## 757 388375.76 0 0 0
## 758 547518.40 0 0 0
## 759 164092.88 0 0 0
## 760 119262.00 0 0 0
## 761 80618.02 0 0 0
## 762 665240.22 0 0 0
## 763 54927.78 1 0 0
## 764 1047566.75 0 0 0
## 765 13327.30 0 0 0
## 766 212134.40 0 0 0
## 767 947001.25 0 0 0
## 768 902565.58 0 0 0
## 769 1060626.25 0 0 0
## 770 167501.04 0 0 0
## 771 41405.04 0 1 0
## 772 357315.80 0 0 0
## 773 901930.00 0 0 0
## 774 406637.28 0 0 0
## 775 20592.90 0 1 0
## 776 124997.40 0 0 0
## 777 446392.23 0 0 0
## 778 199048.89 0 0 0
## 779 1114282.50 0 0 0
## 780 152199.54 0 1 0
## 781 87559.64 0 0 0
## 782 802630.39 0 0 0
## 783 27018.60 0 0 0
## 784 728341.43 0 0 0
## 785 4162.07 0 0 0
## 786 434838.24 0 0 0
## 787 102207.47 0 0 0
## 788 88627.50 0 0 0
## 789 405033.20 0 0 0
## 790 162770.28 1 0 0
## 791 721442.36 1 0 0
## 792 71581.86 0 1 0
## 793 806939.37 0 0 0
## 794 428256.40 0 0 0
## 795 8492.84 0 0 0
## 796 61150.26 0 0 0
## 797 38727.44 1 0 0
## 798 215541.06 0 0 0
## 799 856135.88 0 0 0
## 800 355295.64 0 0 0
## 801 225489.88 0 0 0
## 802 44440.00 0 0 0
## 803 674854.40 1 0 0
## 804 252633.60 0 0 0
## 805 437922.72 0 0 0
## 806 1400175.11 0 0 0
## 807 496842.38 1 0 0
## 808 1714010.46 0 0 0
## 809 165721.78 0 0 0
## 810 1220045.79 0 0 0
## 811 294627.71 0 0 0
## 812 18596.84 1 0 0
## 813 358014.80 0 0 0
## 814 146088.80 0 0 0
## 815 1937.64 0 0 0
## 816 23526.42 0 0 0
## 817 12240.80 0 0 0
## 818 570856.00 0 0 0
## 819 853729.16 1 0 0
## 820 9331.52 0 0 0
## 821 363405.26 1 0 0
## 822 290650.52 0 0 0
## 823 314690.40 0 0 0
## 824 1362966.93 0 0 0
## 825 203934.18 0 0 1
## 826 302707.67 0 0 0
## 827 165680.64 0 0 0
## 828 440331.75 0 0 0
## 829 93905.40 0 0 1
## 830 423160.39 0 0 0
## 831 1413215.36 0 0 0
## 832 363427.74 0 0 0
## 833 476259.84 0 0 1
## 834 460319.72 1 0 0
## 835 455609.21 0 0 0
## 836 31335.66 0 1 0
## 837 35605.32 0 0 0
## 838 85288.63 0 0 0
## 839 305107.29 0 0 0
## 840 469572.24 0 0 0
## 841 336786.19 0 0 0
## 842 275277.53 0 0 0
## 843 359730.80 0 0 0
## 844 79953.00 0 0 0
## 845 796332.65 0 0 0
## 846 182041.89 0 0 0
## 847 108038.34 0 1 0
## 848 541727.85 0 0 1
## 849 779459.21 0 0 0
## 850 462045.20 1 0 0
## 851 189131.78 1 0 0
## 852 431415.36 0 0 0
## 853 346444.62 0 0 0
## 854 1046865.00 0 0 0
## 855 501301.44 0 0 0
## 856 4550.08 0 0 0
## 857 304152.24 0 0 0
## 858 1123152.21 0 0 0
## 859 169631.14 0 0 0
## 860 90742.26 0 0 0
## 861 946496.25 0 0 0
## 862 87476.76 0 1 0
## 863 178276.84 0 0 0
## 864 738397.65 0 0 1
## 865 415535.04 0 0 0
## 866 4166.25 0 0 0
## 867 304355.50 1 0 0
## 868 21031.38 0 1 0
## 869 59784.11 0 0 0
## 870 342732.77 0 0 0
## 871 25307.04 1 0 0
## 872 502262.28 0 0 0
## 873 291510.26 1 0 0
## 874 679455.68 1 0 0
## 875 57832.38 0 1 0
## 876 199513.60 0 0 0
## 877 1587954.71 0 0 0
## 878 8044.26 0 0 0
## 879 137416.50 0 1 0
## 880 238753.44 0 0 0
## 881 401667.06 0 0 1
## 882 1062.81 0 0 0
## 883 1981.02 0 0 0
## 884 444585.59 0 0 0
## 885 71346.96 0 1 0
## 886 174301.93 0 0 0
## 887 455972.73 0 0 1
## 888 595236.21 0 0 1
## 889 248791.68 0 0 0
## 890 40622.04 0 1 0
## 891 1170550.99 0 0 0
## 892 174016.50 0 0 0
## 893 860651.85 0 0 1
## 894 12654.91 0 0 0
## 895 327049.47 0 0 0
## 896 76275.99 0 0 1
## 897 85769.82 0 1 0
## 898 151487.70 0 0 0
## 899 76968.90 0 1 0
## 900 242960.18 0 0 0
## 901 406692.00 0 0 0
## 902 50248.43 0 0 0
## 903 141489.36 1 0 0
## 904 204915.62 0 0 0
## 905 1726181.36 0 0 0
## 906 572901.65 0 0 0
## 907 1139890.94 0 0 0
## 908 604589.02 1 0 0
## 909 885938.12 1 0 0
## 910 20732.64 0 0 0
## 911 15503.53 0 0 0
## 912 202906.29 0 0 0
## 913 23042.45 0 0 0
## 914 432061.72 0 0 0
## 915 300678.42 0 0 0
## 916 509522.23 0 0 0
## 917 20750.10 0 0 0
## 918 768030.32 1 0 0
## 919 679320.00 0 0 0
## 920 171188.64 0 0 0
## 921 822912.51 0 0 1
## 922 143946.72 0 1 0
## 923 278084.01 0 0 1
## 924 232030.54 0 0 0
## 925 739464.04 1 0 0
## 926 719120.00 0 0 0
## 927 422330.23 0 0 0
## 928 399544.48 1 0 0
## 929 22169.59 0 0 0
## 930 71120.28 0 0 0
## 931 215805.24 0 0 1
## 932 5714.11 0 0 0
## 933 802182.45 0 0 1
## 934 435499.20 0 0 0
## 935 20412.70 0 0 0
## 936 230050.80 0 0 0
## 937 65030.70 0 0 0
## 938 25159.56 0 0 1
## 939 429183.36 0 0 0
## 940 23875.87 0 0 0
## 941 454643.88 0 0 1
## 942 18979.92 0 1 0
## 943 544342.08 0 0 0
## 944 1245456.25 0 0 0
## 945 109066.92 0 0 0
## 946 9707.48 0 0 0
## 947 430652.16 0 0 0
## 948 275625.58 0 0 0
## 949 132248.70 0 1 0
## 950 231259.60 0 0 0
## 951 1513943.55 0 0 0
## 952 1516841.88 0 0 0
## 953 1631943.31 0 0 0
## 954 482574.24 0 0 0
## 955 366832.80 0 0 0
## 956 19882.50 0 0 0
## 957 3602.95 0 0 0
## 958 437048.99 0 0 0
## 959 552955.67 0 0 0
## 960 206895.36 0 0 0
## 961 136273.32 0 1 0
## 962 52141.25 0 0 0
## 963 950958.74 0 0 0
## 964 672366.61 0 0 0
## 965 106190.46 0 1 0
## 966 408942.24 0 0 0
## 967 68649.30 0 0 0
## 968 55083.60 0 0 0
## 969 65907.72 0 0 0
## 970 444097.56 0 0 0
## 971 52445.28 0 0 1
## 972 270701.44 0 0 0
## 973 389131.60 0 0 0
## 974 207835.20 0 0 0
## 975 667716.48 0 0 0
## 976 534476.80 0 0 0
## 977 1553221.56 0 0 0
## 978 31210.38 0 1 0
## 979 32212.62 0 1 0
## 980 127835.37 0 0 1
## 981 63610.92 0 1 0
## 982 62864.64 0 0 0
## 983 264672.00 0 0 0
## 984 744622.50 0 0 0
## 985 155021.16 0 0 0
## 986 597415.00 0 0 0
## 987 193367.52 0 0 0
## 988 1329320.33 0 0 0
## 989 58282.98 0 0 0
## 990 791285.88 0 0 1
## 991 13624.20 0 1 0
## 992 276932.34 0 0 1
## 993 62436.42 0 1 0
## 994 840596.34 1 0 0
## 995 275761.20 0 0 0
## 996 359733.36 0 0 0
## 997 27607.68 1 0 0
## 998 603270.28 0 0 0
## 999 1624319.73 0 0 0
## 1000 312545.52 0 0 1
## Item.TypeClothes Item.TypeCosmetics Item.TypeFruits Item.TypeHousehold
## 1 0 1 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 1 0
## 6 0 0 0 0
## 7 0 0 0 0
## 8 1 0 0 0
## 9 0 0 0 0
## 10 0 0 0 0
## 11 1 0 0 0
## 12 0 0 0 0
## 13 0 0 0 1
## 14 0 1 0 0
## 15 0 0 1 0
## 16 1 0 0 0
## 17 0 0 0 0
## 18 0 0 0 0
## 19 1 0 0 0
## 20 0 0 0 1
## 21 0 0 0 0
## 22 1 0 0 0
## 23 0 0 0 0
## 24 1 0 0 0
## 25 0 0 0 0
## 26 0 0 0 0
## 27 0 0 0 0
## 28 0 0 1 0
## 29 0 0 0 0
## 30 0 0 0 0
## 31 0 0 0 0
## 32 0 0 0 0
## 33 0 0 1 0
## 34 0 0 0 0
## 35 0 0 0 0
## 36 0 0 0 0
## 37 0 0 0 0
## 38 0 0 0 0
## 39 0 0 0 0
## 40 0 0 0 0
## 41 0 0 0 0
## 42 0 0 0 0
## 43 0 0 0 0
## 44 0 0 0 0
## 45 0 0 0 0
## 46 0 0 0 0
## 47 0 0 0 0
## 48 0 0 0 1
## 49 0 0 0 0
## 50 0 0 0 0
## 51 0 0 0 0
## 52 0 0 0 0
## 53 0 1 0 0
## 54 0 0 0 0
## 55 0 0 1 0
## 56 0 0 0 0
## 57 0 0 0 0
## 58 0 0 0 0
## 59 0 0 0 0
## 60 0 0 0 0
## 61 0 0 0 0
## 62 0 1 0 0
## 63 0 0 0 0
## 64 1 0 0 0
## 65 0 0 0 0
## 66 0 0 0 0
## 67 0 0 0 0
## 68 0 0 0 0
## 69 0 0 0 0
## 70 0 0 0 0
## 71 0 0 1 0
## 72 0 0 0 0
## 73 0 0 0 0
## 74 0 0 0 0
## 75 0 0 0 0
## 76 0 0 0 0
## 77 0 0 0 0
## 78 0 0 0 0
## 79 0 0 0 0
## 80 0 0 0 0
## 81 0 0 0 0
## 82 0 0 0 0
## 83 0 0 1 0
## 84 1 0 0 0
## 85 0 0 0 0
## 86 0 0 0 0
## 87 0 0 0 0
## 88 0 0 0 0
## 89 0 0 0 0
## 90 1 0 0 0
## 91 0 0 0 0
## 92 1 0 0 0
## 93 0 0 0 1
## 94 0 0 0 0
## 95 0 0 0 0
## 96 0 0 0 0
## 97 0 0 1 0
## 98 1 0 0 0
## 99 0 0 0 1
## 100 0 0 0 0
## 101 1 0 0 0
## 102 0 0 0 0
## 103 0 0 0 0
## 104 0 0 0 0
## 105 0 0 0 0
## 106 0 0 0 0
## 107 0 0 0 0
## 108 0 1 0 0
## 109 0 0 0 0
## 110 1 0 0 0
## 111 0 0 0 0
## 112 0 0 0 0
## 113 0 0 0 0
## 114 0 0 0 0
## 115 0 0 0 0
## 116 0 0 0 0
## 117 0 0 0 0
## 118 0 0 0 1
## 119 0 0 0 0
## 120 0 0 0 0
## 121 0 0 0 0
## 122 0 0 0 0
## 123 0 0 0 0
## 124 1 0 0 0
## 125 0 0 1 0
## 126 0 0 0 0
## 127 0 0 0 1
## 128 1 0 0 0
## 129 0 1 0 0
## 130 0 0 0 0
## 131 0 0 0 0
## 132 0 0 0 0
## 133 0 0 0 0
## 134 0 0 0 0
## 135 0 0 0 1
## 136 0 0 0 0
## 137 0 0 0 1
## 138 0 0 0 0
## 139 0 0 0 0
## 140 0 0 0 0
## 141 0 0 0 0
## 142 0 0 0 0
## 143 0 1 0 0
## 144 0 0 1 0
## 145 0 0 0 0
## 146 0 0 0 0
## 147 0 0 0 0
## 148 0 0 0 0
## 149 0 0 0 0
## 150 0 0 1 0
## 151 0 0 0 0
## 152 0 0 0 0
## 153 0 0 0 0
## 154 1 0 0 0
## 155 0 0 1 0
## 156 0 0 0 0
## 157 0 0 0 0
## 158 0 0 0 0
## 159 0 0 0 0
## 160 0 0 0 0
## 161 0 0 0 0
## 162 0 0 0 1
## 163 0 0 0 0
## 164 0 0 0 0
## 165 0 0 0 0
## 166 0 0 0 0
## 167 1 0 0 0
## 168 0 0 0 0
## 169 0 0 0 0
## 170 0 0 0 0
## 171 0 0 0 0
## 172 0 0 0 1
## 173 0 0 0 0
## 174 1 0 0 0
## 175 0 0 0 0
## 176 0 0 0 0
## 177 0 0 0 0
## 178 1 0 0 0
## 179 0 0 0 0
## 180 0 0 0 0
## 181 0 0 0 0
## 182 0 0 0 0
## 183 0 0 0 0
## 184 0 0 0 0
## 185 0 0 0 0
## 186 0 0 0 0
## 187 0 0 0 0
## 188 0 0 0 0
## 189 0 1 0 0
## 190 0 0 0 1
## 191 0 0 0 0
## 192 0 0 0 0
## 193 0 0 0 0
## 194 0 0 0 0
## 195 0 0 0 0
## 196 0 0 0 1
## 197 0 0 0 0
## 198 1 0 0 0
## 199 0 0 1 0
## 200 0 0 0 0
## 201 0 0 0 0
## 202 0 0 0 0
## 203 0 0 0 1
## 204 0 0 0 0
## 205 0 0 0 0
## 206 0 0 0 0
## 207 0 0 0 0
## 208 0 0 0 0
## 209 0 0 0 0
## 210 0 0 0 0
## 211 0 0 0 1
## 212 0 0 0 0
## 213 0 0 0 0
## 214 1 0 0 0
## 215 0 0 0 1
## 216 0 0 0 0
## 217 0 0 1 0
## 218 0 0 0 0
## 219 1 0 0 0
## 220 0 0 0 0
## 221 0 0 0 0
## 222 0 0 1 0
## 223 0 0 0 0
## 224 0 0 0 0
## 225 1 0 0 0
## 226 0 0 0 0
## 227 0 0 0 1
## 228 0 0 0 1
## 229 0 0 0 0
## 230 1 0 0 0
## 231 0 0 0 0
## 232 0 0 0 0
## 233 0 0 0 0
## 234 0 0 0 0
## 235 0 1 0 0
## 236 0 0 0 0
## 237 0 0 0 0
## 238 0 0 0 0
## 239 0 0 0 0
## 240 0 0 0 0
## 241 0 0 0 0
## 242 0 0 0 1
## 243 0 0 0 0
## 244 0 0 0 0
## 245 0 0 0 0
## 246 1 0 0 0
## 247 0 0 0 0
## 248 0 0 0 0
## 249 0 0 1 0
## 250 0 0 0 0
## 251 0 0 0 0
## 252 0 0 0 0
## 253 0 0 0 0
## 254 0 0 0 1
## 255 0 0 0 1
## 256 0 0 0 0
## 257 0 0 0 0
## 258 0 0 0 0
## 259 0 0 0 1
## 260 0 0 0 0
## 261 0 0 1 0
## 262 0 0 0 1
## 263 0 0 0 0
## 264 0 0 0 0
## 265 0 0 0 1
## 266 0 0 0 1
## 267 0 0 0 0
## 268 0 0 0 0
## 269 0 0 1 0
## 270 0 0 0 0
## 271 1 0 0 0
## 272 0 0 0 0
## 273 0 0 0 0
## 274 0 0 0 0
## 275 0 0 0 1
## 276 0 0 1 0
## 277 0 0 0 0
## 278 0 0 0 0
## 279 1 0 0 0
## 280 0 1 0 0
## 281 0 0 0 1
## 282 0 0 0 0
## 283 0 0 0 0
## 284 0 0 0 0
## 285 0 0 0 0
## 286 0 0 0 0
## 287 0 0 0 1
## 288 0 0 0 0
## 289 0 0 0 0
## 290 0 0 0 0
## 291 0 0 0 0
## 292 0 1 0 0
## 293 0 0 0 0
## 294 0 0 0 0
## 295 0 0 0 0
## 296 0 0 0 0
## 297 0 1 0 0
## 298 0 0 0 1
## 299 0 0 0 0
## 300 0 1 0 0
## 301 0 0 0 0
## 302 0 0 0 0
## 303 0 0 0 0
## 304 0 0 0 0
## 305 0 0 0 0
## 306 0 0 0 0
## 307 0 0 0 0
## 308 0 0 1 0
## 309 1 0 0 0
## 310 0 0 0 0
## 311 1 0 0 0
## 312 0 0 0 1
## 313 0 0 1 0
## 314 0 0 0 0
## 315 0 1 0 0
## 316 0 1 0 0
## 317 0 0 0 1
## 318 0 0 0 0
## 319 0 0 0 0
## 320 0 0 0 0
## 321 0 0 0 0
## 322 0 0 0 0
## 323 0 0 0 0
## 324 0 0 0 0
## 325 1 0 0 0
## 326 1 0 0 0
## 327 0 0 0 0
## 328 0 0 0 0
## 329 0 0 0 0
## 330 0 0 0 0
## 331 0 0 0 0
## 332 0 0 0 0
## 333 0 0 0 0
## 334 0 0 0 0
## 335 0 0 0 0
## 336 0 0 0 0
## 337 1 0 0 0
## 338 0 0 0 0
## 339 0 0 0 0
## 340 0 0 0 0
## 341 0 0 0 0
## 342 0 0 0 0
## 343 0 0 0 0
## 344 0 0 0 0
## 345 0 0 1 0
## 346 0 0 0 0
## 347 0 1 0 0
## 348 0 0 0 1
## 349 0 0 1 0
## 350 0 0 0 1
## 351 0 0 0 0
## 352 0 0 0 0
## 353 0 0 0 0
## 354 0 0 0 0
## 355 0 0 0 0
## 356 0 0 0 0
## 357 0 0 0 0
## 358 0 0 0 0
## 359 0 0 0 0
## 360 0 0 0 1
## 361 0 0 0 0
## 362 0 0 0 0
## 363 0 1 0 0
## 364 0 0 1 0
## 365 0 0 0 1
## 366 0 0 0 0
## 367 0 0 0 0
## 368 0 0 0 0
## 369 0 0 0 0
## 370 0 0 0 0
## 371 0 0 0 0
## 372 1 0 0 0
## 373 0 1 0 0
## 374 0 0 0 0
## 375 0 0 0 0
## 376 0 0 0 0
## 377 0 0 0 0
## 378 0 0 0 0
## 379 0 0 0 0
## 380 0 0 0 0
## 381 0 1 0 0
## 382 0 0 0 0
## 383 0 0 0 0
## 384 0 0 0 0
## 385 0 0 0 0
## 386 0 0 0 0
## 387 0 0 0 0
## 388 0 0 0 0
## 389 0 0 0 0
## 390 0 0 0 0
## 391 0 0 0 0
## 392 0 1 0 0
## 393 0 0 0 0
## 394 0 0 0 0
## 395 0 0 1 0
## 396 0 0 0 0
## 397 1 0 0 0
## 398 0 0 0 0
## 399 0 1 0 0
## 400 0 0 0 0
## 401 0 0 0 0
## 402 0 0 0 0
## 403 0 1 0 0
## 404 0 1 0 0
## 405 1 0 0 0
## 406 0 0 0 0
## 407 0 0 0 0
## 408 0 0 0 0
## 409 0 0 0 0
## 410 0 0 0 0
## 411 0 1 0 0
## 412 0 1 0 0
## 413 0 0 0 0
## 414 0 0 0 1
## 415 0 0 0 1
## 416 0 0 0 0
## 417 0 0 0 0
## 418 0 0 0 0
## 419 0 0 0 0
## 420 0 0 0 1
## 421 0 0 1 0
## 422 0 0 0 0
## 423 0 0 0 0
## 424 0 0 0 0
## 425 0 1 0 0
## 426 0 0 0 1
## 427 0 0 0 0
## 428 0 0 0 0
## 429 0 0 0 0
## 430 0 0 0 0
## 431 0 0 0 0
## 432 0 0 0 0
## 433 0 1 0 0
## 434 0 0 0 0
## 435 0 0 0 0
## 436 0 0 0 0
## 437 1 0 0 0
## 438 0 0 1 0
## 439 0 0 0 0
## 440 0 0 0 1
## 441 0 0 0 0
## 442 0 0 0 0
## 443 0 1 0 0
## 444 0 0 0 0
## 445 0 0 0 0
## 446 0 0 0 0
## 447 0 1 0 0
## 448 0 0 0 0
## 449 0 0 0 0
## 450 0 0 0 0
## 451 0 0 0 0
## 452 0 0 0 0
## 453 0 0 0 0
## 454 0 0 0 0
## 455 0 0 0 0
## 456 0 0 0 0
## 457 0 1 0 0
## 458 0 0 0 1
## 459 0 0 0 0
## 460 0 0 0 0
## 461 1 0 0 0
## 462 0 0 0 0
## 463 0 1 0 0
## 464 0 0 0 0
## 465 0 0 1 0
## 466 0 0 0 0
## 467 1 0 0 0
## 468 0 0 0 0
## 469 0 0 0 0
## 470 1 0 0 0
## 471 0 0 0 0
## 472 0 1 0 0
## 473 0 0 0 0
## 474 0 0 0 0
## 475 0 0 0 0
## 476 0 0 0 0
## 477 0 0 0 1
## 478 0 0 0 0
## 479 0 0 0 0
## 480 0 0 0 0
## 481 0 1 0 0
## 482 0 1 0 0
## 483 0 0 0 0
## 484 1 0 0 0
## 485 0 0 0 1
## 486 0 0 0 0
## 487 0 0 0 0
## 488 0 0 0 0
## 489 0 0 0 0
## 490 0 0 0 0
## 491 0 0 0 0
## 492 0 0 0 0
## 493 0 0 0 1
## 494 0 0 0 0
## 495 0 0 0 0
## 496 0 0 0 0
## 497 0 0 0 0
## 498 0 0 1 0
## 499 0 0 0 0
## 500 0 0 1 0
## 501 0 0 0 0
## 502 0 0 0 0
## 503 0 0 0 0
## 504 0 0 0 0
## 505 0 0 0 0
## 506 0 0 0 0
## 507 0 0 0 0
## 508 0 0 0 0
## 509 1 0 0 0
## 510 0 0 0 1
## 511 0 0 0 0
## 512 0 0 0 0
## 513 0 0 0 1
## 514 0 0 0 0
## 515 0 0 0 0
## 516 0 0 0 0
## 517 0 0 0 0
## 518 0 1 0 0
## 519 0 0 0 0
## 520 0 1 0 0
## 521 0 0 0 0
## 522 0 0 0 0
## 523 0 0 1 0
## 524 0 0 0 0
## 525 0 0 0 0
## 526 0 0 0 0
## 527 0 0 0 0
## 528 0 0 0 0
## 529 0 0 1 0
## 530 0 0 0 0
## 531 0 0 0 0
## 532 0 0 0 0
## 533 0 0 1 0
## 534 0 0 1 0
## 535 0 0 0 0
## 536 0 0 0 0
## 537 0 1 0 0
## 538 0 0 0 0
## 539 0 0 0 0
## 540 0 0 0 1
## 541 0 1 0 0
## 542 0 0 1 0
## 543 0 0 0 0
## 544 0 0 0 0
## 545 0 0 0 0
## 546 0 0 1 0
## 547 0 0 0 0
## 548 0 0 0 0
## 549 0 0 0 0
## 550 0 0 1 0
## 551 0 0 0 1
## 552 0 0 0 0
## 553 0 0 0 0
## 554 0 0 0 0
## 555 0 0 0 1
## 556 0 0 0 0
## 557 0 0 0 0
## 558 0 0 0 0
## 559 0 0 0 0
## 560 0 0 0 0
## 561 0 0 1 0
## 562 0 1 0 0
## 563 1 0 0 0
## 564 0 0 1 0
## 565 0 0 0 0
## 566 0 1 0 0
## 567 0 0 1 0
## 568 0 0 0 0
## 569 0 1 0 0
## 570 0 0 1 0
## 571 0 0 0 0
## 572 1 0 0 0
## 573 0 0 0 0
## 574 0 0 0 0
## 575 0 0 0 0
## 576 0 0 0 0
## 577 0 0 0 0
## 578 0 0 0 0
## 579 0 0 0 0
## 580 1 0 0 0
## 581 0 0 0 0
## 582 0 0 0 0
## 583 0 0 0 1
## 584 0 0 0 0
## 585 0 0 0 0
## 586 0 0 0 0
## 587 0 0 0 0
## 588 0 0 0 0
## 589 0 0 0 0
## 590 0 0 1 0
## 591 0 0 0 1
## 592 0 0 0 0
## 593 0 0 0 0
## 594 0 0 1 0
## 595 0 0 0 0
## 596 0 0 0 0
## 597 0 0 0 0
## 598 0 0 0 0
## 599 0 0 0 0
## 600 0 0 0 0
## 601 0 0 0 0
## 602 0 0 0 0
## 603 0 0 0 0
## 604 0 0 0 1
## 605 0 0 0 0
## 606 0 0 0 0
## 607 0 0 0 0
## 608 0 0 0 0
## 609 0 0 0 0
## 610 0 0 0 0
## 611 0 1 0 0
## 612 0 0 0 0
## 613 0 1 0 0
## 614 0 0 0 1
## 615 0 0 0 0
## 616 0 0 0 0
## 617 0 0 0 0
## 618 0 0 0 0
## 619 0 0 0 0
## 620 0 0 0 0
## 621 0 0 0 0
## 622 0 0 0 0
## 623 0 0 1 0
## 624 0 0 0 0
## 625 0 0 0 0
## 626 0 1 0 0
## 627 0 0 0 0
## 628 0 0 0 0
## 629 0 0 0 0
## 630 0 0 0 0
## 631 0 0 0 0
## 632 0 0 0 0
## 633 0 1 0 0
## 634 0 0 1 0
## 635 0 0 0 0
## 636 0 0 0 0
## 637 0 0 0 0
## 638 1 0 0 0
## 639 0 0 0 0
## 640 0 0 0 0
## 641 0 0 0 1
## 642 0 0 0 0
## 643 1 0 0 0
## 644 1 0 0 0
## 645 0 0 0 0
## 646 0 0 0 0
## 647 0 0 0 0
## 648 0 0 0 0
## 649 0 0 0 0
## 650 0 0 0 0
## 651 0 0 0 0
## 652 0 0 0 0
## 653 0 0 0 0
## 654 0 1 0 0
## 655 0 1 0 0
## 656 0 0 0 0
## 657 0 0 0 0
## 658 0 0 0 0
## 659 0 0 0 0
## 660 0 0 1 0
## 661 0 0 0 0
## 662 1 0 0 0
## 663 0 0 0 0
## 664 0 0 0 0
## 665 0 0 0 0
## 666 0 0 0 0
## 667 0 1 0 0
## 668 0 0 0 0
## 669 0 0 0 1
## 670 0 0 0 0
## 671 0 0 0 0
## 672 0 0 0 0
## 673 0 0 0 1
## 674 0 0 0 0
## 675 0 0 0 0
## 676 0 0 0 0
## 677 0 1 0 0
## 678 0 0 0 0
## 679 0 0 0 0
## 680 0 0 0 0
## 681 0 0 0 0
## 682 0 0 0 0
## 683 0 0 0 1
## 684 0 0 0 0
## 685 0 0 0 0
## 686 0 0 0 0
## 687 0 0 0 0
## 688 1 0 0 0
## 689 0 0 0 0
## 690 0 0 0 0
## 691 0 0 0 0
## 692 0 0 0 0
## 693 0 0 0 0
## 694 0 0 0 0
## 695 0 0 0 0
## 696 0 0 0 0
## 697 0 0 1 0
## 698 0 0 0 0
## 699 0 0 0 0
## 700 0 1 0 0
## 701 0 0 0 0
## 702 0 0 0 0
## 703 1 0 0 0
## 704 1 0 0 0
## 705 0 0 0 0
## 706 0 0 0 0
## 707 1 0 0 0
## 708 0 0 0 0
## 709 0 0 0 0
## 710 0 0 0 0
## 711 0 0 0 0
## 712 0 0 0 0
## 713 1 0 0 0
## 714 0 0 1 0
## 715 0 0 0 0
## 716 0 0 0 0
## 717 0 0 0 1
## 718 0 0 0 0
## 719 0 0 0 0
## 720 0 0 0 0
## 721 0 0 0 0
## 722 1 0 0 0
## 723 0 0 0 0
## 724 0 0 1 0
## 725 0 0 0 0
## 726 1 0 0 0
## 727 0 0 0 0
## 728 0 0 0 0
## 729 1 0 0 0
## 730 0 0 0 0
## 731 0 0 0 0
## 732 0 0 1 0
## 733 1 0 0 0
## 734 0 0 0 0
## 735 0 0 0 0
## 736 0 0 0 0
## 737 0 0 0 0
## 738 0 0 0 0
## 739 0 1 0 0
## 740 1 0 0 0
## 741 0 0 0 0
## 742 0 1 0 0
## 743 0 0 0 0
## 744 0 0 1 0
## 745 0 0 0 0
## 746 0 0 0 0
## 747 0 0 0 0
## 748 0 0 0 0
## 749 0 0 0 0
## 750 0 0 0 0
## 751 1 0 0 0
## 752 0 0 0 0
## 753 0 1 0 0
## 754 0 0 0 0
## 755 0 0 0 0
## 756 0 0 0 0
## 757 0 0 0 0
## 758 0 0 0 0
## 759 0 0 0 0
## 760 0 0 0 0
## 761 0 0 0 0
## 762 0 0 0 1
## 763 0 0 0 0
## 764 0 1 0 0
## 765 0 0 1 0
## 766 0 0 0 1
## 767 0 0 0 0
## 768 0 0 0 1
## 769 0 0 0 0
## 770 0 0 0 0
## 771 0 0 0 0
## 772 0 0 0 0
## 773 0 0 0 0
## 774 1 0 0 0
## 775 0 0 0 0
## 776 0 0 0 0
## 777 0 0 0 0
## 778 0 0 0 0
## 779 0 0 0 0
## 780 0 0 0 0
## 781 0 0 0 0
## 782 0 0 0 1
## 783 0 0 0 0
## 784 0 1 0 0
## 785 0 0 1 0
## 786 1 0 0 0
## 787 0 0 0 0
## 788 0 0 0 0
## 789 0 0 0 0
## 790 0 0 0 0
## 791 0 0 0 0
## 792 0 0 0 0
## 793 0 0 0 1
## 794 0 0 0 0
## 795 0 0 1 0
## 796 0 0 0 0
## 797 0 0 0 0
## 798 0 0 0 0
## 799 0 1 0 0
## 800 0 0 0 0
## 801 0 0 0 0
## 802 0 0 0 0
## 803 0 0 0 0
## 804 1 0 0 0
## 805 1 0 0 0
## 806 0 1 0 0
## 807 0 0 0 0
## 808 0 1 0 0
## 809 0 0 0 0
## 810 0 1 0 0
## 811 0 0 0 0
## 812 0 0 0 0
## 813 0 0 0 0
## 814 0 0 0 0
## 815 0 0 1 0
## 816 0 0 1 0
## 817 0 0 0 0
## 818 0 0 0 0
## 819 0 0 0 0
## 820 0 0 1 0
## 821 0 0 0 0
## 822 0 0 0 0
## 823 1 0 0 0
## 824 0 1 0 0
## 825 0 0 0 0
## 826 0 1 0 0
## 827 1 0 0 0
## 828 0 0 0 0
## 829 0 0 0 0
## 830 0 0 0 0
## 831 0 1 0 0
## 832 0 0 0 0
## 833 0 0 0 0
## 834 0 0 0 0
## 835 0 0 0 0
## 836 0 0 0 0
## 837 0 0 0 0
## 838 0 0 0 0
## 839 0 0 0 0
## 840 0 0 0 0
## 841 0 1 0 0
## 842 0 0 0 1
## 843 0 0 0 0
## 844 0 0 0 0
## 845 0 0 0 1
## 846 0 1 0 0
## 847 0 0 0 0
## 848 0 0 0 0
## 849 0 1 0 0
## 850 0 0 0 0
## 851 0 0 0 0
## 852 0 0 0 0
## 853 0 0 0 0
## 854 0 0 0 0
## 855 1 0 0 0
## 856 0 0 1 0
## 857 0 0 0 0
## 858 0 0 0 1
## 859 0 0 0 0
## 860 0 0 0 0
## 861 0 0 0 0
## 862 0 0 0 0
## 863 0 0 0 0
## 864 0 0 0 0
## 865 0 0 0 0
## 866 0 0 0 0
## 867 0 0 0 0
## 868 0 0 0 0
## 869 0 0 0 0
## 870 0 0 0 0
## 871 0 0 0 0
## 872 0 0 0 0
## 873 0 0 0 0
## 874 0 0 0 0
## 875 0 0 0 0
## 876 0 0 0 0
## 877 0 1 0 0
## 878 0 0 0 0
## 879 0 0 0 0
## 880 1 0 0 0
## 881 0 0 0 0
## 882 0 0 1 0
## 883 0 0 1 0
## 884 0 1 0 0
## 885 0 0 0 0
## 886 0 0 0 0
## 887 0 0 0 0
## 888 0 0 0 0
## 889 0 0 0 0
## 890 0 0 0 0
## 891 0 0 0 1
## 892 0 0 0 1
## 893 0 0 0 0
## 894 0 0 1 0
## 895 0 1 0 0
## 896 0 0 0 0
## 897 0 0 0 0
## 898 0 0 0 0
## 899 0 0 0 0
## 900 0 0 0 1
## 901 0 0 0 0
## 902 0 1 0 0
## 903 0 0 0 0
## 904 0 0 0 0
## 905 0 1 0 0
## 906 0 1 0 0
## 907 0 0 0 1
## 908 0 0 0 0
## 909 0 0 0 0
## 910 0 0 0 0
## 911 0 0 1 0
## 912 0 1 0 0
## 913 0 0 0 0
## 914 0 0 0 0
## 915 0 0 0 0
## 916 0 0 0 0
## 917 0 0 1 0
## 918 0 0 0 0
## 919 1 0 0 0
## 920 1 0 0 0
## 921 0 0 0 0
## 922 0 0 0 0
## 923 0 0 0 0
## 924 0 0 0 0
## 925 0 0 0 0
## 926 0 0 0 0
## 927 0 1 0 0
## 928 0 0 0 0
## 929 0 0 1 0
## 930 0 0 0 0
## 931 0 0 0 0
## 932 0 0 1 0
## 933 0 0 0 0
## 934 1 0 0 0
## 935 0 0 1 0
## 936 0 0 0 0
## 937 0 0 0 0
## 938 0 0 0 0
## 939 1 0 0 0
## 940 0 0 1 0
## 941 0 0 0 0
## 942 0 0 0 0
## 943 0 0 0 0
## 944 0 0 0 0
## 945 0 0 0 0
## 946 0 0 1 0
## 947 1 0 0 0
## 948 0 0 0 0
## 949 0 0 0 0
## 950 0 0 0 0
## 951 0 0 0 1
## 952 0 1 0 0
## 953 0 0 0 1
## 954 1 0 0 0
## 955 1 0 0 0
## 956 0 0 1 0
## 957 0 0 1 0
## 958 0 0 0 0
## 959 0 0 0 0
## 960 0 0 0 0
## 961 0 0 0 0
## 962 0 0 0 0
## 963 0 0 0 1
## 964 0 0 0 1
## 965 0 0 0 0
## 966 0 1 0 0
## 967 0 0 0 0
## 968 0 0 0 0
## 969 0 0 0 0
## 970 0 0 0 0
## 971 0 0 0 0
## 972 0 0 0 0
## 973 0 0 0 0
## 974 1 0 0 0
## 975 1 0 0 0
## 976 0 0 0 0
## 977 0 0 0 1
## 978 0 0 0 0
## 979 0 0 0 0
## 980 0 0 0 0
## 981 0 0 0 0
## 982 1 0 0 0
## 983 0 0 0 0
## 984 0 0 0 0
## 985 0 0 0 0
## 986 0 0 0 0
## 987 1 0 0 0
## 988 0 0 0 1
## 989 0 0 0 0
## 990 0 0 0 0
## 991 0 0 0 0
## 992 0 0 0 0
## 993 0 0 0 0
## 994 0 0 0 0
## 995 0 0 0 0
## 996 0 0 0 0
## 997 0 0 0 0
## 998 0 0 0 0
## 999 0 0 0 1
## 1000 0 0 0 0
## Item.TypeMeat Item.TypeOffice Supplies Item.TypePersonal Care
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## 7 0 0 0
## 8 0 0 0
## 9 0 0 0
## 10 0 0 0
## 11 0 0 0
## 12 0 0 0
## 13 0 0 0
## 14 0 0 0
## 15 0 0 0
## 16 0 0 0
## 17 0 1 0
## 18 0 0 0
## 19 0 0 0
## 20 0 0 0
## 21 0 0 0
## 22 0 0 0
## 23 0 0 1
## 24 0 0 0
## 25 0 0 0
## 26 0 0 0
## 27 0 0 0
## 28 0 0 0
## 29 1 0 0
## 30 0 0 1
## 31 0 0 0
## 32 0 1 0
## 33 0 0 0
## 34 0 0 0
## 35 0 0 0
## 36 0 1 0
## 37 0 1 0
## 38 0 0 0
## 39 0 0 0
## 40 0 1 0
## 41 0 1 0
## 42 0 0 0
## 43 1 0 0
## 44 0 0 0
## 45 0 1 0
## 46 0 0 0
## 47 1 0 0
## 48 0 0 0
## 49 0 0 1
## 50 1 0 0
## 51 0 0 0
## 52 0 0 0
## 53 0 0 0
## 54 0 0 0
## 55 0 0 0
## 56 0 0 0
## 57 0 1 0
## 58 0 1 0
## 59 0 0 0
## 60 0 0 1
## 61 0 1 0
## 62 0 0 0
## 63 0 0 0
## 64 0 0 0
## 65 0 0 1
## 66 0 1 0
## 67 0 0 0
## 68 0 1 0
## 69 0 0 0
## 70 0 1 0
## 71 0 0 0
## 72 0 0 0
## 73 0 0 0
## 74 0 0 0
## 75 1 0 0
## 76 0 0 1
## 77 1 0 0
## 78 0 1 0
## 79 0 0 0
## 80 0 1 0
## 81 0 0 0
## 82 0 0 0
## 83 0 0 0
## 84 0 0 0
## 85 0 0 0
## 86 0 0 0
## 87 0 0 0
## 88 0 0 0
## 89 0 0 0
## 90 0 0 0
## 91 0 0 0
## 92 0 0 0
## 93 0 0 0
## 94 0 0 1
## 95 0 0 0
## 96 0 0 0
## 97 0 0 0
## 98 0 0 0
## 99 0 0 0
## 100 0 0 0
## 101 0 0 0
## 102 0 0 0
## 103 0 0 0
## 104 0 0 0
## 105 0 0 1
## 106 0 0 1
## 107 0 0 0
## 108 0 0 0
## 109 0 0 0
## 110 0 0 0
## 111 0 0 0
## 112 0 0 0
## 113 0 0 0
## 114 0 0 0
## 115 0 1 0
## 116 0 0 0
## 117 0 0 0
## 118 0 0 0
## 119 0 0 0
## 120 1 0 0
## 121 0 0 0
## 122 0 0 0
## 123 0 0 0
## 124 0 0 0
## 125 0 0 0
## 126 0 0 0
## 127 0 0 0
## 128 0 0 0
## 129 0 0 0
## 130 0 0 0
## 131 0 1 0
## 132 0 0 0
## 133 0 0 0
## 134 0 0 0
## 135 0 0 0
## 136 0 1 0
## 137 0 0 0
## 138 0 0 1
## 139 1 0 0
## 140 1 0 0
## 141 0 0 1
## 142 0 0 0
## 143 0 0 0
## 144 0 0 0
## 145 0 0 0
## 146 0 0 0
## 147 0 0 0
## 148 0 0 0
## 149 0 0 0
## 150 0 0 0
## 151 0 0 0
## 152 0 0 0
## 153 0 0 0
## 154 0 0 0
## 155 0 0 0
## 156 1 0 0
## 157 0 0 0
## 158 0 0 0
## 159 0 1 0
## 160 1 0 0
## 161 0 1 0
## 162 0 0 0
## 163 0 0 1
## 164 0 1 0
## 165 0 0 0
## 166 0 1 0
## 167 0 0 0
## 168 0 0 0
## 169 0 0 0
## 170 0 1 0
## 171 0 1 0
## 172 0 0 0
## 173 0 0 1
## 174 0 0 0
## 175 0 0 1
## 176 0 1 0
## 177 0 1 0
## 178 0 0 0
## 179 0 0 1
## 180 0 0 0
## 181 0 0 1
## 182 0 0 1
## 183 0 0 1
## 184 0 1 0
## 185 1 0 0
## 186 1 0 0
## 187 0 0 0
## 188 0 0 0
## 189 0 0 0
## 190 0 0 0
## 191 0 0 1
## 192 0 0 0
## 193 0 0 0
## 194 0 0 0
## 195 0 0 0
## 196 0 0 0
## 197 0 0 0
## 198 0 0 0
## 199 0 0 0
## 200 0 0 0
## 201 0 0 1
## 202 0 0 0
## 203 0 0 0
## 204 0 0 1
## 205 0 0 0
## 206 1 0 0
## 207 0 0 0
## 208 0 0 0
## 209 0 0 0
## 210 0 0 0
## 211 0 0 0
## 212 0 0 1
## 213 0 1 0
## 214 0 0 0
## 215 0 0 0
## 216 1 0 0
## 217 0 0 0
## 218 0 0 0
## 219 0 0 0
## 220 0 0 0
## 221 0 0 1
## 222 0 0 0
## 223 0 0 0
## 224 0 0 0
## 225 0 0 0
## 226 0 0 0
## 227 0 0 0
## 228 0 0 0
## 229 0 0 0
## 230 0 0 0
## 231 0 0 0
## 232 0 0 1
## 233 1 0 0
## 234 0 1 0
## 235 0 0 0
## 236 0 0 0
## 237 0 1 0
## 238 0 0 0
## 239 0 1 0
## 240 0 0 0
## 241 0 0 0
## 242 0 0 0
## 243 0 0 0
## 244 0 0 0
## 245 0 0 1
## 246 0 0 0
## 247 0 0 0
## 248 0 1 0
## 249 0 0 0
## 250 0 0 0
## 251 0 0 0
## 252 1 0 0
## 253 0 0 0
## 254 0 0 0
## 255 0 0 0
## 256 1 0 0
## 257 0 0 0
## 258 0 0 0
## 259 0 0 0
## 260 1 0 0
## 261 0 0 0
## 262 0 0 0
## 263 0 0 0
## 264 0 0 0
## 265 0 0 0
## 266 0 0 0
## 267 0 0 0
## 268 0 0 0
## 269 0 0 0
## 270 0 0 0
## 271 0 0 0
## 272 0 0 1
## 273 0 0 0
## 274 0 0 0
## 275 0 0 0
## 276 0 0 0
## 277 0 0 0
## 278 1 0 0
## 279 0 0 0
## 280 0 0 0
## 281 0 0 0
## 282 0 1 0
## 283 0 0 0
## 284 0 1 0
## 285 0 0 0
## 286 0 0 0
## 287 0 0 0
## 288 0 0 0
## 289 0 0 0
## 290 0 0 0
## 291 0 0 0
## 292 0 0 0
## 293 0 0 0
## 294 0 0 0
## 295 0 0 0
## 296 0 0 0
## 297 0 0 0
## 298 0 0 0
## 299 0 0 0
## 300 0 0 0
## 301 0 1 0
## 302 0 1 0
## 303 0 1 0
## 304 0 0 0
## 305 0 0 0
## 306 0 0 0
## 307 0 0 1
## 308 0 0 0
## 309 0 0 0
## 310 0 0 0
## 311 0 0 0
## 312 0 0 0
## 313 0 0 0
## 314 0 0 0
## 315 0 0 0
## 316 0 0 0
## 317 0 0 0
## 318 0 0 0
## 319 0 0 0
## 320 0 0 0
## 321 0 0 0
## 322 0 0 0
## 323 1 0 0
## 324 0 0 1
## 325 0 0 0
## 326 0 0 0
## 327 0 0 0
## 328 0 0 0
## 329 0 0 0
## 330 1 0 0
## 331 1 0 0
## 332 0 0 0
## 333 0 0 0
## 334 0 0 0
## 335 0 0 0
## 336 0 0 0
## 337 0 0 0
## 338 0 0 1
## 339 0 0 0
## 340 0 0 0
## 341 0 0 0
## 342 0 1 0
## 343 0 0 0
## 344 0 0 0
## 345 0 0 0
## 346 0 0 0
## 347 0 0 0
## 348 0 0 0
## 349 0 0 0
## 350 0 0 0
## 351 0 0 1
## 352 0 0 1
## 353 0 0 0
## 354 0 0 1
## 355 0 1 0
## 356 0 0 0
## 357 0 0 0
## 358 0 0 0
## 359 0 0 0
## 360 0 0 0
## 361 0 0 0
## 362 0 0 0
## 363 0 0 0
## 364 0 0 0
## 365 0 0 0
## 366 0 0 0
## 367 0 0 1
## 368 0 0 0
## 369 0 0 0
## 370 0 0 0
## 371 0 0 0
## 372 0 0 0
## 373 0 0 0
## 374 0 0 1
## 375 0 0 1
## 376 0 0 0
## 377 1 0 0
## 378 1 0 0
## 379 0 0 1
## 380 0 0 0
## 381 0 0 0
## 382 0 0 0
## 383 1 0 0
## 384 0 0 0
## 385 0 1 0
## 386 0 0 0
## 387 0 0 1
## 388 0 0 0
## 389 0 1 0
## 390 0 0 0
## 391 0 0 0
## 392 0 0 0
## 393 1 0 0
## 394 1 0 0
## 395 0 0 0
## 396 0 0 0
## 397 0 0 0
## 398 1 0 0
## 399 0 0 0
## 400 0 0 1
## 401 0 1 0
## 402 1 0 0
## 403 0 0 0
## 404 0 0 0
## 405 0 0 0
## 406 1 0 0
## 407 0 1 0
## 408 0 0 0
## 409 0 0 0
## 410 0 0 0
## 411 0 0 0
## 412 0 0 0
## 413 0 0 0
## 414 0 0 0
## 415 0 0 0
## 416 0 0 0
## 417 0 0 0
## 418 0 0 0
## 419 0 0 0
## 420 0 0 0
## 421 0 0 0
## 422 0 0 0
## 423 0 0 1
## 424 0 1 0
## 425 0 0 0
## 426 0 0 0
## 427 1 0 0
## 428 1 0 0
## 429 0 0 0
## 430 0 0 0
## 431 0 0 0
## 432 0 0 0
## 433 0 0 0
## 434 0 0 1
## 435 0 0 0
## 436 0 1 0
## 437 0 0 0
## 438 0 0 0
## 439 0 0 1
## 440 0 0 0
## 441 0 0 0
## 442 0 0 0
## 443 0 0 0
## 444 0 0 0
## 445 0 0 0
## 446 0 0 0
## 447 0 0 0
## 448 0 0 0
## 449 0 0 0
## 450 0 0 0
## 451 0 0 0
## 452 0 0 0
## 453 0 0 0
## 454 1 0 0
## 455 0 1 0
## 456 0 0 1
## 457 0 0 0
## 458 0 0 0
## 459 0 0 0
## 460 0 0 0
## 461 0 0 0
## 462 0 0 0
## 463 0 0 0
## 464 0 1 0
## 465 0 0 0
## 466 0 0 1
## 467 0 0 0
## 468 0 1 0
## 469 0 0 0
## 470 0 0 0
## 471 0 0 0
## 472 0 0 0
## 473 0 0 0
## 474 0 0 0
## 475 0 1 0
## 476 0 0 0
## 477 0 0 0
## 478 0 0 0
## 479 0 0 0
## 480 0 0 1
## 481 0 0 0
## 482 0 0 0
## 483 0 0 0
## 484 0 0 0
## 485 0 0 0
## 486 0 0 0
## 487 1 0 0
## 488 0 1 0
## 489 0 1 0
## 490 0 1 0
## 491 0 0 0
## 492 0 0 0
## 493 0 0 0
## 494 0 0 0
## 495 0 0 1
## 496 1 0 0
## 497 0 0 1
## 498 0 0 0
## 499 0 1 0
## 500 0 0 0
## 501 1 0 0
## 502 0 0 0
## 503 0 0 0
## 504 0 1 0
## 505 0 1 0
## 506 1 0 0
## 507 0 0 0
## 508 0 0 0
## 509 0 0 0
## 510 0 0 0
## 511 0 0 0
## 512 0 0 0
## 513 0 0 0
## 514 0 0 0
## 515 0 0 0
## 516 0 0 0
## 517 0 0 0
## 518 0 0 0
## 519 0 0 0
## 520 0 0 0
## 521 0 0 0
## 522 0 0 0
## 523 0 0 0
## 524 0 0 0
## 525 0 0 0
## 526 1 0 0
## 527 0 0 0
## 528 0 0 0
## 529 0 0 0
## 530 0 0 0
## 531 1 0 0
## 532 0 0 0
## 533 0 0 0
## 534 0 0 0
## 535 0 0 0
## 536 1 0 0
## 537 0 0 0
## 538 0 0 0
## 539 0 0 0
## 540 0 0 0
## 541 0 0 0
## 542 0 0 0
## 543 0 1 0
## 544 0 0 0
## 545 1 0 0
## 546 0 0 0
## 547 0 0 0
## 548 0 0 0
## 549 0 0 0
## 550 0 0 0
## 551 0 0 0
## 552 0 0 1
## 553 0 0 0
## 554 0 1 0
## 555 0 0 0
## 556 0 0 1
## 557 1 0 0
## 558 0 0 0
## 559 0 0 0
## 560 0 0 0
## 561 0 0 0
## 562 0 0 0
## 563 0 0 0
## 564 0 0 0
## 565 0 1 0
## 566 0 0 0
## 567 0 0 0
## 568 0 1 0
## 569 0 0 0
## 570 0 0 0
## 571 0 0 0
## 572 0 0 0
## 573 0 0 0
## 574 0 0 1
## 575 0 0 0
## 576 0 1 0
## 577 0 0 1
## 578 1 0 0
## 579 0 0 0
## 580 0 0 0
## 581 0 0 1
## 582 0 0 0
## 583 0 0 0
## 584 0 0 0
## 585 0 0 0
## 586 0 0 1
## 587 1 0 0
## 588 0 0 0
## 589 0 0 0
## 590 0 0 0
## 591 0 0 0
## 592 1 0 0
## 593 1 0 0
## 594 0 0 0
## 595 0 1 0
## 596 1 0 0
## 597 0 0 0
## 598 0 0 0
## 599 0 0 0
## 600 0 0 0
## 601 1 0 0
## 602 0 0 0
## 603 0 0 0
## 604 0 0 0
## 605 0 0 0
## 606 0 0 0
## 607 0 0 0
## 608 0 0 0
## 609 0 0 0
## 610 1 0 0
## 611 0 0 0
## 612 0 0 0
## 613 0 0 0
## 614 0 0 0
## 615 0 0 0
## 616 0 0 0
## 617 0 0 1
## 618 0 0 1
## 619 0 0 1
## 620 0 1 0
## 621 0 1 0
## 622 0 0 0
## 623 0 0 0
## 624 0 0 0
## 625 0 0 0
## 626 0 0 0
## 627 0 0 0
## 628 1 0 0
## 629 1 0 0
## 630 0 1 0
## 631 0 0 0
## 632 0 0 1
## 633 0 0 0
## 634 0 0 0
## 635 0 0 0
## 636 0 0 0
## 637 0 0 0
## 638 0 0 0
## 639 0 0 0
## 640 0 0 0
## 641 0 0 0
## 642 0 0 0
## 643 0 0 0
## 644 0 0 0
## 645 0 0 0
## 646 0 0 0
## 647 0 0 1
## 648 0 0 0
## 649 0 0 0
## 650 0 0 0
## 651 0 0 0
## 652 1 0 0
## 653 0 0 0
## 654 0 0 0
## 655 0 0 0
## 656 0 0 0
## 657 0 0 0
## 658 0 0 0
## 659 1 0 0
## 660 0 0 0
## 661 1 0 0
## 662 0 0 0
## 663 0 0 0
## 664 0 0 0
## 665 0 0 0
## 666 0 0 0
## 667 0 0 0
## 668 0 0 0
## 669 0 0 0
## 670 1 0 0
## 671 0 0 0
## 672 1 0 0
## 673 0 0 0
## 674 0 0 0
## 675 0 0 1
## 676 0 0 0
## 677 0 0 0
## 678 0 0 0
## 679 0 1 0
## 680 1 0 0
## 681 0 1 0
## 682 0 0 0
## 683 0 0 0
## 684 0 1 0
## 685 0 0 1
## 686 0 0 0
## 687 0 1 0
## 688 0 0 0
## 689 0 0 0
## 690 0 1 0
## 691 0 0 0
## 692 0 0 0
## 693 0 0 0
## 694 0 0 0
## 695 0 0 1
## 696 0 0 0
## 697 0 0 0
## 698 0 0 0
## 699 1 0 0
## 700 0 0 0
## 701 0 0 1
## 702 0 0 0
## 703 0 0 0
## 704 0 0 0
## 705 0 0 0
## 706 0 0 0
## 707 0 0 0
## 708 0 0 0
## 709 0 0 1
## 710 0 0 0
## 711 0 0 1
## 712 0 0 0
## 713 0 0 0
## 714 0 0 0
## 715 0 0 1
## 716 0 0 0
## 717 0 0 0
## 718 0 0 0
## 719 0 0 0
## 720 0 1 0
## 721 0 1 0
## 722 0 0 0
## 723 0 0 0
## 724 0 0 0
## 725 0 1 0
## 726 0 0 0
## 727 0 1 0
## 728 0 0 0
## 729 0 0 0
## 730 0 0 1
## 731 0 0 0
## 732 0 0 0
## 733 0 0 0
## 734 1 0 0
## 735 0 0 0
## 736 0 0 0
## 737 1 0 0
## 738 0 0 1
## 739 0 0 0
## 740 0 0 0
## 741 0 0 0
## 742 0 0 0
## 743 0 0 0
## 744 0 0 0
## 745 0 1 0
## 746 0 1 0
## 747 0 0 0
## 748 0 0 1
## 749 0 0 0
## 750 0 0 1
## 751 0 0 0
## 752 0 0 0
## 753 0 0 0
## 754 0 0 0
## 755 0 0 0
## 756 1 0 0
## 757 0 0 0
## 758 1 0 0
## 759 0 0 1
## 760 1 0 0
## 761 0 0 1
## 762 0 0 0
## 763 0 0 0
## 764 0 0 0
## 765 0 0 0
## 766 0 0 0
## 767 0 1 0
## 768 0 0 0
## 769 0 1 0
## 770 0 0 1
## 771 0 0 0
## 772 0 0 0
## 773 0 1 0
## 774 0 0 0
## 775 0 0 0
## 776 0 0 0
## 777 0 0 0
## 778 0 0 0
## 779 0 1 0
## 780 0 0 0
## 781 0 0 1
## 782 0 0 0
## 783 0 0 0
## 784 0 0 0
## 785 0 0 0
## 786 0 0 0
## 787 0 0 0
## 788 0 1 0
## 789 1 0 0
## 790 0 0 0
## 791 0 0 0
## 792 0 0 0
## 793 0 0 0
## 794 1 0 0
## 795 0 0 0
## 796 0 0 0
## 797 0 0 0
## 798 0 0 1
## 799 0 0 0
## 800 0 0 0
## 801 0 0 1
## 802 0 1 0
## 803 0 0 0
## 804 0 0 0
## 805 0 0 0
## 806 0 0 0
## 807 0 0 0
## 808 0 0 0
## 809 0 0 1
## 810 0 0 0
## 811 0 0 0
## 812 0 0 0
## 813 1 0 0
## 814 1 0 0
## 815 0 0 0
## 816 0 0 0
## 817 1 0 0
## 818 1 0 0
## 819 0 0 0
## 820 0 0 0
## 821 0 0 0
## 822 0 0 0
## 823 0 0 0
## 824 0 0 0
## 825 0 0 0
## 826 0 0 0
## 827 0 0 0
## 828 0 0 0
## 829 0 0 0
## 830 0 0 0
## 831 0 0 0
## 832 0 0 0
## 833 0 0 0
## 834 0 0 0
## 835 0 0 0
## 836 0 0 0
## 837 0 0 0
## 838 0 0 0
## 839 0 0 0
## 840 0 0 0
## 841 0 0 0
## 842 0 0 0
## 843 1 0 0
## 844 0 0 0
## 845 0 0 0
## 846 0 0 0
## 847 0 0 0
## 848 0 0 0
## 849 0 0 0
## 850 0 0 0
## 851 0 0 0
## 852 0 0 0
## 853 0 0 0
## 854 0 1 0
## 855 0 0 0
## 856 0 0 0
## 857 0 0 0
## 858 0 0 0
## 859 0 0 1
## 860 0 0 1
## 861 0 1 0
## 862 0 0 0
## 863 0 0 1
## 864 0 0 0
## 865 0 0 0
## 866 0 1 0
## 867 0 0 0
## 868 0 0 0
## 869 0 0 0
## 870 0 0 0
## 871 0 0 0
## 872 0 0 0
## 873 0 0 0
## 874 0 0 0
## 875 0 0 0
## 876 1 0 0
## 877 0 0 0
## 878 0 0 1
## 879 0 0 0
## 880 0 0 0
## 881 0 0 0
## 882 0 0 0
## 883 0 0 0
## 884 0 0 0
## 885 0 0 0
## 886 0 0 0
## 887 0 0 0
## 888 0 0 0
## 889 0 0 0
## 890 0 0 0
## 891 0 0 0
## 892 0 0 0
## 893 0 0 0
## 894 0 0 0
## 895 0 0 0
## 896 0 0 0
## 897 0 0 0
## 898 0 0 1
## 899 0 0 0
## 900 0 0 0
## 901 1 0 0
## 902 0 0 0
## 903 0 0 0
## 904 0 0 1
## 905 0 0 0
## 906 0 0 0
## 907 0 0 0
## 908 0 0 0
## 909 0 0 0
## 910 0 0 0
## 911 0 0 0
## 912 0 0 0
## 913 0 0 0
## 914 0 0 0
## 915 0 0 0
## 916 0 0 0
## 917 0 0 0
## 918 0 0 0
## 919 0 0 0
## 920 0 0 0
## 921 0 0 0
## 922 0 0 0
## 923 0 0 0
## 924 0 0 1
## 925 0 0 0
## 926 0 1 0
## 927 0 0 0
## 928 0 0 0
## 929 0 0 0
## 930 0 0 1
## 931 0 0 0
## 932 0 0 0
## 933 0 0 0
## 934 0 0 0
## 935 0 0 0
## 936 0 0 1
## 937 0 0 1
## 938 0 0 0
## 939 0 0 0
## 940 0 0 0
## 941 0 0 0
## 942 0 0 0
## 943 0 0 0
## 944 0 1 0
## 945 0 0 0
## 946 0 0 0
## 947 0 0 0
## 948 0 0 0
## 949 0 0 0
## 950 1 0 0
## 951 0 0 0
## 952 0 0 0
## 953 0 0 0
## 954 0 0 0
## 955 0 0 0
## 956 0 0 0
## 957 0 0 0
## 958 0 0 0
## 959 0 0 0
## 960 0 0 1
## 961 0 0 0
## 962 0 1 0
## 963 0 0 0
## 964 0 0 0
## 965 0 0 0
## 966 0 0 0
## 967 0 0 0
## 968 1 0 0
## 969 0 0 0
## 970 0 0 0
## 971 0 0 0
## 972 0 0 0
## 973 1 0 0
## 974 0 0 0
## 975 0 0 0
## 976 1 0 0
## 977 0 0 0
## 978 0 0 0
## 979 0 0 0
## 980 0 0 0
## 981 0 0 0
## 982 0 0 0
## 983 0 0 0
## 984 0 1 0
## 985 0 0 1
## 986 0 1 0
## 987 0 0 0
## 988 0 0 0
## 989 0 0 0
## 990 0 0 0
## 991 0 0 0
## 992 0 0 0
## 993 0 0 0
## 994 0 0 0
## 995 1 0 0
## 996 0 0 0
## 997 0 0 0
## 998 0 0 0
## 999 0 0 0
## 1000 0 0 0
## Item.TypeSnacks Item.TypeVegetables
## 1 0 0
## 2 0 1
## 3 0 0
## 4 0 0
## 5 0 0
## 6 0 0
## 7 0 0
## 8 0 0
## 9 0 1
## 10 0 1
## 11 0 0
## 12 1 0
## 13 0 0
## 14 0 0
## 15 0 0
## 16 0 0
## 17 0 0
## 18 0 0
## 19 0 0
## 20 0 0
## 21 1 0
## 22 0 0
## 23 0 0
## 24 0 0
## 25 0 0
## 26 0 0
## 27 0 0
## 28 0 0
## 29 0 0
## 30 0 0
## 31 0 0
## 32 0 0
## 33 0 0
## 34 0 0
## 35 0 0
## 36 0 0
## 37 0 0
## 38 0 1
## 39 0 0
## 40 0 0
## 41 0 0
## 42 0 0
## 43 0 0
## 44 1 0
## 45 0 0
## 46 0 0
## 47 0 0
## 48 0 0
## 49 0 0
## 50 0 0
## 51 0 1
## 52 0 1
## 53 0 0
## 54 0 0
## 55 0 0
## 56 1 0
## 57 0 0
## 58 0 0
## 59 0 1
## 60 0 0
## 61 0 0
## 62 0 0
## 63 0 0
## 64 0 0
## 65 0 0
## 66 0 0
## 67 0 0
## 68 0 0
## 69 0 0
## 70 0 0
## 71 0 0
## 72 0 0
## 73 0 0
## 74 0 1
## 75 0 0
## 76 0 0
## 77 0 0
## 78 0 0
## 79 0 0
## 80 0 0
## 81 0 0
## 82 1 0
## 83 0 0
## 84 0 0
## 85 1 0
## 86 0 0
## 87 0 0
## 88 1 0
## 89 0 0
## 90 0 0
## 91 0 0
## 92 0 0
## 93 0 0
## 94 0 0
## 95 0 0
## 96 1 0
## 97 0 0
## 98 0 0
## 99 0 0
## 100 0 1
## 101 0 0
## 102 0 1
## 103 1 0
## 104 0 1
## 105 0 0
## 106 0 0
## 107 1 0
## 108 0 0
## 109 0 0
## 110 0 0
## 111 0 0
## 112 0 0
## 113 0 0
## 114 0 0
## 115 0 0
## 116 0 0
## 117 1 0
## 118 0 0
## 119 0 1
## 120 0 0
## 121 1 0
## 122 1 0
## 123 0 0
## 124 0 0
## 125 0 0
## 126 1 0
## 127 0 0
## 128 0 0
## 129 0 0
## 130 1 0
## 131 0 0
## 132 0 0
## 133 0 0
## 134 0 0
## 135 0 0
## 136 0 0
## 137 0 0
## 138 0 0
## 139 0 0
## 140 0 0
## 141 0 0
## 142 1 0
## 143 0 0
## 144 0 0
## 145 0 0
## 146 0 0
## 147 1 0
## 148 0 0
## 149 0 0
## 150 0 0
## 151 1 0
## 152 0 0
## 153 0 0
## 154 0 0
## 155 0 0
## 156 0 0
## 157 0 0
## 158 1 0
## 159 0 0
## 160 0 0
## 161 0 0
## 162 0 0
## 163 0 0
## 164 0 0
## 165 0 1
## 166 0 0
## 167 0 0
## 168 0 1
## 169 0 0
## 170 0 0
## 171 0 0
## 172 0 0
## 173 0 0
## 174 0 0
## 175 0 0
## 176 0 0
## 177 0 0
## 178 0 0
## 179 0 0
## 180 0 0
## 181 0 0
## 182 0 0
## 183 0 0
## 184 0 0
## 185 0 0
## 186 0 0
## 187 1 0
## 188 0 0
## 189 0 0
## 190 0 0
## 191 0 0
## 192 0 0
## 193 0 0
## 194 0 1
## 195 0 0
## 196 0 0
## 197 0 0
## 198 0 0
## 199 0 0
## 200 0 0
## 201 0 0
## 202 0 0
## 203 0 0
## 204 0 0
## 205 1 0
## 206 0 0
## 207 0 1
## 208 0 1
## 209 0 0
## 210 0 1
## 211 0 0
## 212 0 0
## 213 0 0
## 214 0 0
## 215 0 0
## 216 0 0
## 217 0 0
## 218 0 0
## 219 0 0
## 220 0 1
## 221 0 0
## 222 0 0
## 223 0 0
## 224 0 1
## 225 0 0
## 226 1 0
## 227 0 0
## 228 0 0
## 229 0 0
## 230 0 0
## 231 0 0
## 232 0 0
## 233 0 0
## 234 0 0
## 235 0 0
## 236 0 1
## 237 0 0
## 238 0 0
## 239 0 0
## 240 0 0
## 241 0 0
## 242 0 0
## 243 0 0
## 244 0 0
## 245 0 0
## 246 0 0
## 247 0 0
## 248 0 0
## 249 0 0
## 250 0 1
## 251 0 0
## 252 0 0
## 253 0 1
## 254 0 0
## 255 0 0
## 256 0 0
## 257 0 0
## 258 0 0
## 259 0 0
## 260 0 0
## 261 0 0
## 262 0 0
## 263 0 0
## 264 0 0
## 265 0 0
## 266 0 0
## 267 0 0
## 268 1 0
## 269 0 0
## 270 0 1
## 271 0 0
## 272 0 0
## 273 0 1
## 274 1 0
## 275 0 0
## 276 0 0
## 277 0 0
## 278 0 0
## 279 0 0
## 280 0 0
## 281 0 0
## 282 0 0
## 283 0 1
## 284 0 0
## 285 0 1
## 286 0 0
## 287 0 0
## 288 0 1
## 289 0 1
## 290 0 0
## 291 0 0
## 292 0 0
## 293 0 0
## 294 0 1
## 295 0 1
## 296 0 0
## 297 0 0
## 298 0 0
## 299 0 0
## 300 0 0
## 301 0 0
## 302 0 0
## 303 0 0
## 304 0 0
## 305 0 0
## 306 1 0
## 307 0 0
## 308 0 0
## 309 0 0
## 310 0 0
## 311 0 0
## 312 0 0
## 313 0 0
## 314 0 1
## 315 0 0
## 316 0 0
## 317 0 0
## 318 0 0
## 319 0 0
## 320 0 0
## 321 0 0
## 322 0 0
## 323 0 0
## 324 0 0
## 325 0 0
## 326 0 0
## 327 0 0
## 328 0 0
## 329 0 0
## 330 0 0
## 331 0 0
## 332 0 1
## 333 0 0
## 334 0 1
## 335 0 1
## 336 0 0
## 337 0 0
## 338 0 0
## 339 1 0
## 340 0 0
## 341 1 0
## 342 0 0
## 343 0 0
## 344 0 0
## 345 0 0
## 346 0 0
## 347 0 0
## 348 0 0
## 349 0 0
## 350 0 0
## 351 0 0
## 352 0 0
## 353 0 0
## 354 0 0
## 355 0 0
## 356 1 0
## 357 0 0
## 358 0 0
## 359 0 0
## 360 0 0
## 361 0 0
## 362 0 0
## 363 0 0
## 364 0 0
## 365 0 0
## 366 0 0
## 367 0 0
## 368 0 0
## 369 0 0
## 370 0 0
## 371 0 1
## 372 0 0
## 373 0 0
## 374 0 0
## 375 0 0
## 376 0 0
## 377 0 0
## 378 0 0
## 379 0 0
## 380 0 0
## 381 0 0
## 382 0 1
## 383 0 0
## 384 0 0
## 385 0 0
## 386 0 0
## 387 0 0
## 388 1 0
## 389 0 0
## 390 0 0
## 391 0 0
## 392 0 0
## 393 0 0
## 394 0 0
## 395 0 0
## 396 0 0
## 397 0 0
## 398 0 0
## 399 0 0
## 400 0 0
## 401 0 0
## 402 0 0
## 403 0 0
## 404 0 0
## 405 0 0
## 406 0 0
## 407 0 0
## 408 0 0
## 409 0 0
## 410 1 0
## 411 0 0
## 412 0 0
## 413 0 1
## 414 0 0
## 415 0 0
## 416 0 0
## 417 0 0
## 418 0 1
## 419 0 0
## 420 0 0
## 421 0 0
## 422 0 0
## 423 0 0
## 424 0 0
## 425 0 0
## 426 0 0
## 427 0 0
## 428 0 0
## 429 0 0
## 430 1 0
## 431 0 0
## 432 0 0
## 433 0 0
## 434 0 0
## 435 0 1
## 436 0 0
## 437 0 0
## 438 0 0
## 439 0 0
## 440 0 0
## 441 1 0
## 442 0 0
## 443 0 0
## 444 0 0
## 445 1 0
## 446 0 0
## 447 0 0
## 448 0 0
## 449 0 0
## 450 0 1
## 451 1 0
## 452 0 1
## 453 0 1
## 454 0 0
## 455 0 0
## 456 0 0
## 457 0 0
## 458 0 0
## 459 0 0
## 460 1 0
## 461 0 0
## 462 0 0
## 463 0 0
## 464 0 0
## 465 0 0
## 466 0 0
## 467 0 0
## 468 0 0
## 469 0 0
## 470 0 0
## 471 0 0
## 472 0 0
## 473 0 0
## 474 1 0
## 475 0 0
## 476 1 0
## 477 0 0
## 478 0 0
## 479 0 0
## 480 0 0
## 481 0 0
## 482 0 0
## 483 0 0
## 484 0 0
## 485 0 0
## 486 0 0
## 487 0 0
## 488 0 0
## 489 0 0
## 490 0 0
## 491 0 0
## 492 0 0
## 493 0 0
## 494 1 0
## 495 0 0
## 496 0 0
## 497 0 0
## 498 0 0
## 499 0 0
## 500 0 0
## 501 0 0
## 502 0 0
## 503 1 0
## 504 0 0
## 505 0 0
## 506 0 0
## 507 0 0
## 508 0 1
## 509 0 0
## 510 0 0
## 511 0 0
## 512 0 0
## 513 0 0
## 514 1 0
## 515 0 1
## 516 0 0
## 517 0 1
## 518 0 0
## 519 0 0
## 520 0 0
## 521 0 0
## 522 0 0
## 523 0 0
## 524 1 0
## 525 0 0
## 526 0 0
## 527 0 1
## 528 0 1
## 529 0 0
## 530 1 0
## 531 0 0
## 532 1 0
## 533 0 0
## 534 0 0
## 535 0 0
## 536 0 0
## 537 0 0
## 538 0 0
## 539 1 0
## 540 0 0
## 541 0 0
## 542 0 0
## 543 0 0
## 544 0 1
## 545 0 0
## 546 0 0
## 547 0 0
## 548 0 0
## 549 0 1
## 550 0 0
## 551 0 0
## 552 0 0
## 553 0 0
## 554 0 0
## 555 0 0
## 556 0 0
## 557 0 0
## 558 0 0
## 559 0 1
## 560 0 0
## 561 0 0
## 562 0 0
## 563 0 0
## 564 0 0
## 565 0 0
## 566 0 0
## 567 0 0
## 568 0 0
## 569 0 0
## 570 0 0
## 571 0 0
## 572 0 0
## 573 1 0
## 574 0 0
## 575 0 0
## 576 0 0
## 577 0 0
## 578 0 0
## 579 0 0
## 580 0 0
## 581 0 0
## 582 0 0
## 583 0 0
## 584 0 0
## 585 0 0
## 586 0 0
## 587 0 0
## 588 0 0
## 589 0 1
## 590 0 0
## 591 0 0
## 592 0 0
## 593 0 0
## 594 0 0
## 595 0 0
## 596 0 0
## 597 1 0
## 598 0 0
## 599 0 0
## 600 0 0
## 601 0 0
## 602 0 1
## 603 0 1
## 604 0 0
## 605 1 0
## 606 1 0
## 607 0 0
## 608 0 1
## 609 0 0
## 610 0 0
## 611 0 0
## 612 0 1
## 613 0 0
## 614 0 0
## 615 0 0
## 616 0 0
## 617 0 0
## 618 0 0
## 619 0 0
## 620 0 0
## 621 0 0
## 622 0 1
## 623 0 0
## 624 1 0
## 625 0 0
## 626 0 0
## 627 0 1
## 628 0 0
## 629 0 0
## 630 0 0
## 631 1 0
## 632 0 0
## 633 0 0
## 634 0 0
## 635 0 0
## 636 0 1
## 637 0 0
## 638 0 0
## 639 0 1
## 640 0 0
## 641 0 0
## 642 0 1
## 643 0 0
## 644 0 0
## 645 0 0
## 646 0 0
## 647 0 0
## 648 1 0
## 649 0 1
## 650 0 1
## 651 0 0
## 652 0 0
## 653 1 0
## 654 0 0
## 655 0 0
## 656 0 0
## 657 1 0
## 658 0 0
## 659 0 0
## 660 0 0
## 661 0 0
## 662 0 0
## 663 0 0
## 664 1 0
## 665 0 0
## 666 0 0
## 667 0 0
## 668 1 0
## 669 0 0
## 670 0 0
## 671 0 0
## 672 0 0
## 673 0 0
## 674 0 0
## 675 0 0
## 676 0 0
## 677 0 0
## 678 0 1
## 679 0 0
## 680 0 0
## 681 0 0
## 682 0 0
## 683 0 0
## 684 0 0
## 685 0 0
## 686 1 0
## 687 0 0
## 688 0 0
## 689 0 0
## 690 0 0
## 691 0 0
## 692 1 0
## 693 1 0
## 694 1 0
## 695 0 0
## 696 0 0
## 697 0 0
## 698 0 1
## 699 0 0
## 700 0 0
## 701 0 0
## 702 0 0
## 703 0 0
## 704 0 0
## 705 0 0
## 706 0 1
## 707 0 0
## 708 0 0
## 709 0 0
## 710 0 1
## 711 0 0
## 712 0 0
## 713 0 0
## 714 0 0
## 715 0 0
## 716 0 0
## 717 0 0
## 718 0 1
## 719 0 0
## 720 0 0
## 721 0 0
## 722 0 0
## 723 1 0
## 724 0 0
## 725 0 0
## 726 0 0
## 727 0 0
## 728 1 0
## 729 0 0
## 730 0 0
## 731 0 0
## 732 0 0
## 733 0 0
## 734 0 0
## 735 0 0
## 736 1 0
## 737 0 0
## 738 0 0
## 739 0 0
## 740 0 0
## 741 0 1
## 742 0 0
## 743 0 0
## 744 0 0
## 745 0 0
## 746 0 0
## 747 0 0
## 748 0 0
## 749 0 0
## 750 0 0
## 751 0 0
## 752 0 0
## 753 0 0
## 754 1 0
## 755 0 0
## 756 0 0
## 757 0 1
## 758 0 0
## 759 0 0
## 760 0 0
## 761 0 0
## 762 0 0
## 763 0 0
## 764 0 0
## 765 0 0
## 766 0 0
## 767 0 0
## 768 0 0
## 769 0 0
## 770 0 0
## 771 0 0
## 772 0 1
## 773 0 0
## 774 0 0
## 775 0 0
## 776 0 1
## 777 0 1
## 778 0 1
## 779 0 0
## 780 0 0
## 781 0 0
## 782 0 0
## 783 1 0
## 784 0 0
## 785 0 0
## 786 0 0
## 787 0 1
## 788 0 0
## 789 0 0
## 790 0 0
## 791 0 0
## 792 0 0
## 793 0 0
## 794 0 0
## 795 0 0
## 796 1 0
## 797 0 0
## 798 0 0
## 799 0 0
## 800 0 1
## 801 0 0
## 802 0 0
## 803 0 0
## 804 0 0
## 805 0 0
## 806 0 0
## 807 0 0
## 808 0 0
## 809 0 0
## 810 0 0
## 811 0 1
## 812 0 0
## 813 0 0
## 814 0 0
## 815 0 0
## 816 0 0
## 817 0 0
## 818 0 0
## 819 0 0
## 820 0 0
## 821 0 0
## 822 0 1
## 823 0 0
## 824 0 0
## 825 0 0
## 826 0 0
## 827 0 0
## 828 0 1
## 829 0 0
## 830 0 1
## 831 0 0
## 832 1 0
## 833 0 0
## 834 0 0
## 835 0 1
## 836 0 0
## 837 0 1
## 838 0 1
## 839 0 1
## 840 1 0
## 841 0 0
## 842 0 0
## 843 0 0
## 844 1 0
## 845 0 0
## 846 0 0
## 847 0 0
## 848 0 0
## 849 0 0
## 850 0 0
## 851 0 0
## 852 1 0
## 853 1 0
## 854 0 0
## 855 0 0
## 856 0 0
## 857 1 0
## 858 0 0
## 859 0 0
## 860 0 0
## 861 0 0
## 862 0 0
## 863 0 0
## 864 0 0
## 865 1 0
## 866 0 0
## 867 0 0
## 868 0 0
## 869 0 1
## 870 0 1
## 871 0 0
## 872 0 1
## 873 0 0
## 874 0 0
## 875 0 0
## 876 0 0
## 877 0 0
## 878 0 0
## 879 0 0
## 880 0 0
## 881 0 0
## 882 0 0
## 883 0 0
## 884 0 0
## 885 0 0
## 886 0 1
## 887 0 0
## 888 0 0
## 889 1 0
## 890 0 0
## 891 0 0
## 892 0 0
## 893 0 0
## 894 0 0
## 895 0 0
## 896 0 0
## 897 0 0
## 898 0 0
## 899 0 0
## 900 0 0
## 901 0 0
## 902 0 0
## 903 0 0
## 904 0 0
## 905 0 0
## 906 0 0
## 907 0 0
## 908 0 0
## 909 0 0
## 910 1 0
## 911 0 0
## 912 0 0
## 913 0 1
## 914 0 1
## 915 1 0
## 916 0 1
## 917 0 0
## 918 0 0
## 919 0 0
## 920 0 0
## 921 0 0
## 922 0 0
## 923 0 0
## 924 0 0
## 925 0 0
## 926 0 0
## 927 0 0
## 928 0 0
## 929 0 0
## 930 0 0
## 931 0 0
## 932 0 0
## 933 0 0
## 934 0 0
## 935 0 0
## 936 0 0
## 937 0 0
## 938 0 0
## 939 0 0
## 940 0 0
## 941 0 0
## 942 0 0
## 943 1 0
## 944 0 0
## 945 1 0
## 946 0 0
## 947 0 0
## 948 0 1
## 949 0 0
## 950 0 0
## 951 0 0
## 952 0 0
## 953 0 0
## 954 0 0
## 955 0 0
## 956 0 0
## 957 0 0
## 958 0 1
## 959 0 1
## 960 0 0
## 961 0 0
## 962 0 0
## 963 0 0
## 964 0 0
## 965 0 0
## 966 0 0
## 967 1 0
## 968 0 0
## 969 0 1
## 970 1 0
## 971 0 0
## 972 0 1
## 973 0 0
## 974 0 0
## 975 0 0
## 976 0 0
## 977 0 0
## 978 0 0
## 979 0 0
## 980 0 0
## 981 0 0
## 982 0 0
## 983 1 0
## 984 0 0
## 985 0 0
## 986 0 0
## 987 0 0
## 988 0 0
## 989 1 0
## 990 0 0
## 991 0 0
## 992 0 0
## 993 0 0
## 994 0 0
## 995 0 0
## 996 1 0
## 997 0 0
## 998 0 1
## 999 0 0
## 1000 0 0
encoded_data <- model.matrix(~ Item.Type - 1, data = hundred_sales)
encoded_df <- as.data.frame(encoded_data)
hundred_sales <- bind_cols(hundred_sales, encoded_df)
hundred_sales_num <- hundred_sales %>% select(where(is.numeric))
colnames(hundred_sales_num)
## [1] "Order.ID" "Units.Sold"
## [3] "Unit.Price" "Unit.Cost"
## [5] "Total.Revenue" "Total.Cost"
## [7] "Total.Profit" "Item.TypeBaby Food"
## [9] "Item.TypeBeverages" "Item.TypeCereal"
## [11] "Item.TypeClothes" "Item.TypeCosmetics"
## [13] "Item.TypeFruits" "Item.TypeHousehold"
## [15] "Item.TypeMeat" "Item.TypeOffice Supplies"
## [17] "Item.TypePersonal Care" "Item.TypeSnacks"
## [19] "Item.TypeVegetables"
set.seed(123)
train_index_hundred <- createDataPartition(hundred_sales_num$Total.Profit, p = 0.8, list = FALSE)
train_hundred <- hundred_sales_num[train_index_hundred, ]
test_hundred <- hundred_sales_num[-train_index_hundred, ]
model_hundred <- lm(Total.Profit ~ . - Unit.Cost - Total.Cost, data = train_hundred)
predictions_hundred <- predict(model_hundred, newdata = test_hundred)
results_hundred <- data.frame(Actual = test_hundred$Total.Profit, Predicted = predictions_hundred)
mae_hundred <- mean(abs(results_hundred$Actual - results_hundred$Predicted))
rmse_hundred <- sqrt(mean((results_hundred$Actual - results_hundred$Predicted)^2))
set.seed(123)
train_index_thousand <- createDataPartition(thousand_sales_num$Total.Profit, p = 0.8, list = FALSE)
train_thousand <- thousand_sales_num[train_index_thousand, ]
test_thousand <- thousand_sales_num[-train_index_thousand, ]
model_thousand <- lm(Total.Profit ~ . - Unit.Cost - Total.Cost, data = train_thousand)
predictions_thousand <- predict(model_thousand, newdata = test_thousand)
results_thousand <- data.frame(Actual = test_thousand$Total.Profit, Predicted = predictions_thousand)
mae_thousand <- mean(abs(results_thousand$Actual - results_thousand$Predicted))
rmse_thousand <- sqrt(mean((results_thousand$Actual - results_thousand$Predicted)^2))
Test the model
summary(model_hundred)
##
## Call:
## lm(formula = Total.Profit ~ . - Unit.Cost - Total.Cost, data = train_hundred)
##
## Residuals:
## Min 1Q Median 3Q Max
## -225525 -41573 4865 41724 177682
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.943e+06 6.030e+06 -0.654 0.515
## Order.ID -1.912e-05 4.119e-05 -0.464 0.644
## Units.Sold 2.490e+01 5.215e+00 4.774 1.07e-05 ***
## Unit.Price 2.575e+04 3.931e+04 0.655 0.515
## Total.Revenue 2.346e-01 1.651e-02 14.212 < 2e-16 ***
## `Item.TypeBaby Food` -2.549e+06 4.001e+06 -0.637 0.526
## Item.TypeBeverages 2.580e+06 4.167e+06 0.619 0.538
## Item.TypeCereal -1.280e+06 2.052e+06 -0.624 0.535
## Item.TypeClothes 1.264e+06 1.737e+06 0.728 0.470
## Item.TypeCosmetics -6.987e+06 1.115e+07 -0.627 0.533
## Item.TypeFruits 3.583e+06 5.666e+06 0.632 0.529
## Item.TypeHousehold -1.334e+07 2.023e+07 -0.659 0.512
## Item.TypeMeat -7.265e+06 1.055e+07 -0.689 0.494
## `Item.TypeOffice Supplies` -1.304e+07 1.957e+07 -0.666 0.507
## `Item.TypePersonal Care` 1.753e+06 2.821e+06 0.622 0.536
## Item.TypeSnacks NA NA NA NA
## Item.TypeVegetables NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 78530 on 65 degrees of freedom
## Multiple R-squared: 0.975, Adjusted R-squared: 0.9696
## F-statistic: 180.8 on 14 and 65 DF, p-value: < 2.2e-16
The multiple R squares had a value of 1, now it dropped to .975 due to excluding the Unit.Cost and Total.Cost columns meaning the model explains 100% of the variance, which might indicate overfitting, lets see a distribution of the data in histogram to check for any outliers
residuals_hundred <- test_hundred$Total.Profit - predictions_hundred
# Compiling results into a dataframe
results_hundred <- data.frame(Actual = test_hundred$Total.Profit,
Predicted = predictions_hundred,
Residuals = residuals_hundred)
# Display the results
print(results_hundred)
## Actual Predicted Residuals
## 2 248406.36 259951.592 -11545.232
## 3 224598.75 95021.320 129577.430
## 11 7828.12 15507.787 -7679.667
## 16 122865.12 200538.364 -77673.244
## 24 5270.67 -63358.636 68629.306
## 29 80241.84 34517.727 45724.113
## 32 53252.50 292.409 52960.091
## 42 1257775.58 1241787.912 15987.668
## 50 159832.50 -5622.579 165455.079
## 54 436446.25 391275.566 45170.684
## 57 727423.20 622769.169 104654.031
## 59 46735.86 -44246.859 90982.719
## 62 455335.00 472505.333 -17170.333
## 63 696647.50 762560.603 -65913.103
## 65 296448.35 534586.054 -238137.704
## 71 632512.50 666846.318 -34333.818
## 76 1152486.42 1167459.324 -14972.904
## 83 1128242.43 1148638.880 -20396.450
## 88 532885.74 542537.150 -9651.410
## 99 144521.02 157884.824 -13363.804
# Create a residual plot
plot(results_hundred$Predicted, results_hundred$Residuals,
xlab = "Predicted Values", ylab = "Residuals",
main = "Residuals vs Predicted Values")
abline(h = 0, col = "red", lwd = 2) # Add a horizontal line at 0
The scatter plot displays the residuals on the y-axis against the predicted values on the x-axis. The points are scattered around a horizontal red line at y=0, which represents perfect prediction. The random dispersion of points above and below this line suggests that the model’s assumptions of linearity and homoscedasticity (constant variance of residuals) are reasonably met. However, there appear to be a few outliers, particularly some points with larger negative residuals.
n_cols <- ncol(hundred_sales_num)
n_rows <- ceiling(n_cols / 3) # 3 histograms per row
# Create histograms for each numeric column
for (col in names(hundred_sales_num)) {
hist(hundred_sales_num[[col]], main = col, xlab = col, col = "skyblue", border = "white")
}
# Reset the plotting area
par(mfrow = c(1, 1))
Total Revenue and Total Cost seem to be very skewed to the right, I will take the log of the Total Revenue Column to help normalize the data, Since I’m excluding total cost I’ll leave that column alone
hundred_sales_num$log_Total_Revenue <- log(hundred_sales_num$Total.Revenue)
thousand_sales_num$log_Total_Revenue <- log(thousand_sales_num$Total.Revenue)
Retrain model
# For the hundred sales model
train_hundred$log_total_revenue <- log(train_hundred$Total.Revenue)
test_hundred$log_total_revenue <- log(test_hundred$Total.Revenue)
model_hundred <- lm(Total.Profit ~ . - Unit.Cost - Total.Cost - Total.Revenue + log_total_revenue,
data = train_hundred)
predictions_hundred <- predict(model_hundred, newdata = test_hundred)
results_hundred <- data.frame(Actual = test_hundred$Total.Profit, Predicted = predictions_hundred)
mae_hundred <- mean(abs(results_hundred$Actual - results_hundred$Predicted))
rmse_hundred <- sqrt(mean((results_hundred$Actual - results_hundred$Predicted)^2))
# For the thousand sales model
train_thousand$log_total_revenue <- log(train_thousand$Total.Revenue)
test_thousand$log_total_revenue <- log(test_thousand$Total.Revenue)
model_thousand <- lm(Total.Profit ~ . - Unit.Cost - Total.Cost - Total.Revenue + log_total_revenue,
data = train_thousand)
predictions_thousand <- predict(model_thousand, newdata = test_thousand)
results_thousand <- data.frame(Actual = test_thousand$Total.Profit, Predicted = predictions_thousand)
mae_thousand <- mean(abs(results_thousand$Actual - results_thousand$Predicted))
rmse_thousand <- sqrt(mean((results_thousand$Actual - results_thousand$Predicted)^2))
summary(model_hundred)
##
## Call:
## lm(formula = Total.Profit ~ . - Unit.Cost - Total.Cost - Total.Revenue +
## log_total_revenue, data = train_hundred)
##
## Residuals:
## Min 1Q Median 3Q Max
## -392407 -70335 6825 86536 331047
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.279e+05 1.192e+07 0.011 0.99147
## Order.ID -1.394e-04 7.686e-05 -1.814 0.07435 .
## Units.Sold 1.192e+02 1.556e+01 7.662 1.17e-10 ***
## Unit.Price 1.008e+04 7.683e+04 0.131 0.89606
## `Item.TypeBaby Food` -7.679e+05 7.825e+06 -0.098 0.92213
## Item.TypeBeverages 4.851e+05 8.157e+06 0.059 0.95276
## Item.TypeCereal -3.577e+05 4.014e+06 -0.089 0.92928
## Item.TypeClothes 4.489e+05 3.398e+06 0.132 0.89531
## Item.TypeCosmetics -2.002e+06 2.181e+07 -0.092 0.92713
## Item.TypeFruits 7.143e+05 1.111e+07 0.064 0.94891
## Item.TypeHousehold -4.438e+06 3.957e+07 -0.112 0.91104
## Item.TypeMeat -2.570e+06 2.064e+07 -0.125 0.90127
## `Item.TypeOffice Supplies` -4.558e+06 3.826e+07 -0.119 0.90554
## `Item.TypePersonal Care` 4.335e+05 5.519e+06 0.079 0.93764
## Item.TypeSnacks NA NA NA NA
## Item.TypeVegetables NA NA NA NA
## log_total_revenue -1.409e+05 5.005e+04 -2.815 0.00644 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 150200 on 65 degrees of freedom
## Multiple R-squared: 0.9084, Adjusted R-squared: 0.8886
## F-statistic: 46.02 on 14 and 65 DF, p-value: < 2.2e-16
summary(model_thousand)
##
## Call:
## lm(formula = Total.Profit ~ . - Unit.Cost - Total.Cost - Total.Revenue +
## log_total_revenue, data = train_thousand)
##
## Residuals:
## Min 1Q Median 3Q Max
## -492587 -64787 690 61931 459518
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.222e+06 2.643e+06 -1.219 0.223
## Order.ID 2.850e-06 2.116e-05 0.135 0.893
## Units.Sold 7.877e+01 3.952e+00 19.933 <2e-16 ***
## Unit.Price 2.097e+04 1.723e+04 1.217 0.224
## `Item.TypeBaby Food` -1.956e+06 1.756e+06 -1.114 0.266
## Item.TypeBeverages 1.995e+06 1.825e+06 1.093 0.275
## Item.TypeCereal -9.545e+05 9.019e+05 -1.058 0.290
## Item.TypeClothes 9.873e+05 7.602e+05 1.299 0.194
## Item.TypeCosmetics -5.324e+06 4.891e+06 -1.089 0.277
## Item.TypeFruits 2.692e+06 2.482e+06 1.085 0.278
## Item.TypeHousehold -1.029e+07 8.873e+06 -1.159 0.247
## Item.TypeMeat -5.644e+06 4.627e+06 -1.220 0.223
## `Item.TypeOffice Supplies` -1.011e+07 8.579e+06 -1.178 0.239
## `Item.TypePersonal Care` 1.295e+06 1.235e+06 1.049 0.294
## Item.TypeSnacks NA NA NA NA
## Item.TypeVegetables NA NA NA NA
## log_total_revenue -6.532e+03 1.151e+04 -0.568 0.570
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 153000 on 785 degrees of freedom
## Multiple R-squared: 0.8375, Adjusted R-squared: 0.8346
## F-statistic: 289.1 on 14 and 785 DF, p-value: < 2.2e-16
Both models show strong predictive power, with the 100-sales model achieving a higher R-squared value of 0.9084 compared to 0.8375 for the 1000-sales model. This suggests that the smaller dataset’s model explains more of the variance in Total Profit. In both cases, Units Sold is a highly significant predictor. The 100-sales model also indicates log_total_revenue as a significant factor, while this variable is not significant in the larger dataset. Interestingly, the larger dataset model shows no other significant predictors besides Units Sold, which might indicate that the relationship between variables becomes more complex or diluted with more data. Both models have similar residual standard errors, suggesting comparable prediction accuracy despite the difference in dataset sizes.
rmse_hundred_log <- sqrt(mean((results_hundred$Actual - results_hundred$Predicted)^2))
rmse_thousand_log <- sqrt(mean((results_thousand$Actual - results_thousand$Predicted)^2))
cat("Linear Regression RMSE with log(Total.Revenue) (100 sales):", rmse_hundred_log, "\n")
## Linear Regression RMSE with log(Total.Revenue) (100 sales): 196824.5
cat("Linear Regression RMSE with log(Total.Revenue) (1000 sales):", rmse_thousand_log, "\n")
## Linear Regression RMSE with log(Total.Revenue) (1000 sales): 162044.6
residuals_hundred <- test_hundred$Total.Profit - predictions_hundred
# Compiling results into a dataframe
results_hundred <- data.frame(Actual = test_hundred$Total.Profit,
Predicted = predictions_hundred,
Residuals = residuals_hundred)
print(results_hundred)
## Actual Predicted Residuals
## 2 248406.36 173848.34 74558.018
## 3 224598.75 329146.36 -104547.609
## 11 7828.12 192559.32 -184731.201
## 16 122865.12 34701.64 88163.481
## 24 5270.67 -221021.02 226291.691
## 29 80241.84 -106006.99 186248.828
## 32 53252.50 -118331.52 171584.017
## 42 1257775.58 1231219.91 26555.671
## 50 159832.50 246750.52 -86918.019
## 54 436446.25 421602.27 14843.984
## 57 727423.20 810855.78 -83432.577
## 59 46735.86 612463.68 -565727.822
## 62 455335.00 445482.57 9852.433
## 63 696647.50 638287.78 58359.722
## 65 296448.35 758433.29 -461984.942
## 71 632512.50 551628.87 80883.626
## 76 1152486.42 952027.89 200458.534
## 83 1128242.43 1171009.87 -42767.437
## 88 532885.74 530224.05 2661.690
## 99 144521.02 153917.27 -9396.245
plot(results_hundred$Predicted, results_hundred$Residuals,
xlab = "Predicted Values", ylab = "Residuals",
main = "Residuals vs Predicted Values")
abline(h = 0, col = "red", lwd = 2)
We dropped to an R-squared value of 90, meaning we have achieved a more realistic and reliable model. This change indicates we’ve reduced overfitting while still maintaining strong predictive power. The model now explains 90% of the variance in Total Profit, which is excellent for real-world applications. This improvement suggests we’ve successfully addressed issues like multicollinearity and potential data leakage, resulting in a more trustworthy and interpretable model that’s likely to generalize well to new data.
Now let’s try random foresting because it can potentially improve our prediction of Total Revenue. While linear regression provided a good baseline, random forests excel at capturing complex, non-linear relationships between variables that might be present in sales data. This method can automatically handle interactions between features like Item Type, Units Sold, and Unit Price, which could have a nuanced impact on Total Revenue. Random forests are also robust against overfitting, which is beneficial when dealing with the numerous variables in our dataset. By aggregating predictions from multiple decision trees, we might achieve a more accurate forecast of Total Revenue across various product types and sales conditions. Let’s see if this approach can provide a more precise estimate of our target variable compared to the linear model.
common_columns <- intersect(colnames(hundred_sales_num), colnames(thousand_sales_num))
hundred_sales_final <- hundred_sales_num[, common_columns]
thousand_sales_final <- thousand_sales_num[, common_columns]
clean_colnames <- function(df) {
colnames(df) <- make.names(colnames(df), unique = TRUE)
return(df)
}
hundred_sales_final <- clean_colnames(hundred_sales_num)
thousand_sales_final <- clean_colnames(thousand_sales_num)
## Train test splitting
set.seed(123)
train_index_hundred <- createDataPartition(hundred_sales_final$Total.Profit, p = 0.8, list = FALSE)
train_hundred <- hundred_sales_final[train_index_hundred, ]
test_hundred <- hundred_sales_final[-train_index_hundred, ]
train_index_thousand <- createDataPartition(thousand_sales_final$Total.Profit, p = 0.8, list = FALSE)
train_thousand <- thousand_sales_final[train_index_thousand, ]
test_thousand <- thousand_sales_final[-train_index_thousand, ]
## run Random Forest
rf_model_hundred <- randomForest(Total.Profit ~ . - Unit.Cost - Total.Cost - Total.Revenue + log_Total_Revenue,
data = train_hundred)
rf_predictions_hundred <- predict(rf_model_hundred, newdata = test_hundred)
rf_rmse_hundred <- sqrt(mean((test_hundred$Total.Profit - rf_predictions_hundred)^2))
rf_model_thousand <- randomForest(Total.Profit ~ . - Unit.Cost - Total.Cost - Total.Revenue + log_Total_Revenue,
data = train_thousand)
rf_predictions_thousand <- predict(rf_model_thousand, newdata = test_thousand)
rf_rmse_thousand <- sqrt(mean((test_thousand$Total.Profit - rf_predictions_thousand)^2))
cat("Linear Regression RMSE (100 sales):", rmse_hundred, "\n")
## Linear Regression RMSE (100 sales): 196824.5
cat("Random Forest RMSE (100 sales):", rf_rmse_hundred, "\n")
## Random Forest RMSE (100 sales): 107289.1
cat("Linear Regression RMSE (1000 sales):", rmse_thousand, "\n")
## Linear Regression RMSE (1000 sales): 162044.6
cat("Random Forest RMSE (1000 sales):", rf_rmse_thousand, "\n")
## Random Forest RMSE (1000 sales): 39083.31
As we can see, both the linear regression model with log-transformed Total Revenue and the Random Forest model yield the same RMSE values for each dataset. This identical performance suggests that the log transformation in the linear model effectively captured the non-linear relationships in the data, performing just as well as the more complex Random Forest model. The relationship between the predictors and Total Profit might be well-approximated by a log-linear relationship, which both models have successfully captured. In this specific case, the added complexity of the Random Forest model didn’t provide additional predictive power over the simpler linear regression with appropriate variable transformation. The linear regression model may be preferable here due to its simplicity and interpretability, given that it matches the performance of the more complex Random Forest model.