Step(1):Loading the data then view it

data<-read.csv("C:/Users/hp ZBook/OneDrive/Desktop/karpur.csv", header = TRUE)

head(data) 
##    depth caliper ind.deep ind.med  gamma phi.N R.deep  R.med      SP
## 1 5667.0   8.685  618.005 569.781 98.823 0.410  1.618  1.755 -56.587
## 2 5667.5   8.686  497.547 419.494 90.640 0.307  2.010  2.384 -61.916
## 3 5668.0   8.686  384.935 300.155 78.087 0.203  2.598  3.332 -55.861
## 4 5668.5   8.686  278.324 205.224 66.232 0.119  3.593  4.873 -41.860
## 5 5669.0   8.686  183.743 131.155 59.807 0.069  5.442  7.625 -34.934
## 6 5669.5   8.686  109.512  75.633 57.109 0.048  9.131 13.222 -39.769
##   density.corr density phi.core   k.core Facies
## 1       -0.033   2.205 0.339000 2442.590     F1
## 2       -0.067   2.040 0.334131 3006.989     F1
## 3       -0.064   1.888 0.331000 3370.000     F1
## 4       -0.053   1.794 0.349000 2270.000     F1
## 5       -0.054   1.758 0.350644 2530.758     F1
## 6       -0.058   1.759 0.353152 2928.314     F1

Step(2):Build a linear model to correct the core porosity data with log porosity data

porosity_model <- lm(phi.core ~ phi.N + Facies-1,data = data)

summary(porosity_model)
## 
## Call:
## lm(formula = phi.core ~ phi.N + Facies - 1, data = data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.103530 -0.011573 -0.000206  0.010463  0.102852 
## 
## Coefficients:
##           Estimate Std. Error t value Pr(>|t|)    
## phi.N     0.013364   0.018060    0.74     0.46    
## FaciesF1  0.314805   0.002777  113.37   <2e-16 ***
## FaciesF10 0.207680   0.005072   40.95   <2e-16 ***
## FaciesF2  0.175233   0.009390   18.66   <2e-16 ***
## FaciesF3  0.231939   0.004955   46.81   <2e-16 ***
## FaciesF5  0.272953   0.003914   69.74   <2e-16 ***
## FaciesF7  0.225164   0.008730   25.79   <2e-16 ***
## FaciesF8  0.305884   0.005019   60.94   <2e-16 ***
## FaciesF9  0.264448   0.004825   54.81   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02326 on 810 degrees of freedom
## Multiple R-squared:  0.9928, Adjusted R-squared:  0.9928 
## F-statistic: 1.246e+04 on 9 and 810 DF,  p-value: < 2.2e-16

Step(3):Predict the porosity using the model

Corrected_Porosity <- predict(porosity_model,data = data)

head(cbind(Corrected_Porosity,Log_porosity=data$phi.N))
##   Corrected_Porosity Log_porosity
## 1          0.3202847        0.410
## 2          0.3189082        0.307
## 3          0.3175183        0.203
## 4          0.3163957        0.119
## 5          0.3157275        0.069
## 6          0.3154468        0.048

Step(4):Build a linear model to correct the core permeability data with corrected porosity data

permeability_model <- lm(k.core ~ Corrected_Porosity + Facies-1, data = data)

summary(permeability_model)
## 
## Call:
## lm(formula = k.core ~ Corrected_Porosity + Facies - 1, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5613.4  -596.9  -130.3   475.0 10449.1 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## Corrected_Porosity  -412352      89814  -4.591 5.11e-06 ***
## FaciesF1             132659      28386   4.673 3.47e-06 ***
## FaciesF10             87869      18969   4.632 4.21e-06 ***
## FaciesF2              73980      16049   4.610 4.69e-06 ***
## FaciesF3              97910      21087   4.643 4.00e-06 ***
## FaciesF5             118916      24729   4.809 1.81e-06 ***
## FaciesF7              95868      20496   4.677 3.40e-06 ***
## FaciesF8             130990      27786   4.714 2.86e-06 ***
## FaciesF9             111324      24050   4.629 4.28e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1546 on 810 degrees of freedom
## Multiple R-squared:  0.7652, Adjusted R-squared:  0.7626 
## F-statistic: 293.2 on 9 and 810 DF,  p-value: < 2.2e-16

Step(5):Predict permeability using the model

Corrected_Permeability <- predict(permeability_model, data = data)

head(cbind(Corrected_Permeability,Core_permeability=data$k.core))
##   Corrected_Permeability Core_permeability
## 1               589.2371          2442.590
## 2              1156.8516          3006.989
## 3              1729.9769          3370.000
## 4              2192.8857          2270.000
## 5              2468.4267          2530.758
## 6              2584.1540          2928.314