Getting started
library(tidyverse)
library(openintro)
library(infer)
The Data
global_monitor <- tibble(
scientist_work = c(rep("Benefits", 80000), rep("Doesn't benefit", 20000))
)
ggplot(global_monitor, aes(x = scientist_work)) +
geom_bar() +
labs(
x = "", y = "",
title = "Do you believe that the work scientists do benefit people like you?"
) +
coord_flip()

global_monitor %>%
count(scientist_work) %>%
mutate(p = n /sum(n))
## # A tibble: 2 × 3
## scientist_work n p
## <chr> <int> <dbl>
## 1 Benefits 80000 0.8
## 2 Doesn't benefit 20000 0.2
The unknown sampling distribution
samp1 <- global_monitor %>%
sample_n(50)
Exercise 1
Describe the distribution of responses in this sample. How does it
compare to the distribution of responses in the population. Hint:
Although the sample_n function takes a random sample of observations
(i.e. rows) from the dataset, you can still refer to the variables in
the dataset with the same names. Code you presented earlier for
visualizing and summarizing the population data will still be useful for
the sample, however be careful to not label your proportion p since
you’re now calculating a sample statistic, not a population parameters.
You can customize the label of the statistics to indicate that it comes
from the sample.
The data for both the sample and the population shows that about 20%
of people believe that the work of scientists is not beneficial.
Exercise 2
Would you expect the sample proportion to match the sample proportion
of another student’s sample? Why, or why not? If the answer is no, would
you expect the proportions to be somewhat different or very different?
Ask a student team to confirm your answer.
No, the sample proportions likely won’t match exactly because each
sample is randomly selected. However, they should be somewhat similar,
not very different, as both samples come from the same population.
Exercise 3
Take a second sample, also of size 50, and call it samp2. How does
the sample proportion of samp2 compare with that of samp1? Suppose we
took two more samples, one of size 100 and one of size 1000. Which would
you think would provide a more accurate estimate of the population
proportion?
samp2 <- global_monitor %>%
sample_n(50)
samp2 %>%
count(scientist_work) %>%
mutate(p_hat_ = n /sum(n))
## # A tibble: 2 × 3
## scientist_work n p_hat_
## <chr> <int> <dbl>
## 1 Benefits 36 0.72
## 2 Doesn't benefit 14 0.28
The sample proportion of samp2 is quite similar to samp1, with both
showing more individuals benefiting than not. However, samp2 has
slightly more individuals who don’t benefit compared to samp1. I believe
a sample size of 1000 would provide a more accurate measurement because
a larger sample reduces variability and would better reflect the overall
population distribution.
sample_props50 <- global_monitor %>%
rep_sample_n(size = 50, reps = 15000, replace = TRUE) %>%
count(scientist_work) %>%
mutate(p_hat = n /sum(n)) %>%
filter(scientist_work == "Doesn't benefit")
ggplot(data = sample_props50, aes(x = p_hat)) +
geom_histogram(binwidth = 0.02) +
labs(
x = "p_hat (Doesn't benefit)",
title = "Sampling distribution of p_hat",
subtitle = "Sample size = 50, Number of samples = 15000"
)

Exercise 4
How many elements are there in sample_props50? Describe the sampling
distribution, and be sure to specifically note its center. Make sure to
include a plot of the distribution in your answer.
The histogram above indicates that there are approximately 2,000
elements represented. The sampling distribution is symmetric and
exhibits no skew, with a clear center at 0.2, or 20%.
Interlude: Sampling distributions
The idea behind the rep_sample_n function is repetition. Earlier, you
took a single sample of size n (50) from the population of all people in
the population. With this new function, you can repeat this sampling
procedure rep times in order to build a distribution of a series of
sample statistics, which is called the sampling distribution.
Note that in practice one rarely gets to build true sampling
distributions, because one rarely has access to data from the entire
population.
Without the rep_sample_n function, this would be painful. We would
have to manually run the following code 15,000 times
global_monitor %>%
sample_n(size = 50, replace = TRUE) %>%
count(scientist_work) %>%
mutate(p_hat = n /sum(n)) %>%
filter(scientist_work == "Doesn't benefit")
## # A tibble: 1 × 3
## scientist_work n p_hat
## <chr> <int> <dbl>
## 1 Doesn't benefit 10 0.2
Exercise 5
To make sure you understand how sampling distributions are built, and
exactly what the rep_sample_n function does, try modifying the code to
create a sampling distribution of 25 sample proportions from samples of
size 10, and put them in a data frame named sample_props_small. Print
the output. How many observations are there in this object called
sample_props_small? What does each observation represent?
sample_props_small <- global_monitor %>%
rep_sample_n(size = 10, reps = 25, replace = TRUE) %>%
count(scientist_work) %>%
mutate(p_hat = n /sum(n)) %>%
filter(scientist_work == "Doesn't benefit")
sample_props_small
## # A tibble: 23 × 4
## # Groups: replicate [23]
## replicate scientist_work n p_hat
## <int> <chr> <int> <dbl>
## 1 1 Doesn't benefit 1 0.1
## 2 2 Doesn't benefit 1 0.1
## 3 3 Doesn't benefit 2 0.2
## 4 4 Doesn't benefit 3 0.3
## 5 5 Doesn't benefit 3 0.3
## 6 6 Doesn't benefit 2 0.2
## 7 7 Doesn't benefit 1 0.1
## 8 8 Doesn't benefit 3 0.3
## 9 9 Doesn't benefit 1 0.1
## 10 10 Doesn't benefit 1 0.1
## # ℹ 13 more rows
Sample size and the sampling distribution
Mechanics aside, let’s return to the reason we used the rep_sample_n
function: to compute a sampling distribution, specifically, the sampling
distribution of the proportions from samples of 50 people.
ggplot(data = sample_props50, aes(x = p_hat)) +
geom_histogram(binwidth = 0.02)

Exercise 6
Use the app below to create sampling distributions of proportions of
Doesn’t benefit from samples of size 10, 50, and 100. Use 5,000
simulations. What does each observation in the sampling distribution
represent? How does the mean, standard error, and shape of the sampling
distribution change as the sample size increases? How (if at all) do
these values change if you increase the number of simulations? (You do
not need to include plots in your answer.)
##Samples of size 10 from 5000 simulations
set.seed(1)
#Generating the sampling distribution
sample_props_small1 <- global_monitor %>%
rep_sample_n(size = 10, reps = 5000, replace = TRUE) %>%
group_by(rep = row_number()) %>% #Creating a 'rep' column for repetitions
count(scientist_work) %>%
group_by(scientist_work) %>% #Group by scientist_work for proportion calculation
mutate(p_hat = n / sum(n)) %>%
filter(scientist_work == "Doesn't benefit")
sample_props_small1
## # A tibble: 10,051 × 4
## # Groups: scientist_work [1]
## rep scientist_work n p_hat
## <int> <chr> <int> <dbl>
## 1 11 Doesn't benefit 1 0.0000995
## 2 16 Doesn't benefit 1 0.0000995
## 3 18 Doesn't benefit 1 0.0000995
## 4 20 Doesn't benefit 1 0.0000995
## 5 22 Doesn't benefit 1 0.0000995
## 6 23 Doesn't benefit 1 0.0000995
## 7 25 Doesn't benefit 1 0.0000995
## 8 26 Doesn't benefit 1 0.0000995
## 9 29 Doesn't benefit 1 0.0000995
## 10 38 Doesn't benefit 1 0.0000995
## # ℹ 10,041 more rows
Exercise 7
Take a sample of size 15 from the population and calculate the
proportion of people in this sample who think the work scientists do
enhances their lives. Using this sample, what is your best point
estimate of the population proportion of people who think the work
scientists do enchances their lives?
set.seed(4) # Set seed for reproducibility
samp3 <- global_monitor %>%
sample_n(15) #Taking a sample of size 15
#Counting the number of responses for each category and calculate the proportion
samp3_summary <- samp3 %>%
count(scientist_work) %>%
mutate(sam = n / sum(n)) #Calculating the proportion
# Extract the proportion for "Benefits"
benefits_proportion <- samp3_summary %>%
filter(scientist_work == "Benefits") %>%
select(sam) # Get the proportion
benefits_proportion
## # A tibble: 1 × 1
## sam
## <dbl>
## 1 0.933
Approximately 73.33% of the sampled individuals think that
scientists’ work benefits their lives.
Exercise 8
Since you have access to the population, simulate the sampling
distribution of proportion of those who think the work scientists do
enchances their lives for samples of size 15 by taking 2000 samples from
the population of size 15 and computing 2000 sample proportions. Store
these proportions in as sample_props15. Plot the data, then describe the
shape of this sampling distribution. Based on this sampling
distribution, what would you guess the true proportion of those who
think the work scientists do enchances their lives to be? Finally,
calculate and report the population proportion.
sample_props15 <- global_monitor %>%
rep_sample_n(size = 15, reps = 2000, replace = TRUE) %>%
count(scientist_work) %>%
mutate(p_hat = n /sum(n)) %>%
filter(scientist_work == "Benefits")
sample_props15
## # A tibble: 2,000 × 4
## # Groups: replicate [2,000]
## replicate scientist_work n p_hat
## <int> <chr> <int> <dbl>
## 1 1 Benefits 11 0.733
## 2 2 Benefits 13 0.867
## 3 3 Benefits 12 0.8
## 4 4 Benefits 12 0.8
## 5 5 Benefits 13 0.867
## 6 6 Benefits 15 1
## 7 7 Benefits 14 0.933
## 8 8 Benefits 13 0.867
## 9 9 Benefits 12 0.8
## 10 10 Benefits 13 0.867
## # ℹ 1,990 more rows
ggplot(data = sample_props15, aes(x = p_hat)) +
geom_histogram(binwidth = 0.02) +
labs(
x = "p_hat (Benefits)",
title = "Sampling distribution of population proportion",
subtitle = "Sample size = 15, Number of samples = 2000"
)

mean(sample_props15$p_hat)
## [1] 0.8038667
About 79% of the population truly believe that scientists do enhance
their everyday lives.
Exercise 9
Change your sample size from 15 to 150, then compute the sampling
distribution using the same method as above, and store these proportions
in a new object called sample_props150. Describe the shape of this
sampling distribution and compare it to the sampling distribution for a
sample size of 15. Based on this sampling distribution, what would you
guess to be the true proportion of those who think the work scientists
do enchances their lives?
sample_props150 <- global_monitor %>%
rep_sample_n(size = 150, reps = 2000, replace = TRUE) %>%
count(scientist_work) %>%
mutate(p_hat = n /sum(n)) %>%
filter(scientist_work == "Benefits")
sample_props150
## # A tibble: 2,000 × 4
## # Groups: replicate [2,000]
## replicate scientist_work n p_hat
## <int> <chr> <int> <dbl>
## 1 1 Benefits 121 0.807
## 2 2 Benefits 123 0.82
## 3 3 Benefits 113 0.753
## 4 4 Benefits 119 0.793
## 5 5 Benefits 120 0.8
## 6 6 Benefits 126 0.84
## 7 7 Benefits 118 0.787
## 8 8 Benefits 124 0.827
## 9 9 Benefits 127 0.847
## 10 10 Benefits 118 0.787
## # ℹ 1,990 more rows
ggplot(data = sample_props150, aes(x = p_hat)) +
geom_histogram(binwidth = 0.02) +
labs(
x = "p_hat (Benefits)",
title = "Sampling distribution of population proportion",
subtitle = "Sample size = 150, Number of samples = 2000"
)

mean(sample_props150$p_hat)
## [1] 0.80095
Exercise 10
Of the sampling distributions from 2 and 3, which has a smaller
spread? If you’re concerned with making estimates that are more often
close to the true value, would you prefer a sampling distribution with a
large or small spread?
Based on the chart, I would conclude that chart 2 has a narrower
spread, suggesting that smaller samples are easier to manage. In
general, using smaller sample sizes tends to provide a more precise
estimate of the population proportion.
LS0tDQp0aXRsZTogIkxhYiA1OiBGb3VuZGF0aW9ucyBmb3Igc3RhdGlzdGljYWwgaW5mZXJlbmNlIC0gU2FtcGxpbmcgZGlzdHJpYnV0aW9ucyINCmF1dGhvcjogIkxhdXJhIEIiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCiMjIyBHZXR0aW5nIHN0YXJ0ZWQNCg0KDQoNCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkob3BlbmludHJvKQ0KbGlicmFyeShpbmZlcikNCmBgYA0KDQoNCiMjIyBUaGUgRGF0YQ0KDQpgYGB7cn0NCmdsb2JhbF9tb25pdG9yIDwtIHRpYmJsZSgNCiAgc2NpZW50aXN0X3dvcmsgPSBjKHJlcCgiQmVuZWZpdHMiLCA4MDAwMCksIHJlcCgiRG9lc24ndCBiZW5lZml0IiwgMjAwMDApKQ0KKQ0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZ2xvYmFsX21vbml0b3IsIGFlcyh4ID0gc2NpZW50aXN0X3dvcmspKSArDQogIGdlb21fYmFyKCkgKw0KICBsYWJzKA0KICAgIHggPSAiIiwgeSA9ICIiLA0KICAgIHRpdGxlID0gIkRvIHlvdSBiZWxpZXZlIHRoYXQgdGhlIHdvcmsgc2NpZW50aXN0cyBkbyBiZW5lZml0IHBlb3BsZSBsaWtlIHlvdT8iDQogICkgKw0KICBjb29yZF9mbGlwKCkNCmBgYA0KDQoNCmBgYHtyfQ0KZ2xvYmFsX21vbml0b3IgJT4lDQogIGNvdW50KHNjaWVudGlzdF93b3JrKSAlPiUNCiAgbXV0YXRlKHAgPSBuIC9zdW0obikpDQpgYGANCg0KVGhlIHVua25vd24gc2FtcGxpbmcgZGlzdHJpYnV0aW9uDQoNCmBgYHtyfQ0Kc2FtcDEgPC0gZ2xvYmFsX21vbml0b3IgJT4lDQogIHNhbXBsZV9uKDUwKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDENCg0KRGVzY3JpYmUgdGhlIGRpc3RyaWJ1dGlvbiBvZiByZXNwb25zZXMgaW4gdGhpcyBzYW1wbGUuIEhvdyBkb2VzIGl0IGNvbXBhcmUgdG8gdGhlIGRpc3RyaWJ1dGlvbiBvZiByZXNwb25zZXMgaW4gdGhlIHBvcHVsYXRpb24uIEhpbnQ6IEFsdGhvdWdoIHRoZSBzYW1wbGVfbiBmdW5jdGlvbiB0YWtlcyBhIHJhbmRvbSBzYW1wbGUgb2Ygb2JzZXJ2YXRpb25zIChpLmUuIHJvd3MpIGZyb20gdGhlIGRhdGFzZXQsIHlvdSBjYW4gc3RpbGwgcmVmZXIgdG8gdGhlIHZhcmlhYmxlcyBpbiB0aGUgZGF0YXNldCB3aXRoIHRoZSBzYW1lIG5hbWVzLiBDb2RlIHlvdSBwcmVzZW50ZWQgZWFybGllciBmb3IgdmlzdWFsaXppbmcgYW5kIHN1bW1hcml6aW5nIHRoZSBwb3B1bGF0aW9uIGRhdGEgd2lsbCBzdGlsbCBiZSB1c2VmdWwgZm9yIHRoZSBzYW1wbGUsIGhvd2V2ZXIgYmUgY2FyZWZ1bCB0byBub3QgbGFiZWwgeW91ciBwcm9wb3J0aW9uIHAgc2luY2UgeW914oCZcmUgbm93IGNhbGN1bGF0aW5nIGEgc2FtcGxlIHN0YXRpc3RpYywgbm90IGEgcG9wdWxhdGlvbiBwYXJhbWV0ZXJzLiBZb3UgY2FuIGN1c3RvbWl6ZSB0aGUgbGFiZWwgb2YgdGhlIHN0YXRpc3RpY3MgdG8gaW5kaWNhdGUgdGhhdCBpdCBjb21lcyBmcm9tIHRoZSBzYW1wbGUuDQoNClRoZSBkYXRhIGZvciBib3RoIHRoZSBzYW1wbGUgYW5kIHRoZSBwb3B1bGF0aW9uIHNob3dzIHRoYXQgYWJvdXQgMjAlIG9mIHBlb3BsZSBiZWxpZXZlIHRoYXQgdGhlIHdvcmsgb2Ygc2NpZW50aXN0cyBpcyBub3QgYmVuZWZpY2lhbC4NCg0KIyMjIEV4ZXJjaXNlIDINCg0KV291bGQgeW91IGV4cGVjdCB0aGUgc2FtcGxlIHByb3BvcnRpb24gdG8gbWF0Y2ggdGhlIHNhbXBsZSBwcm9wb3J0aW9uIG9mIGFub3RoZXIgc3R1ZGVudOKAmXMgc2FtcGxlPyBXaHksIG9yIHdoeSBub3Q/IElmIHRoZSBhbnN3ZXIgaXMgbm8sIHdvdWxkIHlvdSBleHBlY3QgdGhlIHByb3BvcnRpb25zIHRvIGJlIHNvbWV3aGF0IGRpZmZlcmVudCBvciB2ZXJ5IGRpZmZlcmVudD8gQXNrIGEgc3R1ZGVudCB0ZWFtIHRvIGNvbmZpcm0geW91ciBhbnN3ZXIuDQoNCk5vLCB0aGUgc2FtcGxlIHByb3BvcnRpb25zIGxpa2VseSB3b27igJl0IG1hdGNoIGV4YWN0bHkgYmVjYXVzZSBlYWNoIHNhbXBsZSBpcyByYW5kb21seSBzZWxlY3RlZC4gSG93ZXZlciwgdGhleSBzaG91bGQgYmUgc29tZXdoYXQgc2ltaWxhciwgbm90IHZlcnkgZGlmZmVyZW50LCBhcyBib3RoIHNhbXBsZXMgY29tZSBmcm9tIHRoZSBzYW1lIHBvcHVsYXRpb24uDQoNCiMjIyBFeGVyY2lzZSAzDQoNClRha2UgYSBzZWNvbmQgc2FtcGxlLCBhbHNvIG9mIHNpemUgNTAsIGFuZCBjYWxsIGl0IHNhbXAyLiBIb3cgZG9lcyB0aGUgc2FtcGxlIHByb3BvcnRpb24gb2Ygc2FtcDIgY29tcGFyZSB3aXRoIHRoYXQgb2Ygc2FtcDE/IFN1cHBvc2Ugd2UgdG9vayB0d28gbW9yZSBzYW1wbGVzLCBvbmUgb2Ygc2l6ZSAxMDAgYW5kIG9uZSBvZiBzaXplIDEwMDAuIFdoaWNoIHdvdWxkIHlvdSB0aGluayB3b3VsZCBwcm92aWRlIGEgbW9yZSBhY2N1cmF0ZSBlc3RpbWF0ZSBvZiB0aGUgcG9wdWxhdGlvbiBwcm9wb3J0aW9uPw0KDQpgYGB7cn0NCnNhbXAyIDwtIGdsb2JhbF9tb25pdG9yICU+JQ0KICBzYW1wbGVfbig1MCkgDQoNCnNhbXAyICU+JQ0KICBjb3VudChzY2llbnRpc3Rfd29yaykgJT4lDQogIG11dGF0ZShwX2hhdF8gPSBuIC9zdW0obikpDQpgYGANCg0KVGhlIHNhbXBsZSBwcm9wb3J0aW9uIG9mIHNhbXAyIGlzIHF1aXRlIHNpbWlsYXIgdG8gc2FtcDEsIHdpdGggYm90aCBzaG93aW5nIG1vcmUgaW5kaXZpZHVhbHMgYmVuZWZpdGluZyB0aGFuIG5vdC4gSG93ZXZlciwgc2FtcDIgaGFzIHNsaWdodGx5IG1vcmUgaW5kaXZpZHVhbHMgd2hvIGRvbid0IGJlbmVmaXQgY29tcGFyZWQgdG8gc2FtcDEuIEkgYmVsaWV2ZSBhIHNhbXBsZSBzaXplIG9mIDEwMDAgd291bGQgcHJvdmlkZSBhIG1vcmUgYWNjdXJhdGUgbWVhc3VyZW1lbnQgYmVjYXVzZSBhIGxhcmdlciBzYW1wbGUgcmVkdWNlcyB2YXJpYWJpbGl0eSBhbmQgd291bGQgYmV0dGVyIHJlZmxlY3QgdGhlIG92ZXJhbGwgcG9wdWxhdGlvbiBkaXN0cmlidXRpb24uDQoNCg0KYGBge3J9DQpzYW1wbGVfcHJvcHM1MCA8LSBnbG9iYWxfbW9uaXRvciAlPiUNCiAgICAgICAgICAgICAgICAgICAgcmVwX3NhbXBsZV9uKHNpemUgPSA1MCwgcmVwcyA9IDE1MDAwLCByZXBsYWNlID0gVFJVRSkgJT4lDQogICAgICAgICAgICAgICAgICAgIGNvdW50KHNjaWVudGlzdF93b3JrKSAlPiUNCiAgICAgICAgICAgICAgICAgICAgbXV0YXRlKHBfaGF0ID0gbiAvc3VtKG4pKSAlPiUNCiAgICAgICAgICAgICAgICAgICAgZmlsdGVyKHNjaWVudGlzdF93b3JrID09ICJEb2Vzbid0IGJlbmVmaXQiKQ0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IHNhbXBsZV9wcm9wczUwLCBhZXMoeCA9IHBfaGF0KSkgKw0KICBnZW9tX2hpc3RvZ3JhbShiaW53aWR0aCA9IDAuMDIpICsNCiAgbGFicygNCiAgICB4ID0gInBfaGF0IChEb2Vzbid0IGJlbmVmaXQpIiwNCiAgICB0aXRsZSA9ICJTYW1wbGluZyBkaXN0cmlidXRpb24gb2YgcF9oYXQiLA0KICAgIHN1YnRpdGxlID0gIlNhbXBsZSBzaXplID0gNTAsIE51bWJlciBvZiBzYW1wbGVzID0gMTUwMDAiDQogICkNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSA0DQoNCkhvdyBtYW55IGVsZW1lbnRzIGFyZSB0aGVyZSBpbiBzYW1wbGVfcHJvcHM1MD8gRGVzY3JpYmUgdGhlIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbiwgYW5kIGJlIHN1cmUgdG8gc3BlY2lmaWNhbGx5IG5vdGUgaXRzIGNlbnRlci4gTWFrZSBzdXJlIHRvIGluY2x1ZGUgYSBwbG90IG9mIHRoZSBkaXN0cmlidXRpb24gaW4geW91ciBhbnN3ZXIuDQoNClRoZSBoaXN0b2dyYW0gYWJvdmUgaW5kaWNhdGVzIHRoYXQgdGhlcmUgYXJlIGFwcHJveGltYXRlbHkgMiwwMDAgZWxlbWVudHMgcmVwcmVzZW50ZWQuIFRoZSBzYW1wbGluZyBkaXN0cmlidXRpb24gaXMgc3ltbWV0cmljIGFuZCBleGhpYml0cyBubyBza2V3LCB3aXRoIGEgY2xlYXIgY2VudGVyIGF0IDAuMiwgb3IgMjAlLg0KDQojIyMjIEludGVybHVkZTogU2FtcGxpbmcgZGlzdHJpYnV0aW9ucw0KDQpUaGUgaWRlYSBiZWhpbmQgdGhlIHJlcF9zYW1wbGVfbiBmdW5jdGlvbiBpcyByZXBldGl0aW9uLiBFYXJsaWVyLCB5b3UgdG9vayBhIHNpbmdsZSBzYW1wbGUgb2Ygc2l6ZSBuICg1MCkgZnJvbSB0aGUgcG9wdWxhdGlvbiBvZiBhbGwgcGVvcGxlIGluIHRoZSBwb3B1bGF0aW9uLiBXaXRoIHRoaXMgbmV3IGZ1bmN0aW9uLCB5b3UgY2FuIHJlcGVhdCB0aGlzIHNhbXBsaW5nIHByb2NlZHVyZSByZXAgdGltZXMgaW4gb3JkZXIgdG8gYnVpbGQgYSBkaXN0cmlidXRpb24gb2YgYSBzZXJpZXMgb2Ygc2FtcGxlIHN0YXRpc3RpY3MsIHdoaWNoIGlzIGNhbGxlZCB0aGUgc2FtcGxpbmcgZGlzdHJpYnV0aW9uLg0KDQpOb3RlIHRoYXQgaW4gcHJhY3RpY2Ugb25lIHJhcmVseSBnZXRzIHRvIGJ1aWxkIHRydWUgc2FtcGxpbmcgZGlzdHJpYnV0aW9ucywgYmVjYXVzZSBvbmUgcmFyZWx5IGhhcyBhY2Nlc3MgdG8gZGF0YSBmcm9tIHRoZSBlbnRpcmUgcG9wdWxhdGlvbi4NCg0KV2l0aG91dCB0aGUgcmVwX3NhbXBsZV9uIGZ1bmN0aW9uLCB0aGlzIHdvdWxkIGJlIHBhaW5mdWwuIFdlIHdvdWxkIGhhdmUgdG8gbWFudWFsbHkgcnVuIHRoZSBmb2xsb3dpbmcgY29kZSAxNSwwMDAgdGltZXMNCg0KYGBge3J9DQpnbG9iYWxfbW9uaXRvciAlPiUNCiAgc2FtcGxlX24oc2l6ZSA9IDUwLCByZXBsYWNlID0gVFJVRSkgJT4lDQogIGNvdW50KHNjaWVudGlzdF93b3JrKSAlPiUNCiAgbXV0YXRlKHBfaGF0ID0gbiAvc3VtKG4pKSAlPiUNCiAgZmlsdGVyKHNjaWVudGlzdF93b3JrID09ICJEb2Vzbid0IGJlbmVmaXQiKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDUNCg0KVG8gbWFrZSBzdXJlIHlvdSB1bmRlcnN0YW5kIGhvdyBzYW1wbGluZyBkaXN0cmlidXRpb25zIGFyZSBidWlsdCwgYW5kIGV4YWN0bHkgd2hhdCB0aGUgcmVwX3NhbXBsZV9uIGZ1bmN0aW9uIGRvZXMsIHRyeSBtb2RpZnlpbmcgdGhlIGNvZGUgdG8gY3JlYXRlIGEgc2FtcGxpbmcgZGlzdHJpYnV0aW9uIG9mIDI1IHNhbXBsZSBwcm9wb3J0aW9ucyBmcm9tIHNhbXBsZXMgb2Ygc2l6ZSAxMCwgYW5kIHB1dCB0aGVtIGluIGEgZGF0YSBmcmFtZSBuYW1lZCBzYW1wbGVfcHJvcHNfc21hbGwuIFByaW50IHRoZSBvdXRwdXQuIEhvdyBtYW55IG9ic2VydmF0aW9ucyBhcmUgdGhlcmUgaW4gdGhpcyBvYmplY3QgY2FsbGVkIHNhbXBsZV9wcm9wc19zbWFsbD8gV2hhdCBkb2VzIGVhY2ggb2JzZXJ2YXRpb24gcmVwcmVzZW50Pw0KDQpgYGB7cn0NCnNhbXBsZV9wcm9wc19zbWFsbCA8LSBnbG9iYWxfbW9uaXRvciAlPiUNCiAgICAgICAgICAgICAgICAgICAgcmVwX3NhbXBsZV9uKHNpemUgPSAxMCwgcmVwcyA9IDI1LCByZXBsYWNlID0gVFJVRSkgJT4lDQogICAgICAgICAgICAgICAgICAgIGNvdW50KHNjaWVudGlzdF93b3JrKSAlPiUNCiAgICAgICAgICAgICAgICAgICAgbXV0YXRlKHBfaGF0ID0gbiAvc3VtKG4pKSAlPiUNCiAgICAgICAgICAgICAgICAgICAgZmlsdGVyKHNjaWVudGlzdF93b3JrID09ICJEb2Vzbid0IGJlbmVmaXQiKQ0KDQpzYW1wbGVfcHJvcHNfc21hbGwNCmBgYA0KDQoNCiMjIyMgU2FtcGxlIHNpemUgYW5kIHRoZSBzYW1wbGluZyBkaXN0cmlidXRpb24NCg0KTWVjaGFuaWNzIGFzaWRlLCBsZXTigJlzIHJldHVybiB0byB0aGUgcmVhc29uIHdlIHVzZWQgdGhlIHJlcF9zYW1wbGVfbiBmdW5jdGlvbjogdG8gY29tcHV0ZSBhIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbiwgc3BlY2lmaWNhbGx5LCB0aGUgc2FtcGxpbmcgZGlzdHJpYnV0aW9uIG9mIHRoZSBwcm9wb3J0aW9ucyBmcm9tIHNhbXBsZXMgb2YgNTAgcGVvcGxlLg0KDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBzYW1wbGVfcHJvcHM1MCwgYWVzKHggPSBwX2hhdCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGggPSAwLjAyKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDYNCg0KVXNlIHRoZSBhcHAgYmVsb3cgdG8gY3JlYXRlIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbnMgb2YgcHJvcG9ydGlvbnMgb2YgRG9lc27igJl0IGJlbmVmaXQgZnJvbSBzYW1wbGVzIG9mIHNpemUgMTAsIDUwLCBhbmQgMTAwLiBVc2UgNSwwMDAgc2ltdWxhdGlvbnMuIFdoYXQgZG9lcyBlYWNoIG9ic2VydmF0aW9uIGluIHRoZSBzYW1wbGluZyBkaXN0cmlidXRpb24gcmVwcmVzZW50PyBIb3cgZG9lcyB0aGUgbWVhbiwgc3RhbmRhcmQgZXJyb3IsIGFuZCBzaGFwZSBvZiB0aGUgc2FtcGxpbmcgZGlzdHJpYnV0aW9uIGNoYW5nZSBhcyB0aGUgc2FtcGxlIHNpemUgaW5jcmVhc2VzPyBIb3cgKGlmIGF0IGFsbCkgZG8gdGhlc2UgdmFsdWVzIGNoYW5nZSBpZiB5b3UgaW5jcmVhc2UgdGhlIG51bWJlciBvZiBzaW11bGF0aW9ucz8gKFlvdSBkbyBub3QgbmVlZCB0byBpbmNsdWRlIHBsb3RzIGluIHlvdXIgYW5zd2VyLikNCg0KYGBge3J9DQojI1NhbXBsZXMgb2Ygc2l6ZSAxMCBmcm9tIDUwMDAgc2ltdWxhdGlvbnMNCnNldC5zZWVkKDEpDQoNCiNHZW5lcmF0aW5nIHRoZSBzYW1wbGluZyBkaXN0cmlidXRpb24NCnNhbXBsZV9wcm9wc19zbWFsbDEgPC0gZ2xvYmFsX21vbml0b3IgJT4lDQogICAgcmVwX3NhbXBsZV9uKHNpemUgPSAxMCwgcmVwcyA9IDUwMDAsIHJlcGxhY2UgPSBUUlVFKSAlPiUNCiAgICBncm91cF9ieShyZXAgPSByb3dfbnVtYmVyKCkpICU+JSAgI0NyZWF0aW5nIGEgJ3JlcCcgY29sdW1uIGZvciByZXBldGl0aW9ucw0KICAgIGNvdW50KHNjaWVudGlzdF93b3JrKSAlPiUNCiAgICBncm91cF9ieShzY2llbnRpc3Rfd29yaykgJT4lICAjR3JvdXAgYnkgc2NpZW50aXN0X3dvcmsgZm9yIHByb3BvcnRpb24gY2FsY3VsYXRpb24NCiAgICBtdXRhdGUocF9oYXQgPSBuIC8gc3VtKG4pKSAlPiUNCiAgICBmaWx0ZXIoc2NpZW50aXN0X3dvcmsgPT0gIkRvZXNuJ3QgYmVuZWZpdCIpDQoNCnNhbXBsZV9wcm9wc19zbWFsbDENCg0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDcNCg0KVGFrZSBhIHNhbXBsZSBvZiBzaXplIDE1IGZyb20gdGhlIHBvcHVsYXRpb24gYW5kIGNhbGN1bGF0ZSB0aGUgcHJvcG9ydGlvbiBvZiBwZW9wbGUgaW4gdGhpcyBzYW1wbGUgd2hvIHRoaW5rIHRoZSB3b3JrIHNjaWVudGlzdHMgZG8gZW5oYW5jZXMgdGhlaXIgbGl2ZXMuIFVzaW5nIHRoaXMgc2FtcGxlLCB3aGF0IGlzIHlvdXIgYmVzdCBwb2ludCBlc3RpbWF0ZSBvZiB0aGUgcG9wdWxhdGlvbiBwcm9wb3J0aW9uIG9mIHBlb3BsZSB3aG8gdGhpbmsgdGhlIHdvcmsgc2NpZW50aXN0cyBkbyBlbmNoYW5jZXMgdGhlaXIgbGl2ZXM/DQoNCmBgYHtyfQ0Kc2V0LnNlZWQoNCkgICMgU2V0IHNlZWQgZm9yIHJlcHJvZHVjaWJpbGl0eQ0Kc2FtcDMgPC0gZ2xvYmFsX21vbml0b3IgJT4lDQogIHNhbXBsZV9uKDE1KSAgI1Rha2luZyBhIHNhbXBsZSBvZiBzaXplIDE1DQoNCiNDb3VudGluZyB0aGUgbnVtYmVyIG9mIHJlc3BvbnNlcyBmb3IgZWFjaCBjYXRlZ29yeSBhbmQgY2FsY3VsYXRlIHRoZSBwcm9wb3J0aW9uDQpzYW1wM19zdW1tYXJ5IDwtIHNhbXAzICU+JQ0KICBjb3VudChzY2llbnRpc3Rfd29yaykgJT4lDQogIG11dGF0ZShzYW0gPSBuIC8gc3VtKG4pKSAgI0NhbGN1bGF0aW5nIHRoZSBwcm9wb3J0aW9uDQoNCiMgRXh0cmFjdCB0aGUgcHJvcG9ydGlvbiBmb3IgIkJlbmVmaXRzIg0KYmVuZWZpdHNfcHJvcG9ydGlvbiA8LSBzYW1wM19zdW1tYXJ5ICU+JQ0KICBmaWx0ZXIoc2NpZW50aXN0X3dvcmsgPT0gIkJlbmVmaXRzIikgJT4lDQogIHNlbGVjdChzYW0pICAjIEdldCB0aGUgcHJvcG9ydGlvbg0KDQpiZW5lZml0c19wcm9wb3J0aW9uDQoNCmBgYA0KDQpBcHByb3hpbWF0ZWx5IDczLjMzJSBvZiB0aGUgc2FtcGxlZCBpbmRpdmlkdWFscyB0aGluayB0aGF0IHNjaWVudGlzdHMnIHdvcmsgYmVuZWZpdHMgdGhlaXIgbGl2ZXMuDQoNCg0KIyMjIEV4ZXJjaXNlIDgNCg0KU2luY2UgeW91IGhhdmUgYWNjZXNzIHRvIHRoZSBwb3B1bGF0aW9uLCBzaW11bGF0ZSB0aGUgc2FtcGxpbmcgZGlzdHJpYnV0aW9uIG9mIHByb3BvcnRpb24gb2YgdGhvc2Ugd2hvIHRoaW5rIHRoZSB3b3JrIHNjaWVudGlzdHMgZG8gZW5jaGFuY2VzIHRoZWlyIGxpdmVzIGZvciBzYW1wbGVzIG9mIHNpemUgMTUgYnkgdGFraW5nIDIwMDAgc2FtcGxlcyBmcm9tIHRoZSBwb3B1bGF0aW9uIG9mIHNpemUgMTUgYW5kIGNvbXB1dGluZyAyMDAwIHNhbXBsZSBwcm9wb3J0aW9ucy4gU3RvcmUgdGhlc2UgcHJvcG9ydGlvbnMgaW4gYXMgc2FtcGxlX3Byb3BzMTUuIFBsb3QgdGhlIGRhdGEsIHRoZW4gZGVzY3JpYmUgdGhlIHNoYXBlIG9mIHRoaXMgc2FtcGxpbmcgZGlzdHJpYnV0aW9uLiBCYXNlZCBvbiB0aGlzIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbiwgd2hhdCB3b3VsZCB5b3UgZ3Vlc3MgdGhlIHRydWUgcHJvcG9ydGlvbiBvZiB0aG9zZSB3aG8gdGhpbmsgdGhlIHdvcmsgc2NpZW50aXN0cyBkbyBlbmNoYW5jZXMgdGhlaXIgbGl2ZXMgdG8gYmU/IEZpbmFsbHksIGNhbGN1bGF0ZSBhbmQgcmVwb3J0IHRoZSBwb3B1bGF0aW9uIHByb3BvcnRpb24uDQoNCg0KYGBge3J9DQpzYW1wbGVfcHJvcHMxNSA8LSBnbG9iYWxfbW9uaXRvciAlPiUNCiAgICAgICAgICAgICAgICAgICAgcmVwX3NhbXBsZV9uKHNpemUgPSAxNSwgcmVwcyA9IDIwMDAsIHJlcGxhY2UgPSBUUlVFKSAlPiUNCiAgICAgICAgICAgICAgICAgICAgY291bnQoc2NpZW50aXN0X3dvcmspICU+JQ0KICAgICAgICAgICAgICAgICAgICBtdXRhdGUocF9oYXQgPSBuIC9zdW0obikpICU+JQ0KICAgICAgICAgICAgICAgICAgICBmaWx0ZXIoc2NpZW50aXN0X3dvcmsgPT0gIkJlbmVmaXRzIikNCg0Kc2FtcGxlX3Byb3BzMTUNCg0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IHNhbXBsZV9wcm9wczE1LCBhZXMoeCA9IHBfaGF0KSkgKw0KICBnZW9tX2hpc3RvZ3JhbShiaW53aWR0aCA9IDAuMDIpICsNCiAgbGFicygNCiAgICB4ID0gInBfaGF0IChCZW5lZml0cykiLA0KICAgIHRpdGxlID0gIlNhbXBsaW5nIGRpc3RyaWJ1dGlvbiBvZiBwb3B1bGF0aW9uIHByb3BvcnRpb24iLA0KICAgIHN1YnRpdGxlID0gIlNhbXBsZSBzaXplID0gMTUsIE51bWJlciBvZiBzYW1wbGVzID0gMjAwMCINCiAgKQ0KYGBgDQoNCmBgYHtyfQ0KbWVhbihzYW1wbGVfcHJvcHMxNSRwX2hhdCkNCmBgYA0KQWJvdXQgNzklIG9mIHRoZSBwb3B1bGF0aW9uIHRydWx5IGJlbGlldmUgdGhhdCBzY2llbnRpc3RzIGRvIGVuaGFuY2UgdGhlaXIgZXZlcnlkYXkgbGl2ZXMuDQoNCg0KIyMjIEV4ZXJjaXNlIDkNCg0KQ2hhbmdlIHlvdXIgc2FtcGxlIHNpemUgZnJvbSAxNSB0byAxNTAsIHRoZW4gY29tcHV0ZSB0aGUgc2FtcGxpbmcgZGlzdHJpYnV0aW9uIHVzaW5nIHRoZSBzYW1lIG1ldGhvZCBhcyBhYm92ZSwgYW5kIHN0b3JlIHRoZXNlIHByb3BvcnRpb25zIGluIGEgbmV3IG9iamVjdCBjYWxsZWQgc2FtcGxlX3Byb3BzMTUwLiBEZXNjcmliZSB0aGUgc2hhcGUgb2YgdGhpcyBzYW1wbGluZyBkaXN0cmlidXRpb24gYW5kIGNvbXBhcmUgaXQgdG8gdGhlIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbiBmb3IgYSBzYW1wbGUgc2l6ZSBvZiAxNS4gQmFzZWQgb24gdGhpcyBzYW1wbGluZyBkaXN0cmlidXRpb24sIHdoYXQgd291bGQgeW91IGd1ZXNzIHRvIGJlIHRoZSB0cnVlIHByb3BvcnRpb24gb2YgdGhvc2Ugd2hvIHRoaW5rIHRoZSB3b3JrIHNjaWVudGlzdHMgZG8gZW5jaGFuY2VzIHRoZWlyIGxpdmVzPw0KDQpgYGB7cn0NCnNhbXBsZV9wcm9wczE1MCA8LSBnbG9iYWxfbW9uaXRvciAlPiUNCiAgICAgICAgICAgICAgICAgICAgcmVwX3NhbXBsZV9uKHNpemUgPSAxNTAsIHJlcHMgPSAyMDAwLCByZXBsYWNlID0gVFJVRSkgJT4lDQogICAgICAgICAgICAgICAgICAgIGNvdW50KHNjaWVudGlzdF93b3JrKSAlPiUNCiAgICAgICAgICAgICAgICAgICAgbXV0YXRlKHBfaGF0ID0gbiAvc3VtKG4pKSAlPiUNCiAgICAgICAgICAgICAgICAgICAgZmlsdGVyKHNjaWVudGlzdF93b3JrID09ICJCZW5lZml0cyIpIA0Kc2FtcGxlX3Byb3BzMTUwDQpgYGANCg0KDQpgYGB7cn0NCmdncGxvdChkYXRhID0gc2FtcGxlX3Byb3BzMTUwLCBhZXMoeCA9IHBfaGF0KSkgKw0KICBnZW9tX2hpc3RvZ3JhbShiaW53aWR0aCA9IDAuMDIpICsNCiAgbGFicygNCiAgICB4ID0gInBfaGF0IChCZW5lZml0cykiLA0KICAgIHRpdGxlID0gIlNhbXBsaW5nIGRpc3RyaWJ1dGlvbiBvZiBwb3B1bGF0aW9uIHByb3BvcnRpb24iLA0KICAgIHN1YnRpdGxlID0gIlNhbXBsZSBzaXplID0gMTUwLCBOdW1iZXIgb2Ygc2FtcGxlcyA9IDIwMDAiDQogICkNCmBgYA0KDQoNCmBgYHtyfQ0KbWVhbihzYW1wbGVfcHJvcHMxNTAkcF9oYXQpDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgMTANCg0KT2YgdGhlIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbnMgZnJvbSAyIGFuZCAzLCB3aGljaCBoYXMgYSBzbWFsbGVyIHNwcmVhZD8gSWYgeW914oCZcmUgY29uY2VybmVkIHdpdGggbWFraW5nIGVzdGltYXRlcyB0aGF0IGFyZSBtb3JlIG9mdGVuIGNsb3NlIHRvIHRoZSB0cnVlIHZhbHVlLCB3b3VsZCB5b3UgcHJlZmVyIGEgc2FtcGxpbmcgZGlzdHJpYnV0aW9uIHdpdGggYSBsYXJnZSBvciBzbWFsbCBzcHJlYWQ/DQoNCg0KQmFzZWQgb24gdGhlIGNoYXJ0LCBJIHdvdWxkIGNvbmNsdWRlIHRoYXQgY2hhcnQgMiBoYXMgYSBuYXJyb3dlciBzcHJlYWQsIHN1Z2dlc3RpbmcgdGhhdCBzbWFsbGVyIHNhbXBsZXMgYXJlIGVhc2llciB0byBtYW5hZ2UuIEluIGdlbmVyYWwsIHVzaW5nIHNtYWxsZXIgc2FtcGxlIHNpemVzIHRlbmRzIHRvIHByb3ZpZGUgYSBtb3JlIHByZWNpc2UgZXN0aW1hdGUgb2YgdGhlIHBvcHVsYXRpb24gcHJvcG9ydGlvbi4NCg0K