y<-c(193,230,172,91,113,125)
x1<-c(1.6,15.5,22,43,33,40)
x2<-c(851,816,1058,1201,1357,1115)
cojinetes<-data.frame(y,x1,x2)MODELO DE REGRESION MULTIPLE
Introducimos los valores del desgaste de un cojinete y su relacion con \(x_1=\)viscosidad del aceite y \(x_2=\)carga.
Calcularemos los coeficientes del vector\(\beta\) utilizando la formula \(\beta=(H^t\times{H})^{-1}\times{H^t\times{Y}}\)
H<-data.frame(rep(1,6),x1,x2)
H_matriz<-as.matrix(H)
p1<-solve(t(H_matriz) %*% H_matriz)
p2<-t(H_matriz)%*%y
Betas<-p1%*%p2
Betas [,1]
rep.1..6. 350.9942706
x1 -1.2719944
x2 -0.1539042
cor_cojinetes<-cor(cojinetes)
cor_cojinetes y x1 x2
y 1.0000000 -0.8518508 -0.8984749
x1 -0.8518508 1.0000000 0.7881313
x2 -0.8984749 0.7881313 1.0000000
Calculando el modelo de regresion multiple.
Regr_cojinetes<-lm(cojinetes)
summary(Regr_cojinetes)
Call:
lm(formula = cojinetes)
Residuals:
1 2 3 4 5 6
-24.987 24.307 11.820 -20.460 12.830 -3.511
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 350.99427 74.75307 4.695 0.0183 *
x1 -1.27199 1.16914 -1.088 0.3562
x2 -0.15390 0.08953 -1.719 0.1841
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 25.5 on 3 degrees of freedom
Multiple R-squared: 0.8618, Adjusted R-squared: 0.7696
F-statistic: 9.353 on 2 and 3 DF, p-value: 0.05138
pairs(cojinetes)residuos<-residuals(Regr_cojinetes)
qqnorm(residuos)
qqline(residuos)library(GGally)Cargando paquete requerido: ggplot2
Registered S3 method overwritten by 'GGally':
method from
+.gg ggplot2
ggpairs(cojinetes)library(readxl)
library(GGally)
practica<-read_excel('C:/Users/MINEDUCYT/Desktop/REGRESION LINEAL PRACTICA.xlsx')
regr_practica<-lm(practica$Y~practica$x1+practica$x2+practica$x3,data=practica)
summary(regr_practica)
Call:
lm(formula = practica$Y ~ practica$x1 + practica$x2 + practica$x3,
data = practica)
Residuals:
Min 1Q Median 3Q Max
-0.47459 -0.08119 -0.01986 0.14153 0.39018
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.661975 0.405306 1.633 0.131
practica$x1 1.992761 0.011729 169.901 < 2e-16 ***
practica$x2 -2.993595 0.008090 -370.021 < 2e-16 ***
practica$x3 0.497545 0.008371 59.435 3.78e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2518 on 11 degrees of freedom
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
F-statistic: 5.01e+04 on 3 and 11 DF, p-value: < 2.2e-16
ggpairs(practica)qqnorm(residuals(regr_practica))
qqline(residuals(regr_practica))