Nation Charts Assignment J.Z

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(ggplot2)
library(RColorBrewer)
library(ggfortify)
library(plotly)

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

    last_plot

The following object is masked from 'package:stats':

    filter

The following object is masked from 'package:graphics':

    layout
nations <- read_csv("nations.csv")
Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nations <- mutate(nations, GDP = (gdp_percap * population) / (10^12))
filtered <- filter(nations, country == "China" | country == "Germany" | country == "Japan" | country == "United States")
plot1 <- ggplot(filtered, aes(x = year, y = GDP, color = country)) +
  geom_point() +
  geom_line() +
  labs(
    title = "China's Rise to Become the Largest Economy",
    x = "year",
    y = "GDP ($ trillion)") +
  scale_color_brewer(palette = "Set1")
plot1

grouping <- group_by(nations, region, year)
summarised_nations <- summarise(grouping, sum_GDP = sum(GDP, na.rm = TRUE))
`summarise()` has grouped output by 'region'. You can override using the
`.groups` argument.
plot2 <- ggplot(summarised_nations, aes(x=year, y=sum_GDP, fill = region)) +
  geom_area(color = 'White', linewidth = 0.1, alpha = 0.9) +
labs(
    title = "China's Rise to Become the Largest Economy",
    x = "year",
    y = "GDP ($ trillion)") +
  scale_fill_brewer(palette = "Set2")
plot2