library(dplyr)
library(ggplot2)

Wide Dataset 1 - FL - Housing Insecurity Indicators Dataset

This dataset of potential indicators to assess people’s risk of losing their homes in Florida.The author intended to use the dataset to understand which groups of people are at higher risk of lossing their homes in Florida.The dataset and analysis is as done below:

# Reading the dataset
housing_dt <- read.csv("C:\\Users\\HP\\Downloads\\data_1-FL.csv", sep=",", )

# View the columns
colnames(housing_dt)
##   [1] "geoid"                                                                
##   [2] "geoid_year"                                                           
##   [3] "state"                                                                
##   [4] "county"                                                               
##   [5] "state_fips_code"                                                      
##   [6] "county_fips_code"                                                     
##   [7] "b19083_001e"                                                          
##   [8] "b19083_001m"                                                          
##   [9] "economic_distress_pop_agg"                                            
##  [10] "economic_distress_simple_agg"                                         
##  [11] "investment_areas"                                                     
##  [12] "opzone"                                                               
##  [13] "b23025_002e"                                                          
##  [14] "b23025_002m"                                                          
##  [15] "b23025_004e"                                                          
##  [16] "b23025_004m"                                                          
##  [17] "b23025_005e"                                                          
##  [18] "b23025_005m"                                                          
##  [19] "b23025_006e"                                                          
##  [20] "b23025_006m"                                                          
##  [21] "s1701_c03_001e"                                                       
##  [22] "s1701_c03_001m"                                                       
##  [23] "s1701_c03_002e"                                                       
##  [24] "s1701_c03_002m"                                                       
##  [25] "s1701_c03_003e"                                                       
##  [26] "s1701_c03_003m"                                                       
##  [27] "s1701_c03_004e"                                                       
##  [28] "s1701_c03_004m"                                                       
##  [29] "s1701_c03_006e"                                                       
##  [30] "s1701_c03_006m"                                                       
##  [31] "s1701_c03_007e"                                                       
##  [32] "s1701_c03_007m"                                                       
##  [33] "s1701_c03_008e"                                                       
##  [34] "s1701_c03_008m"                                                       
##  [35] "s1701_c03_009e"                                                       
##  [36] "s1701_c03_009m"                                                       
##  [37] "s1701_c03_010e"                                                       
##  [38] "s1701_c03_010m"                                                       
##  [39] "s1701_c03_011e"                                                       
##  [40] "s1701_c03_011m"                                                       
##  [41] "s1701_c03_012e"                                                       
##  [42] "s1701_c03_012m"                                                       
##  [43] "s1701_c03_013e"                                                       
##  [44] "s1701_c03_013m"                                                       
##  [45] "s1701_c03_014e"                                                       
##  [46] "s1701_c03_014m"                                                       
##  [47] "s1701_c03_015e"                                                       
##  [48] "s1701_c03_015m"                                                       
##  [49] "s1701_c03_016e"                                                       
##  [50] "s1701_c03_016m"                                                       
##  [51] "s1701_c03_017e"                                                       
##  [52] "s1701_c03_017m"                                                       
##  [53] "s1701_c03_018e"                                                       
##  [54] "s1701_c03_018m"                                                       
##  [55] "s1701_c03_019e"                                                       
##  [56] "s1701_c03_019m"                                                       
##  [57] "s1701_c03_020e"                                                       
##  [58] "s1701_c03_020m"                                                       
##  [59] "s1701_c03_021e"                                                       
##  [60] "s1701_c03_021m"                                                       
##  [61] "s1903_c03_001e"                                                       
##  [62] "s1903_c03_001m"                                                       
##  [63] "s1903_c03_002e"                                                       
##  [64] "s1903_c03_002m"                                                       
##  [65] "s1903_c03_003e"                                                       
##  [66] "s1903_c03_003m"                                                       
##  [67] "s1903_c03_004e"                                                       
##  [68] "s1903_c03_004m"                                                       
##  [69] "s1903_c03_005e"                                                       
##  [70] "s1903_c03_005m"                                                       
##  [71] "s1903_c03_006e"                                                       
##  [72] "s1903_c03_006m"                                                       
##  [73] "s1903_c03_007e"                                                       
##  [74] "s1903_c03_007m"                                                       
##  [75] "s1903_c03_008e"                                                       
##  [76] "s1903_c03_008m"                                                       
##  [77] "s1903_c03_009e"                                                       
##  [78] "s1903_c03_009m"                                                       
##  [79] "s1903_c03_010e"                                                       
##  [80] "s1903_c03_010m"                                                       
##  [81] "s1903_c03_011e"                                                       
##  [82] "s1903_c03_011m"                                                       
##  [83] "s1903_c03_012e"                                                       
##  [84] "s1903_c03_012m"                                                       
##  [85] "s1903_c03_013e"                                                       
##  [86] "s1903_c03_013m"                                                       
##  [87] "s1903_c03_014e"                                                       
##  [88] "s1903_c03_014m"                                                       
##  [89] "s2001_c01_002e"                                                       
##  [90] "s2001_c01_002m"                                                       
##  [91] "s2001_c03_002e"                                                       
##  [92] "s2001_c03_002m"                                                       
##  [93] "s2001_c05_002e"                                                       
##  [94] "s2001_c05_002m"                                                       
##  [95] "s2701_c03_001e"                                                       
##  [96] "s2701_c03_001m"                                                       
##  [97] "s2701_c03_002e"                                                       
##  [98] "s2701_c03_002m"                                                       
##  [99] "s2701_c03_003e"                                                       
## [100] "s2701_c03_003m"                                                       
## [101] "s2701_c03_004e"                                                       
## [102] "s2701_c03_004m"                                                       
## [103] "s2701_c03_005e"                                                       
## [104] "s2701_c03_005m"                                                       
## [105] "s2701_c03_006e"                                                       
## [106] "s2701_c03_006m"                                                       
## [107] "s2701_c03_007e"                                                       
## [108] "s2701_c03_007m"                                                       
## [109] "s2701_c03_008e"                                                       
## [110] "s2701_c03_008m"                                                       
## [111] "s2701_c03_009e"                                                       
## [112] "s2701_c03_009m"                                                       
## [113] "s2701_c03_010e"                                                       
## [114] "s2701_c03_010m"                                                       
## [115] "s2701_c03_011e"                                                       
## [116] "s2701_c03_011m"                                                       
## [117] "s2701_c03_012e"                                                       
## [118] "s2701_c03_012m"                                                       
## [119] "s2701_c03_013e"                                                       
## [120] "s2701_c03_013m"                                                       
## [121] "s2701_c03_014e"                                                       
## [122] "s2701_c03_014m"                                                       
## [123] "s2701_c03_015e"                                                       
## [124] "s2701_c03_015m"                                                       
## [125] "s2701_c03_016e"                                                       
## [126] "s2701_c03_016m"                                                       
## [127] "s2701_c03_017e"                                                       
## [128] "s2701_c03_017m"                                                       
## [129] "s2701_c03_018e"                                                       
## [130] "s2701_c03_018m"                                                       
## [131] "s2701_c03_019e"                                                       
## [132] "s2701_c03_019m"                                                       
## [133] "s2701_c03_020e"                                                       
## [134] "s2701_c03_020m"                                                       
## [135] "s2701_c03_021e"                                                       
## [136] "s2701_c03_021m"                                                       
## [137] "s2701_c03_022e"                                                       
## [138] "s2701_c03_022m"                                                       
## [139] "s2701_c03_023e"                                                       
## [140] "s2701_c03_023m"                                                       
## [141] "s2701_c03_024e"                                                       
## [142] "s2701_c03_024m"                                                       
## [143] "s2701_c05_001e"                                                       
## [144] "s2701_c05_001m"                                                       
## [145] "s2701_c05_002e"                                                       
## [146] "s2701_c05_002m"                                                       
## [147] "s2701_c05_003e"                                                       
## [148] "s2701_c05_003m"                                                       
## [149] "s2701_c05_004e"                                                       
## [150] "s2701_c05_004m"                                                       
## [151] "s2701_c05_005e"                                                       
## [152] "s2701_c05_005m"                                                       
## [153] "s2701_c05_006e"                                                       
## [154] "s2701_c05_006m"                                                       
## [155] "s2701_c05_007e"                                                       
## [156] "s2701_c05_007m"                                                       
## [157] "s2701_c05_008e"                                                       
## [158] "s2701_c05_008m"                                                       
## [159] "s2701_c05_009e"                                                       
## [160] "s2701_c05_009m"                                                       
## [161] "s2701_c05_010e"                                                       
## [162] "s2701_c05_010m"                                                       
## [163] "s2701_c05_011e"                                                       
## [164] "s2701_c05_011m"                                                       
## [165] "s2701_c05_012e"                                                       
## [166] "s2701_c05_012m"                                                       
## [167] "s2701_c05_013e"                                                       
## [168] "s2701_c05_013m"                                                       
## [169] "s2701_c05_014e"                                                       
## [170] "s2701_c05_014m"                                                       
## [171] "s2701_c05_015e"                                                       
## [172] "s2701_c05_015m"                                                       
## [173] "s2701_c05_016e"                                                       
## [174] "s2701_c05_016m"                                                       
## [175] "s2701_c05_017e"                                                       
## [176] "s2701_c05_017m"                                                       
## [177] "s2701_c05_018e"                                                       
## [178] "s2701_c05_018m"                                                       
## [179] "s2701_c05_019e"                                                       
## [180] "s2701_c05_019m"                                                       
## [181] "s2701_c05_020e"                                                       
## [182] "s2701_c05_020m"                                                       
## [183] "s2701_c05_021e"                                                       
## [184] "s2701_c05_021m"                                                       
## [185] "s2701_c05_022e"                                                       
## [186] "s2701_c05_022m"                                                       
## [187] "s2701_c05_023e"                                                       
## [188] "s2701_c05_023m"                                                       
## [189] "b23025_003e"                                                          
## [190] "b23025_003m"                                                          
## [191] "b23025_007e"                                                          
## [192] "b23025_007m"                                                          
## [193] "cancer"                                                               
## [194] "d2_cancer"                                                            
## [195] "d5_cancer"                                                            
## [196] "d2_dslpm"                                                             
## [197] "d5_dslpm"                                                             
## [198] "dslpm"                                                                
## [199] "d2_ldpnt"                                                             
## [200] "d5_ldpnt"                                                             
## [201] "pre1960pct"                                                           
## [202] "d2_ozone"                                                             
## [203] "d5_ozone"                                                             
## [204] "ozone"                                                                
## [205] "d2_pm25"                                                              
## [206] "d5_pm25"                                                              
## [207] "pm25"                                                                 
## [208] "d2_pnpl"                                                              
## [209] "d5_pnpl"                                                              
## [210] "pnpl"                                                                 
## [211] "d2_prmp"                                                              
## [212] "d5_prmp"                                                              
## [213] "prmp"                                                                 
## [214] "d2_ptraf"                                                             
## [215] "d5_ptraf"                                                             
## [216] "ptraf"                                                                
## [217] "d2_ptsdf"                                                             
## [218] "d5_ptsdf"                                                             
## [219] "ptsdf"                                                                
## [220] "d2_pwdis"                                                             
## [221] "d5_pwdis"                                                             
## [222] "pwdis"                                                                
## [223] "d2_resp"                                                              
## [224] "d5_resp"                                                              
## [225] "resp"                                                                 
## [226] "d2_rsei_air"                                                          
## [227] "d5_rsei_air"                                                          
## [228] "rsei_air"                                                             
## [229] "d2_ust"                                                               
## [230] "d5_ust"                                                               
## [231] "ust"                                                                  
## [232] "energy_burden"                                                        
## [233] "energy_burden_percentile"                                             
## [234] "expected_agricultural_loss_rate_natural_hazards_risk_index"           
## [235] "expected_agricultural_loss_rate_natural_hazards_risk_index_percentile"
## [236] "expected_building_loss_rate_natural_hazards_risk_index"               
## [237] "expected_building_loss_rate_natural_hazards_risk_index_percentile"    
## [238] "expected_population_loss_rate_natural_hazards_risk_index"             
## [239] "expected_population_loss_rate_natural_hazards_risk_index_percentile"  
## [240] "share_of_properties_at_risk_of_fire_in_30_years"                      
## [241] "share_of_properties_at_risk_of_fire_in_30_years_percentile"           
## [242] "share_of_properties_at_risk_of_flood_in_30_years"                     
## [243] "share_of_properties_at_risk_of_flood_in_30_years_percentile"          
## [244] "p_cancer"                                                             
## [245] "p_d2_cancer"                                                          
## [246] "p_d5_cancer"                                                          
## [247] "p_d2_dslpm"                                                           
## [248] "p_d5_dslpm"                                                           
## [249] "p_dslpm"                                                              
## [250] "p_d2_ldpnt"                                                           
## [251] "p_d5_ldpnt"                                                           
## [252] "p_ldpnt"                                                              
## [253] "p_d2_ozone"                                                           
## [254] "p_d5_ozone"                                                           
## [255] "p_ozone"                                                              
## [256] "p_d2_pm25"                                                            
## [257] "p_d5_pm25"                                                            
## [258] "p_pm25"                                                               
## [259] "p_d2_pnpl"                                                            
## [260] "p_d5_pnpl"                                                            
## [261] "p_pnpl"                                                               
## [262] "p_d2_prmp"                                                            
## [263] "p_d5_prmp"                                                            
## [264] "p_prmp"                                                               
## [265] "p_d2_ptraf"                                                           
## [266] "p_d5_ptraf"                                                           
## [267] "p_ptraf"                                                              
## [268] "p_d2_ptsdf"                                                           
## [269] "p_d5_ptsdf"                                                           
## [270] "p_ptsdf"                                                              
## [271] "p_d2_pwdis"                                                           
## [272] "p_d5_pwdis"                                                           
## [273] "p_pwdis"                                                              
## [274] "p_d2_resp"                                                            
## [275] "p_d5_resp"                                                            
## [276] "p_resp"                                                               
## [277] "p_d2_rsei_air"                                                        
## [278] "p_d5_rsei_air"                                                        
## [279] "p_rsei_air"                                                           
## [280] "p_d2_ust"                                                             
## [281] "p_d5_ust"                                                             
## [282] "p_ust"                                                                
## [283] "pre1960"                                                              
## [284] "dp05_0035pe"                                                          
## [285] "dp05_0037pe"                                                          
## [286] "dp05_0038pe"                                                          
## [287] "dp05_0039pe"                                                          
## [288] "dp05_0044pe"                                                          
## [289] "dp05_0052pe"                                                          
## [290] "dp05_0057pe"                                                          
## [291] "s0101_c01_032e"                                                       
## [292] "s0101_c01_032m"                                                       
## [293] "s0101_c03_032e"                                                       
## [294] "s0101_c03_032m"                                                       
## [295] "s0101_c05_032e"                                                       
## [296] "s0101_c05_032m"                                                       
## [297] "s0101_c02_020e"                                                       
## [298] "s0101_c02_020m"                                                       
## [299] "s0101_c04_020e"                                                       
## [300] "s0101_c04_020m"                                                       
## [301] "s0101_c06_020e"                                                       
## [302] "s0101_c06_020m"                                                       
## [303] "s0101_c02_021e"                                                       
## [304] "s0101_c02_021m"                                                       
## [305] "s0101_c04_021e"                                                       
## [306] "s0101_c04_021m"                                                       
## [307] "s0101_c06_021e"                                                       
## [308] "s0101_c06_021m"                                                       
## [309] "s0101_c02_022e"                                                       
## [310] "s0101_c02_022m"                                                       
## [311] "s0101_c04_022e"                                                       
## [312] "s0101_c04_022m"                                                       
## [313] "s0101_c06_022e"                                                       
## [314] "s0101_c06_022m"                                                       
## [315] "s0101_c02_023e"                                                       
## [316] "s0101_c02_023m"                                                       
## [317] "s0101_c04_023e"                                                       
## [318] "s0101_c04_023m"                                                       
## [319] "s0101_c06_023e"                                                       
## [320] "s0101_c06_023m"                                                       
## [321] "s0101_c02_024e"                                                       
## [322] "s0101_c02_024m"                                                       
## [323] "s0101_c04_024e"                                                       
## [324] "s0101_c04_024m"                                                       
## [325] "s0101_c06_024e"                                                       
## [326] "s0101_c06_024m"                                                       
## [327] "s0101_c02_025e"                                                       
## [328] "s0101_c02_025m"                                                       
## [329] "s0101_c04_025e"                                                       
## [330] "s0101_c04_025m"                                                       
## [331] "s0101_c06_025e"                                                       
## [332] "s0101_c06_025m"                                                       
## [333] "s0101_c02_026e"                                                       
## [334] "s0101_c02_026m"                                                       
## [335] "s0101_c04_026e"                                                       
## [336] "s0101_c04_026m"                                                       
## [337] "s0101_c06_026e"                                                       
## [338] "s0101_c06_026m"                                                       
## [339] "s0101_c02_027e"                                                       
## [340] "s0101_c02_027m"                                                       
## [341] "s0101_c04_027e"                                                       
## [342] "s0101_c04_027m"                                                       
## [343] "s0101_c06_027e"                                                       
## [344] "s0101_c06_027m"                                                       
## [345] "s0101_c02_028e"                                                       
## [346] "s0101_c02_028m"                                                       
## [347] "s0101_c04_028e"                                                       
## [348] "s0101_c04_028m"                                                       
## [349] "s0101_c06_028e"                                                       
## [350] "s0101_c06_028m"                                                       
## [351] "s0101_c02_029e"                                                       
## [352] "s0101_c02_029m"                                                       
## [353] "s0101_c04_029e"                                                       
## [354] "s0101_c04_029m"                                                       
## [355] "s0101_c06_029e"                                                       
## [356] "s0101_c06_029m"                                                       
## [357] "s0101_c02_030e"                                                       
## [358] "s0101_c02_030m"                                                       
## [359] "s0101_c04_030e"                                                       
## [360] "s0101_c04_030m"                                                       
## [361] "s0101_c06_030e"                                                       
## [362] "s0101_c06_030m"                                                       
## [363] "s0101_c02_031e"                                                       
## [364] "s0101_c02_031m"                                                       
## [365] "s0101_c04_031e"                                                       
## [366] "s0101_c04_031m"                                                       
## [367] "s0101_c06_031e"                                                       
## [368] "s0101_c06_031m"                                                       
## [369] "loan_amount"                                                          
## [370] "median_mortgage_amount"                                               
## [371] "median_prop_value"                                                    
## [372] "median_sba504_loan_amount"                                            
## [373] "median_sba7a_loan_amount"                                             
## [374] "num_mortgage"                                                         
## [375] "num_mortgage_denials"                                                 
## [376] "num_mortgage_originated"                                              
## [377] "number_of_sba504_loans"                                               
## [378] "number_of_sba7a_loans"                                                
## [379] "qct"                                                                  
## [380] "s2503_c01_024e"                                                       
## [381] "s2503_c01_024m"                                                       
## [382] "s2503_c03_024e"                                                       
## [383] "s2503_c03_024m"                                                       
## [384] "s2503_c05_024e"                                                       
## [385] "s2503_c05_024m"
# Inspect the dataset
str(housing_dt)
## 'data.frame':    1605 obs. of  385 variables:
##  $ geoid                                                                : num  1.2e+10 1.2e+10 1.2e+10 1.2e+10 1.2e+10 ...
##  $ geoid_year                                                           : int  2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 ...
##  $ state                                                                : int  12 12 12 12 12 12 12 12 12 12 ...
##  $ county                                                               : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ state_fips_code                                                      : int  12 12 12 12 12 12 12 12 12 12 ...
##  $ county_fips_code                                                     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ b19083_001e                                                          : num  0.393 0.547 0.364 0.366 0.569 ...
##  $ b19083_001m                                                          : num  0.0724 0.0649 0.0878 0.0894 0.0634 0.0479 0.0615 0.0825 0.0898 0.0697 ...
##  $ economic_distress_pop_agg                                            : chr  "YES" "YES" "YES" "YES" ...
##  $ economic_distress_simple_agg                                         : chr  "YES" "YES" "YES" "YES" ...
##  $ investment_areas                                                     : chr  "YES" "YES" "YES" "YES" ...
##  $ opzone                                                               : int  1 0 0 0 0 0 0 0 1 0 ...
##  $ b23025_002e                                                          : int  2958 1431 962 2413 1145 3851 2295 1266 556 3119 ...
##  $ b23025_002m                                                          : int  768 326 215 351 274 654 355 254 219 453 ...
##  $ b23025_004e                                                          : int  2698 1337 906 2356 1095 3717 2141 1175 514 3064 ...
##  $ b23025_004m                                                          : int  708 313 215 351 263 648 334 253 212 451 ...
##  $ b23025_005e                                                          : int  260 94 52 42 50 134 154 91 42 55 ...
##  $ b23025_005m                                                          : int  209 95 32 53 47 86 107 72 48 75 ...
##  $ b23025_006e                                                          : int  0 0 4 15 0 0 0 0 0 0 ...
##  $ b23025_006m                                                          : int  21 15 10 26 15 21 21 15 15 21 ...
##  $ s1701_c03_001e                                                       : num  20.4 51 21.7 13.5 35.7 35.3 19.4 16.5 8.2 8.9 ...
##  $ s1701_c03_001m                                                       : num  9.8 13.5 11.4 6 7.9 8.7 13.1 6.3 6.3 8.8 ...
##  $ s1701_c03_002e                                                       : num  41 36.6 17.5 15.9 0 7.6 33.3 12.2 37 16.2 ...
##  $ s1701_c03_002m                                                       : num  18.9 28.2 18.4 18.6 38.8 13.2 26.8 12.6 53.7 19.6 ...
##  $ s1701_c03_003e                                                       : num  68.9 16.4 27.6 18.9 0 12.9 39.3 14.3 100 8.7 ...
##  $ s1701_c03_003m                                                       : num  41.6 30 28.1 27.6 50.1 21.2 37.5 20.3 70.8 12.8 ...
##  $ s1701_c03_004e                                                       : num  36.8 53.4 0 13.8 0 0 32.2 11.5 0 18.6 ...
##  $ s1701_c03_004m                                                       : num  18.5 37.8 55.5 14.4 61.3 19 25.7 15.5 54.2 22.1 ...
##  $ s1701_c03_006e                                                       : num  10.9 56 22.6 14.5 38.5 39.5 13.2 19.8 5.1 6.1 ...
##  $ s1701_c03_006m                                                       : num  8.7 13.8 12 5.9 8.4 9.2 10.2 8.7 4.8 5.4 ...
##  $ s1701_c03_007e                                                       : num  11.8 60.2 21.2 16.8 44.9 45.4 1.1 15.7 6.6 7.6 ...
##  $ s1701_c03_007m                                                       : num  13.3 13.6 13.1 7.6 9.4 10.9 2 9.3 10.9 11 ...
##  $ s1701_c03_008e                                                       : num  9.8 36.6 24.4 12 12.1 14.7 17.9 22 4.5 5.6 ...
##  $ s1701_c03_008m                                                       : num  9 24.4 21.4 8.5 8.9 11.6 13.5 12.6 4.9 4.8 ...
##  $ s1701_c03_009e                                                       : num  2.08e+01 2.60 -6.67e+08 1.70 2.39e+01 ...
##  $ s1701_c03_009m                                                       : num  1.12e+01 4.80 -2.22e+08 2.50 3.04e+01 ...
##  $ s1701_c03_010e                                                       : num  2.72e+01 0.00 -6.67e+08 6.00e-01 0.00 ...
##  $ s1701_c03_010m                                                       : num  1.36e+01 2.71e+01 -2.22e+08 1.80 5.68e+01 ...
##  $ s1701_c03_011e                                                       : num  17.9 57.5 16.9 14.2 30.4 26 25.8 8.4 12.3 12.2 ...
##  $ s1701_c03_011m                                                       : num  10.8 15 12.9 7.4 11 10.3 17.6 6 8.2 12.7 ...
##  $ s1701_c03_012e                                                       : num  22.5 44.4 26 12.8 42 43.4 12.8 25.3 3.8 5.1 ...
##  $ s1701_c03_012m                                                       : num  14.2 20.3 15.6 7.4 10.5 12.7 9.1 10.4 5.3 4.5 ...
##  $ s1701_c03_013e                                                       : num  2.9 59.1 13.6 8.7 50.7 39.4 7.5 13.3 9.2 1.7 ...
##  $ s1701_c03_013m                                                       : num  3.2 16.9 11.8 5.3 9 10.3 5.2 6.4 7.2 1.6 ...
##  $ s1701_c03_014e                                                       : num  4.67e+01 2.34e+01 -6.67e+08 1.30e+01 8.90 ...
##  $ s1701_c03_014m                                                       : num  2.15e+01 1.87e+01 -2.22e+08 1.65e+01 1.56e+01 ...
##  $ s1701_c03_015e                                                       : num  0.00 -6.67e+08 -6.67e+08 1.00e+02 1.00e+02 ...
##  $ s1701_c03_015m                                                       : num  5.82e+01 -2.22e+08 -2.22e+08 7.51e+01 1.00e+02 ...
##  $ s1701_c03_016e                                                       : num  19.3 36.8 18.3 17.2 3 ...
##  $ s1701_c03_016m                                                       : num  40.4 25.9 15.1 23.2 4.2 ...
##  $ s1701_c03_017e                                                       : num  0.00 -6.67e+08 0.00 0.00 -6.67e+08 ...
##  $ s1701_c03_017m                                                       : num  7.36e+01 -2.22e+08 1.00e+02 4.75e+01 -2.22e+08 ...
##  $ s1701_c03_018e                                                       : num  7.6 84.1 0 0 20 ...
##  $ s1701_c03_018m                                                       : num  20.5 27.2 69.5 40.1 34.9 ...
##  $ s1701_c03_019e                                                       : num  42.5 51.7 55.4 41.7 21.1 33.7 7.4 53.1 0 0 ...
##  $ s1701_c03_019m                                                       : num  23.6 27 44.2 33.1 24.6 33.1 18.6 41.1 92 7.7 ...
##  $ s1701_c03_020e                                                       : num  7.4 65.2 44.6 22.7 29.9 37.5 13.3 42.9 0 0 ...
##  $ s1701_c03_020m                                                       : num  8.4 24.7 38.5 20.6 15.3 16.1 18.2 29.1 59.7 13.9 ...
##  $ s1701_c03_021e                                                       : num  3.2 57.9 14.7 6.1 51.6 39.6 5.7 12.1 9.4 1.7 ...
##  $ s1701_c03_021m                                                       : num  3.6 18.3 12.9 4.1 9.7 11.5 4.2 6.2 7.4 1.6 ...
##  $ s1903_c03_001e                                                       : int  50417 20907 27647 55571 36014 32944 63906 55417 48190 93147 ...
##  $ s1903_c03_001m                                                       : int  16882 5509 3150 8225 17867 4779 11072 5539 29161 10802 ...
##  $ s1903_c03_002e                                                       : int  66719 17127 28500 54798 24185 28579 72104 56450 49583 93678 ...
##  $ s1903_c03_002m                                                       : int  24899 7519 5552 7157 14537 4078 12302 7343 31628 8368 ...
##  $ s1903_c03_003e                                                       : int  45373 37525 -666666666 77741 28306 52775 56761 34205 -666666666 56117 ...
##  $ s1903_c03_003m                                                       : int  26587 34880 -222222222 43435 21092 14438 26194 11015 -222222222 12525 ...
##  $ s1903_c03_004e                                                       : int  -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 ...
##  $ s1903_c03_004m                                                       : int  -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 ...
##  $ s1903_c03_005e                                                       : int  -666666666 -666666666 26771 2499 102500 44398 -666666666 -666666666 -666666666 -666666666 ...
##  $ s1903_c03_005m                                                       : int  -222222222 -222222222 1165 -333333333 90869 36334 -222222222 -222222222 -222222222 -222222222 ...
##  $ s1903_c03_006e                                                       : int  -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 -666666666 ...
##  $ s1903_c03_006m                                                       : int  -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 -222222222 ...
##  $ s1903_c03_007e                                                       : int  -666666666 2499 -666666666 -666666666 51053 -666666666 182831 -666666666 -666666666 -666666666 ...
##  $ s1903_c03_007m                                                       : int  -222222222 -333333333 -222222222 -222222222 35258 -222222222 61167 -222222222 -222222222 -222222222 ...
##  $ s1903_c03_008e                                                       : int  -666666666 18929 -666666666 -666666666 -666666666 55648 -666666666 -666666666 -666666666 100573 ...
##  $ s1903_c03_008m                                                       : int  -222222222 14827 -222222222 -222222222 -222222222 30454 -222222222 -222222222 -222222222 55350 ...
##  $ s1903_c03_009e                                                       : int  81300 31161 -666666666 73750 -666666666 29909 -666666666 -666666666 -666666666 111944 ...
##  $ s1903_c03_009m                                                       : int  33784 26940 -222222222 41272 -222222222 14539 -222222222 -222222222 -222222222 57603 ...
##  $ s1903_c03_010e                                                       : int  66172 17083 27500 55237 24130 28446 73000 56983 52500 93678 ...
##  $ s1903_c03_010m                                                       : int  26244 7295 7282 7459 12922 4450 12043 9380 28786 9167 ...
##  $ s1903_c03_011e                                                       : int  -666666666 15078 -666666666 65313 -666666666 13871 -666666666 -666666666 -666666666 -666666666 ...
##  $ s1903_c03_011m                                                       : int  -222222222 4707 -222222222 55848 -222222222 10376 -222222222 -222222222 -222222222 -222222222 ...
##  $ s1903_c03_012e                                                       : int  69699 24506 29375 54583 51316 41419 65938 61682 34485 101016 ...
##  $ s1903_c03_012m                                                       : int  26246 20629 4086 21810 11627 16657 21412 4430 28534 23691 ...
##  $ s1903_c03_013e                                                       : int  47074 -666666666 -666666666 61629 49844 44060 98250 -666666666 52944 93420 ...
##  $ s1903_c03_013m                                                       : int  44326 -222222222 -222222222 22553 12375 5045 33511 -222222222 37438 13245 ...
##  $ s1903_c03_014e                                                       : int  33958 16802 -666666666 35489 -666666666 37625 47957 54805 48409 62639 ...
##  $ s1903_c03_014m                                                       : int  23652 1825 -222222222 4058 -222222222 20893 13840 3683 31538 30837 ...
##  $ s2001_c01_002e                                                       : int  39079 12184 4788 36190 26900 25818 37083 36669 34643 51610 ...
##  $ s2001_c01_002m                                                       : int  1404 6121 1029 3440 7263 4377 15846 3637 6933 6843 ...
##  $ s2001_c03_002e                                                       : int  43342 12710 5429 34968 32594 31768 47300 40114 34655 57143 ...
##  $ s2001_c03_002m                                                       : int  1947 5676 1925 19569 13799 2968 18857 7533 8678 8571 ...
##  $ s2001_c05_002e                                                       : int  38329 -666666666 4196 36353 22500 21859 34156 35024 34630 40640 ...
##  $ s2001_c05_002m                                                       : int  3660 -222222222 920 3954 11644 6998 7751 3731 12604 15203 ...
##  $ s2701_c03_001e                                                       : num  92 97.1 97.9 86.3 91.7 90.3 90.8 85.1 83 95.1 ...
##  $ s2701_c03_001m                                                       : num  5.2 2.4 1.4 5.8 4.9 4.7 5.3 5.3 12.2 2.7 ...
##  $ s2701_c03_002e                                                       : num  100 100 100 100 100 100 83.8 100 100 89.9 ...
##  $ s2701_c03_002m                                                       : num  15.8 21 35.6 16.8 50.1 13.6 24.3 28.7 70.8 13.5 ...
##  $ s2701_c03_003e                                                       : num  94 100 100 95.7 100 81 100 81.1 100 100 ...
##   [list output truncated]
summary(housing_dt)
##      geoid             geoid_year       state        county      
##  Min.   :1.200e+10   Min.   :2020   Min.   :12   Min.   :  1.00  
##  1st Qu.:1.202e+10   1st Qu.:2020   1st Qu.:12   1st Qu.: 19.00  
##  Median :1.207e+10   Median :2020   Median :12   Median : 71.00  
##  Mean   :1.206e+10   Mean   :2020   Mean   :12   Mean   : 60.85  
##  3rd Qu.:1.210e+10   3rd Qu.:2020   3rd Qu.:12   3rd Qu.: 97.00  
##  Max.   :1.213e+10   Max.   :2020   Max.   :12   Max.   :133.00  
##                                                                  
##  state_fips_code county_fips_code  b19083_001e          b19083_001m        
##  Min.   :12      Min.   :  1.00   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:12      1st Qu.: 19.00   1st Qu.:         0   1st Qu.:         0  
##  Median :12      Median : 71.00   Median :         0   Median :         0  
##  Mean   :12      Mean   : 60.85   Mean   :  -7476635   Mean   :  -2492212  
##  3rd Qu.:12      3rd Qu.: 97.00   3rd Qu.:         0   3rd Qu.:         0  
##  Max.   :12      Max.   :133.00   Max.   :         1   Max.   :         0  
##                                                                            
##  economic_distress_pop_agg economic_distress_simple_agg investment_areas  
##  Length:1605               Length:1605                  Length:1605       
##  Class :character          Class :character             Class :character  
##  Mode  :character          Mode  :character             Mode  :character  
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##      opzone        b23025_002e     b23025_002m      b23025_004e   
##  Min.   :0.0000   Min.   :    0   Min.   :   7.0   Min.   :    0  
##  1st Qu.:0.0000   1st Qu.: 1272   1st Qu.: 274.0   1st Qu.: 1176  
##  Median :0.0000   Median : 1980   Median : 379.0   Median : 1866  
##  Mean   :0.1059   Mean   : 2105   Mean   : 422.2   Mean   : 1981  
##  3rd Qu.:0.0000   3rd Qu.: 2769   3rd Qu.: 526.0   3rd Qu.: 2604  
##  Max.   :1.0000   Max.   :10724   Max.   :1816.0   Max.   :10223  
##                                                                   
##   b23025_004m      b23025_005e     b23025_005m      b23025_006e     
##  Min.   :   7.0   Min.   :  0.0   Min.   :  3.00   Min.   :   0.00  
##  1st Qu.: 261.0   1st Qu.: 37.0   1st Qu.: 39.00   1st Qu.:   0.00  
##  Median : 366.0   Median : 81.0   Median : 68.00   Median :   0.00  
##  Mean   : 404.9   Mean   :106.4   Mean   : 87.43   Mean   :  17.99  
##  3rd Qu.: 509.0   3rd Qu.:143.0   3rd Qu.:109.00   3rd Qu.:   0.00  
##  Max.   :1684.0   Max.   :915.0   Max.   :740.00   Max.   :1608.00  
##                                                                     
##   b23025_006m     s1701_c03_001e       s1701_c03_001m      
##  Min.   :  3.00   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.: 15.00   1st Qu.:         6   1st Qu.:         4  
##  Median : 15.00   Median :        11   Median :         6  
##  Mean   : 27.61   Mean   :  -7476622   Mean   :  -2492205  
##  3rd Qu.: 21.00   3rd Qu.:        18   3rd Qu.:         9  
##  Max.   :518.00   Max.   :        77   Max.   :        41  
##                                                            
##  s1701_c03_002e       s1701_c03_002m       s1701_c03_003e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         3   1st Qu.:         8   1st Qu.:         0  
##  Median :        12   Median :        15   Median :         6  
##  Mean   : -15783991   Mean   :  -5261319   Mean   : -38629267  
##  3rd Qu.:        26   3rd Qu.:        22   3rd Qu.:        27  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s1701_c03_003m       s1701_c03_004e       s1701_c03_004m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:        17   1st Qu.:         2   1st Qu.:         9  
##  Median :        27   Median :        11   Median :        16  
##  Mean   : -12876398   Mean   : -18691572   Mean   :  -6230511  
##  3rd Qu.:        38   3rd Qu.:        26   3rd Qu.:        24  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s1701_c03_006e       s1701_c03_006m       s1701_c03_007e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         6   1st Qu.:         4   1st Qu.:         4  
##  Median :        10   Median :         6   Median :        10  
##  Mean   :  -7476623   Mean   :  -2492205   Mean   : -11214940  
##  3rd Qu.:        16   3rd Qu.:         9   3rd Qu.:        18  
##  Max.   :        77   Max.   :        44   Max.   :       100  
##                                                                
##  s1701_c03_007m       s1701_c03_008e       s1701_c03_008m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         7   1st Qu.:         5   1st Qu.:         4  
##  Median :        10   Median :         9   Median :         7  
##  Mean   :  -3738305   Mean   :  -7476624   Mean   :  -2492204  
##  3rd Qu.:        15   3rd Qu.:        16   3rd Qu.:        10  
##  Max.   :       100   Max.   :        64   Max.   :        58  
##                                                                
##  s1701_c03_009e       s1701_c03_009m       s1701_c03_010e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         5   1st Qu.:         5   1st Qu.:         4  
##  Median :        10   Median :         8   Median :         9  
##  Mean   :  -8722729   Mean   :  -2907571   Mean   :  -8722729  
##  3rd Qu.:        17   3rd Qu.:        12   3rd Qu.:        16  
##  Max.   :        67   Max.   :        58   Max.   :        75  
##                                                                
##  s1701_c03_010m       s1701_c03_011e       s1701_c03_011m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:         5   1st Qu.:         4  
##  Median :         8   Median :        10   Median :         7  
##  Mean   :  -2907570   Mean   :  -7476623   Mean   :  -2492204  
##  3rd Qu.:        14   3rd Qu.:        16   3rd Qu.:        10  
##  Max.   :        58   Max.   :        80   Max.   :        53  
##                                                                
##  s1701_c03_012e       s1701_c03_012m       s1701_c03_013e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         6   1st Qu.:         5   1st Qu.:         5  
##  Median :        12   Median :         7   Median :        10  
##  Mean   :  -7476621   Mean   :  -2492204   Mean   :  -7476623  
##  3rd Qu.:        20   3rd Qu.:        11   3rd Qu.:        16  
##  Max.   :        88   Max.   :        42   Max.   :       100  
##                                                                
##  s1701_c03_013m       s1701_c03_014e       s1701_c03_014m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         4   1st Qu.:         0   1st Qu.:        10  
##  Median :         6   Median :         8   Median :        19  
##  Mean   :  -2492204   Mean   : -61059173   Mean   : -20353037  
##  3rd Qu.:        10   3rd Qu.:        26   3rd Qu.:        36  
##  Max.   :        89   Max.   :       100   Max.   :       100  
##                                                                
##  s1701_c03_015e       s1701_c03_015m       s1701_c03_016e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:-666666666   1st Qu.:-222222222   1st Qu.:         0  
##  Median :-666666666   Median :-222222222   Median :         0  
##  Mean   :-469366558   Mean   :-156455498   Mean   :-154101756  
##  3rd Qu.:         0   3rd Qu.:        45   3rd Qu.:         4  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s1701_c03_016m       s1701_c03_017e       s1701_c03_017m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:-666666666   1st Qu.:-222222222  
##  Median :        29   Median :-666666666   Median :-222222222  
##  Mean   : -51367222   Mean   :-610176530   Mean   :-203392171  
##  3rd Qu.:        52   3rd Qu.:-666666666   3rd Qu.:-222222222  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s1701_c03_018e       s1701_c03_018m       s1701_c03_019e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         0   1st Qu.:        12   1st Qu.:         0  
##  Median :         0   Median :        30   Median :         7  
##  Mean   : -93873299   Mean   : -31291069   Mean   : -14537888  
##  3rd Qu.:        18   3rd Qu.:        50   3rd Qu.:        20  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s1701_c03_019m       s1701_c03_020e       s1701_c03_020m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         9   1st Qu.:         1   1st Qu.:         7  
##  Median :        17   Median :        10   Median :        14  
##  Mean   :  -4845945   Mean   : -14953256   Mean   :  -4984405  
##  3rd Qu.:        30   3rd Qu.:        21   3rd Qu.:        24  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s1701_c03_021e       s1701_c03_021m       s1903_c03_001e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         5   1st Qu.:         4   1st Qu.:     50298  
##  Median :         9   Median :         6   Median :     67077  
##  Mean   :  -8722729   Mean   :  -2907571   Mean   :  -9481533  
##  3rd Qu.:        15   3rd Qu.:        11   3rd Qu.:     86667  
##  Max.   :       100   Max.   :       100   Max.   :    250001  
##                                                                
##  s1903_c03_001m       s1903_c03_002e       s1903_c03_002m      
##  Min.   :-333333333   Min.   :-666666666   Min.   :-333333333  
##  1st Qu.:      9593   1st Qu.:     51895   1st Qu.:     11200  
##  Median :     14551   Median :     68454   Median :     17018  
##  Mean   :  -3998172   Mean   : -24433691   Mean   :  -9187171  
##  3rd Qu.:     21540   3rd Qu.:     89545   3rd Qu.:     26306  
##  Max.   :    146994   Max.   :    250001   Max.   :    138646  
##                                                                
##  s1903_c03_003e       s1903_c03_003m       s1903_c03_004e      
##  Min.   :-666666666   Min.   :-333333333   Min.   :-666666666  
##  1st Qu.:-666666666   1st Qu.:-222222222   1st Qu.:-666666666  
##  Median :-666666666   Median :-222222222   Median :-666666666  
##  Mean   :-341400392   Mean   :-115457339   Mean   :-664174201  
##  3rd Qu.:     58026   3rd Qu.:     22650   3rd Qu.:-666666666  
##  Max.   :    250001   Max.   :    169195   Max.   :     96176  
##                                                                
##  s1903_c03_004m       s1903_c03_005e       s1903_c03_005m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-333333333  
##  1st Qu.:-222222222   1st Qu.:-666666666   1st Qu.:-222222222  
##  Median :-222222222   Median :-666666666   Median :-222222222  
##  Mean   :-221391329   Mean   :-535387620   Mean   :-183029238  
##  3rd Qu.:-222222222   3rd Qu.:-666666666   3rd Qu.:-222222222  
##  Max.   :     75084   Max.   :    250001   Max.   :    203859  
##                                                                
##  s1903_c03_006e       s1903_c03_006m       s1903_c03_007e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:-666666666   1st Qu.:-222222222   1st Qu.:-666666666  
##  Median :-666666666   Median :-222222222   Median :-666666666  
##  Mean   :-666666666   Mean   :-222222222   Mean   :-515870785  
##  3rd Qu.:-666666666   3rd Qu.:-222222222   3rd Qu.:-666666666  
##  Max.   :-666666666   Max.   :-222222222   Max.   :    250001  
##                                                                
##  s1903_c03_007m       s1903_c03_008e       s1903_c03_008m      
##  Min.   :-333333333   Min.   :-666666666   Min.   :-333333333  
##  1st Qu.:-222222222   1st Qu.:-666666666   1st Qu.:-222222222  
##  Median :-222222222   Median :     30922   Median :      1047  
##  Mean   :-174031373   Mean   :-310234101   Mean   :-109221275  
##  3rd Qu.:-222222222   3rd Qu.:     78690   3rd Qu.:     33257  
##  Max.   :    185544   Max.   :    250001   Max.   :    214140  
##                                                                
##  s1903_c03_009e       s1903_c03_009m       s1903_c03_010e      
##  Min.   :-666666666   Min.   :-333333333   Min.   :-666666666  
##  1st Qu.:-666666666   1st Qu.:-222222222   1st Qu.:     49514  
##  Median :     50263   Median :     13981   Median :     68393  
##  Mean   :-215524439   Mean   : -75160204   Mean   : -65557177  
##  3rd Qu.:     78214   3rd Qu.:     33926   3rd Qu.:     91442  
##  Max.   :    250001   Max.   :    179109   Max.   :    250001  
##                                                                
##  s1903_c03_010m       s1903_c03_011e       s1903_c03_011m      
##  Min.   :-333333333   Min.   :-666666666   Min.   :-333333333  
##  1st Qu.:     10140   1st Qu.:-666666666   1st Qu.:-222222222  
##  Median :     17141   Median :-666666666   Median :-222222222  
##  Mean   : -22893894   Mean   :-578186439   Mean   :-195012398  
##  3rd Qu.:     27504   3rd Qu.:-666666666   3rd Qu.:-222222222  
##  Max.   :    194476   Max.   :    145842   Max.   :    117581  
##                                                                
##  s1903_c03_012e       s1903_c03_012m       s1903_c03_013e      
##  Min.   :-666666666   Min.   :-333333333   Min.   :-666666666  
##  1st Qu.:     47500   1st Qu.:     10774   1st Qu.:     53000  
##  Median :     69652   Median :     22036   Median :     75357  
##  Mean   : -82169344   Mean   : -29879017   Mean   : -47686596  
##  3rd Qu.:     97143   3rd Qu.:     37856   3rd Qu.:    104435  
##  Max.   :    250001   Max.   :    225998   Max.   :    250001  
##                                                                
##  s1903_c03_013m       s1903_c03_014e       s1903_c03_014m      
##  Min.   :-333333333   Min.   :-666666666   Min.   :-333333333  
##  1st Qu.:     14468   1st Qu.:     33214   1st Qu.:      8709  
##  Median :     24232   Median :     50417   Median :     17050  
##  Mean   : -17763044   Mean   : -75960239   Mean   : -25732300  
##  3rd Qu.:     37622   3rd Qu.:     68846   3rd Qu.:     28049  
##  Max.   :    209901   Max.   :    250001   Max.   :    133349  
##                                                                
##  s2001_c01_002e       s2001_c01_002m       s2001_c03_002e      
##  Min.   :-666666666   Min.   :-333333333   Min.   :-666666666  
##  1st Qu.:     31220   1st Qu.:      4892   1st Qu.:     33817  
##  Median :     37773   Median :      7377   Median :     42013  
##  Mean   : -12836188   Mean   :  -4490608   Mean   : -25291236  
##  3rd Qu.:     46897   3rd Qu.:     11581   3rd Qu.:     54531  
##  Max.   :    250001   Max.   :     98237   Max.   :    250001  
##                                                                
##  s2001_c03_002m       s2001_c05_002e       s2001_c05_002m      
##  Min.   :-333333333   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:      6741   1st Qu.:     26694   1st Qu.:      5586  
##  Median :     11230   Median :     32870   Median :      9137  
##  Mean   :  -8846982   Mean   : -29457385   Mean   :  -9819615  
##  3rd Qu.:     18352   3rd Qu.:     40515   3rd Qu.:     14187  
##  Max.   :    136071   Max.   :     87988   Max.   :     73815  
##                                                                
##  s2701_c03_001e       s2701_c03_001m       s2701_c03_002e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        84   1st Qu.:         4   1st Qu.:        91  
##  Median :        89   Median :         5   Median :       100  
##  Mean   :  -7476549   Mean   :  -2492206   Mean   : -34060139  
##  3rd Qu.:        93   3rd Qu.:         7   3rd Qu.:       100  
##  Max.   :       100   Max.   :        35   Max.   :       100  
##                                                                
##  s2701_c03_002m       s2701_c03_003e       s2701_c03_003m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:        11   1st Qu.:        87   1st Qu.:         6  
##  Median :        18   Median :        95   Median :        10  
##  Mean   : -11353386   Mean   : -17030025   Mean   :  -5676690  
##  3rd Qu.:        29   3rd Qu.:       100   3rd Qu.:        18  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_004e       s2701_c03_004m       s2701_c03_005e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        66   1st Qu.:        14   1st Qu.:        66  
##  Median :        83   Median :        20   Median :        80  
##  Mean   : -19106880   Mean   :  -6368963   Mean   : -14122458  
##  3rd Qu.:        96   3rd Qu.:        29   3rd Qu.:        91  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_005m       s2701_c03_006e       s2701_c03_006m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:        12   1st Qu.:        71   1st Qu.:        10  
##  Median :        18   Median :        83   Median :        16  
##  Mean   :  -4707491   Mean   : -11630243   Mean   :  -3876756  
##  3rd Qu.:        24   3rd Qu.:        93   3rd Qu.:        22  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_007e       s2701_c03_007m       s2701_c03_008e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        76   1st Qu.:         9   1st Qu.:        82  
##  Median :        86   Median :        14   Median :        90  
##  Mean   :  -9138028   Mean   :  -3046021   Mean   :  -8307287  
##  3rd Qu.:        94   3rd Qu.:        20   3rd Qu.:        95  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_008m       s2701_c03_009e       s2701_c03_009m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         7   1st Qu.:       100   1st Qu.:         7  
##  Median :        11   Median :       100   Median :        10  
##  Mean   :  -2769112   Mean   :  -8722644   Mean   :  -2907568  
##  3rd Qu.:        16   3rd Qu.:       100   3rd Qu.:        15  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_010e       s2701_c03_010m       s2701_c03_011e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:       100   1st Qu.:         9   1st Qu.:        88  
##  Median :       100   Median :        14   Median :        95  
##  Mean   : -12045593   Mean   :  -4015212   Mean   : -14122444  
##  3rd Qu.:       100   3rd Qu.:        22   3rd Qu.:        99  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_011m       s2701_c03_012e       s2701_c03_012m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:        76   1st Qu.:         6  
##  Median :         8   Median :        83   Median :         8  
##  Mean   :  -4707499   Mean   :  -7476554   Mean   :  -2492204  
##  3rd Qu.:        14   3rd Qu.:        90   3rd Qu.:        10  
##  Max.   :       100   Max.   :       100   Max.   :        36  
##                                                                
##  s2701_c03_013e       s2701_c03_013m       s2701_c03_014e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        99   1st Qu.:         4   1st Qu.:        82  
##  Median :       100   Median :         6   Median :        88  
##  Mean   :  -8722644   Mean   :  -2907573   Mean   :  -7476550  
##  3rd Qu.:       100   3rd Qu.:         9   3rd Qu.:        93  
##  Max.   :       100   Max.   :        95   Max.   :       100  
##                                                                
##  s2701_c03_014m       s2701_c03_015e       s2701_c03_015m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:        85   1st Qu.:         4  
##  Median :         7   Median :        90   Median :         6  
##  Mean   :  -2492204   Mean   :  -7476547   Mean   :  -2492205  
##  3rd Qu.:         9   3rd Qu.:        94   3rd Qu.:         8  
##  Max.   :        68   Max.   :       100   Max.   :        72  
##                                                                
##  s2701_c03_016e       s2701_c03_016m       s2701_c03_017e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        84   1st Qu.:         4   1st Qu.:        76  
##  Median :        90   Median :         6   Median :        90  
##  Mean   :  -7476548   Mean   :  -2492205   Mean   : -58982268  
##  3rd Qu.:        94   3rd Qu.:         8   3rd Qu.:       100  
##  Max.   :       100   Max.   :        75   Max.   :       100  
##                                                                
##  s2701_c03_017m       s2701_c03_018e       s2701_c03_018m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         7   1st Qu.:-666666666   1st Qu.:-222222222  
##  Median :        14   Median :-666666666   Median :-222222222  
##  Mean   : -19660758   Mean   :-469366538   Mean   :-156455499  
##  3rd Qu.:        33   3rd Qu.:        40   3rd Qu.:        39  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_019e       s2701_c03_019m       s2701_c03_020e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        32   1st Qu.:         5   1st Qu.:-666666666  
##  Median :        99   Median :        24   Median :-666666666  
##  Mean   :-153270958   Mean   : -51090311   Mean   :-609761155  
##  3rd Qu.:       100   3rd Qu.:        50   3rd Qu.:-666666666  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_020m       s2701_c03_021e       s2701_c03_021m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:-222222222   1st Qu.:        52   1st Qu.:        11  
##  Median :-222222222   Median :        86   Median :        25  
##  Mean   :-203253714   Mean   : -93042505   Mean   : -31014159  
##  3rd Qu.:-222222222   3rd Qu.:       100   3rd Qu.:        46  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_022e       s2701_c03_022m       s2701_c03_023e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        79   1st Qu.:         9   1st Qu.:        76  
##  Median :        92   Median :        16   Median :        87  
##  Mean   : -14537817   Mean   :  -4845946   Mean   : -15368558  
##  3rd Qu.:       100   3rd Qu.:        26   3rd Qu.:        96  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c03_023m       s2701_c03_024e       s2701_c03_024m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         8   1st Qu.:        86   1st Qu.:         4  
##  Median :        13   Median :        91   Median :         6  
##  Mean   :  -5122863   Mean   :  -8722653   Mean   :  -2907572  
##  3rd Qu.:        21   3rd Qu.:        96   3rd Qu.:         9  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_001e       s2701_c05_001m       s2701_c05_002e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         7   1st Qu.:         4   1st Qu.:         0  
##  Median :        11   Median :         5   Median :         0  
##  Mean   :  -7476624   Mean   :  -2492206   Mean   : -34060223  
##  3rd Qu.:        16   3rd Qu.:         7   3rd Qu.:         6  
##  Max.   :        45   Max.   :        35   Max.   :       100  
##                                                                
##  s2701_c05_002m       s2701_c05_003e       s2701_c05_003m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:        11   1st Qu.:         0   1st Qu.:         6  
##  Median :        18   Median :         5   Median :        10  
##  Mean   : -11353386   Mean   : -17030106   Mean   :  -5676690  
##  3rd Qu.:        29   3rd Qu.:        12   3rd Qu.:        18  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_004e       s2701_c05_004m       s2701_c05_005e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         3   1st Qu.:        14   1st Qu.:         8  
##  Median :        15   Median :        20   Median :        19  
##  Mean   : -19106937   Mean   :  -6368963   Mean   : -14122512  
##  3rd Qu.:        32   3rd Qu.:        29   3rd Qu.:        32  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_005m       s2701_c05_006e       s2701_c05_006m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:        12   1st Qu.:         6   1st Qu.:        10  
##  Median :        18   Median :        16   Median :        16  
##  Mean   :  -4707491   Mean   : -11630302   Mean   :  -3876756  
##  3rd Qu.:        24   3rd Qu.:        28   3rd Qu.:        22  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_007e       s2701_c05_007m       s2701_c05_008e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         6   1st Qu.:         9   1st Qu.:         5  
##  Median :        13   Median :        14   Median :        10  
##  Mean   :  -9138094   Mean   :  -3046021   Mean   :  -8307360  
##  3rd Qu.:        24   3rd Qu.:        20   3rd Qu.:        18  
##  Max.   :        94   Max.   :       100   Max.   :        70  
##                                                                
##  s2701_c05_008m       s2701_c05_009e       s2701_c05_009m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         7   1st Qu.:         0   1st Qu.:         7  
##  Median :        11   Median :         0   Median :        10  
##  Mean   :  -2769112   Mean   :  -8722740   Mean   :  -2907568  
##  3rd Qu.:        16   3rd Qu.:         0   3rd Qu.:        15  
##  Max.   :       100   Max.   :        96   Max.   :       100  
##                                                                
##  s2701_c05_010e       s2701_c05_010m       s2701_c05_011e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         0   1st Qu.:         9   1st Qu.:         0  
##  Median :         0   Median :        14   Median :         5  
##  Mean   : -12045690   Mean   :  -4015212   Mean   : -14122526  
##  3rd Qu.:         0   3rd Qu.:        22   3rd Qu.:        11  
##  Max.   :        54   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_011m       s2701_c05_012e       s2701_c05_012m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:        10   1st Qu.:         6  
##  Median :         8   Median :        16   Median :         8  
##  Mean   :  -4707499   Mean   :  -7476618   Mean   :  -2492204  
##  3rd Qu.:        14   3rd Qu.:        24   3rd Qu.:        10  
##  Max.   :       100   Max.   :        64   Max.   :        36  
##                                                                
##  s2701_c05_013e       s2701_c05_013m       s2701_c05_014e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         0   1st Qu.:         4   1st Qu.:         7  
##  Median :         0   Median :         6   Median :        12  
##  Mean   :  -8722740   Mean   :  -2907573   Mean   :  -7476622  
##  3rd Qu.:         1   3rd Qu.:         9   3rd Qu.:        18  
##  Max.   :        51   Max.   :        95   Max.   :        61  
##                                                                
##  s2701_c05_014m       s2701_c05_015e       s2701_c05_015m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:         5   1st Qu.:         4  
##  Median :         7   Median :         9   Median :         6  
##  Mean   :  -2492204   Mean   :  -7476625   Mean   :  -2492205  
##  3rd Qu.:         9   3rd Qu.:        15   3rd Qu.:         8  
##  Max.   :        68   Max.   :        43   Max.   :        72  
##                                                                
##  s2701_c05_016e       s2701_c05_016m       s2701_c05_017e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         5   1st Qu.:         4   1st Qu.:         0  
##  Median :        10   Median :         6   Median :         6  
##  Mean   :  -7476624   Mean   :  -2492205   Mean   : -58982335  
##  3rd Qu.:        15   3rd Qu.:         8   3rd Qu.:        18  
##  Max.   :        60   Max.   :        75   Max.   :       100  
##                                                                
##  s2701_c05_017m       s2701_c05_018e       s2701_c05_018m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         7   1st Qu.:-666666666   1st Qu.:-222222222  
##  Median :        14   Median :-666666666   Median :-222222222  
##  Mean   : -19660758   Mean   :-469366557   Mean   :-156455499  
##  3rd Qu.:        33   3rd Qu.:         0   3rd Qu.:        37  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_019e       s2701_c05_019m       s2701_c05_020e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         0   1st Qu.:         5   1st Qu.:-666666666  
##  Median :         0   Median :        24   Median :-666666666  
##  Mean   :-153271021   Mean   : -51090311   Mean   :-609761161  
##  3rd Qu.:         4   3rd Qu.:        50   3rd Qu.:-666666666  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_020m       s2701_c05_021e       s2701_c05_021m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:-222222222   1st Qu.:         0   1st Qu.:        11  
##  Median :-222222222   Median :         0   Median :        25  
##  Mean   :-203253714   Mean   : -93042559   Mean   : -31014159  
##  3rd Qu.:-222222222   3rd Qu.:        25   3rd Qu.:        46  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_022e       s2701_c05_022m       s2701_c05_023e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         0   1st Qu.:         9   1st Qu.:         3  
##  Median :         8   Median :        16   Median :        12  
##  Mean   : -14537890   Mean   :  -4845946   Mean   : -15368624  
##  3rd Qu.:        19   3rd Qu.:        26   3rd Qu.:        23  
##  Max.   :       100   Max.   :       100   Max.   :       100  
##                                                                
##  s2701_c05_023m        b23025_003e     b23025_003m      b23025_007e  
##  Min.   :-222222222   Min.   :    0   Min.   :   7.0   Min.   :   0  
##  1st Qu.:         8   1st Qu.: 1251   1st Qu.: 273.0   1st Qu.: 924  
##  Median :        13   Median : 1958   Median : 378.0   Median :1313  
##  Mean   :  -5122863   Mean   : 2087   Mean   : 421.2   Mean   :1421  
##  3rd Qu.:        21   3rd Qu.: 2722   3rd Qu.: 523.0   3rd Qu.:1780  
##  Max.   :       100   Max.   :10699   Max.   :1809.0   Max.   :6611  
##                                                                      
##   b23025_007m       cancer        d2_cancer        d5_cancer     
##  Min.   :  15   Min.   :10.00   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 225   1st Qu.:20.00   1st Qu.: 1.708   1st Qu.: 0.743  
##  Median : 302   Median :20.00   Median : 4.056   Median : 1.471  
##  Mean   : 331   Mean   :24.62   Mean   :11.095   Mean   : 4.205  
##  3rd Qu.: 409   3rd Qu.:30.00   3rd Qu.:18.833   3rd Qu.: 7.362  
##  Max.   :1261   Max.   :50.00   Max.   :78.147   Max.   :28.619  
##                 NA's   :13                                       
##     d2_dslpm         d5_dslpm          dslpm            d2_ldpnt     
##  Min.   : 0.000   Min.   : 0.000   Min.   :0.04738   Min.   : 0.000  
##  1st Qu.: 8.648   1st Qu.: 4.120   1st Qu.:0.17774   1st Qu.: 2.219  
##  Median :18.869   Median : 7.226   Median :0.26233   Median : 6.463  
##  Mean   :24.679   Mean   : 9.046   Mean   :0.28525   Mean   :12.344  
##  3rd Qu.:36.739   3rd Qu.:12.210   3rd Qu.:0.37450   3rd Qu.:16.576  
##  Max.   :89.213   Max.   :36.011   Max.   :0.98172   Max.   :78.763  
##                                    NA's   :13                        
##     d5_ldpnt         pre1960pct          d2_ozone         d5_ozone     
##  Min.   : 0.0000   Min.   :0.000000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 0.9668   1st Qu.:0.008251   1st Qu.: 5.457   1st Qu.: 2.151  
##  Median : 2.7740   Median :0.042785   Median : 8.527   Median : 3.783  
##  Mean   : 4.8414   Mean   :0.123377   Mean   :12.573   Mean   : 5.026  
##  3rd Qu.: 6.8568   3rd Qu.:0.161227   3rd Qu.:16.958   3rd Qu.: 6.914  
##  Max.   :32.8771   Max.   :0.865911   Max.   :59.820   Max.   :22.943  
##                                       NA's   :9        NA's   :9       
##      ozone          d2_pm25          d5_pm25            pm25      
##  Min.   :53.73   Min.   : 0.000   Min.   : 0.000   Min.   :5.940  
##  1st Qu.:56.30   1st Qu.: 6.168   1st Qu.: 2.771   1st Qu.:7.190  
##  Median :59.04   Median :11.009   Median : 4.330   Median :7.491  
##  Mean   :59.18   Mean   :13.204   Mean   : 5.049   Mean   :7.532  
##  3rd Qu.:61.45   3rd Qu.:18.522   3rd Qu.: 6.673   3rd Qu.:7.820  
##  Max.   :65.80   Max.   :52.453   Max.   :21.210   Max.   :8.988  
##  NA's   :9       NA's   :9        NA's   :9        NA's   :9      
##     d2_pnpl          d5_pnpl            pnpl            d2_prmp      
##  Min.   : 0.000   Min.   : 0.000   Min.   :0.00000   Min.   : 0.000  
##  1st Qu.: 6.376   1st Qu.: 3.077   1st Qu.:0.02941   1st Qu.: 5.121  
##  Median :16.612   Median : 6.286   Median :0.06742   Median :12.682  
##  Mean   :22.552   Mean   : 8.282   Mean   :0.13274   Mean   :18.467  
##  3rd Qu.:33.889   3rd Qu.:11.803   3rd Qu.:0.14835   3rd Qu.:26.508  
##  Max.   :85.678   Max.   :36.761   Max.   :4.17367   Max.   :89.262  
##                                                                      
##     d5_prmp            prmp            d2_ptraf         d5_ptraf     
##  Min.   : 0.000   Min.   :0.00000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.247   1st Qu.:0.07401   1st Qu.: 7.676   1st Qu.: 3.508  
##  Median : 5.023   Median :0.13688   Median :16.326   Median : 6.357  
##  Mean   : 6.910   Mean   :0.31730   Mean   :21.639   Mean   : 8.089  
##  3rd Qu.: 9.759   3rd Qu.:0.27346   3rd Qu.:32.390   3rd Qu.:11.213  
##  Max.   :36.818   Max.   :6.31591   Max.   :89.213   Max.   :34.968  
##                                     NA's   :14       NA's   :14      
##      ptraf              d2_ptsdf         d5_ptsdf          ptsdf        
##  Min.   :   0.3686   Min.   : 0.000   Min.   : 0.000   Min.   : 0.0000  
##  1st Qu.:  39.5050   1st Qu.: 4.688   1st Qu.: 2.104   1st Qu.: 0.1026  
##  Median :  92.5620   Median :10.752   Median : 4.088   Median : 0.1800  
##  Mean   : 147.0172   Mean   :15.110   Mean   : 5.614   Mean   : 0.4896  
##  3rd Qu.: 185.4578   3rd Qu.:21.267   3rd Qu.: 7.562   3rd Qu.: 0.4779  
##  Max.   :1674.3964   Max.   :73.861   Max.   :33.942   Max.   :10.0829  
##  NA's   :14                                                             
##     d2_pwdis         d5_pwdis          pwdis              d2_resp      
##  Min.   : 0.000   Min.   : 0.000   Min.   :  0.00000   Min.   : 0.000  
##  1st Qu.: 5.267   1st Qu.: 2.394   1st Qu.:  0.00003   1st Qu.: 6.033  
##  Median :13.665   Median : 5.918   Median :  0.00103   Median :11.004  
##  Mean   :17.598   Mean   : 6.848   Mean   :  0.72637   Mean   :15.096  
##  3rd Qu.:26.293   3rd Qu.:10.043   3rd Qu.:  0.01914   3rd Qu.:20.311  
##  Max.   :74.775   Max.   :31.440   Max.   :172.15941   Max.   :71.134  
##  NA's   :261      NA's   :261      NA's   :261                         
##     d5_resp            resp         d2_rsei_air      d5_rsei_air    
##  Min.   : 0.000   Min.   :0.1000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.729   1st Qu.:0.3000   1st Qu.: 3.641   1st Qu.: 1.804  
##  Median : 4.531   Median :0.3000   Median :12.855   Median : 5.248  
##  Mean   : 5.681   Mean   :0.3113   Mean   :18.583   Mean   : 6.703  
##  3rd Qu.: 7.343   3rd Qu.:0.3000   3rd Qu.:29.076   3rd Qu.: 9.781  
##  Max.   :26.150   Max.   :0.7000   Max.   :79.813   Max.   :31.182  
##                   NA's   :13       NA's   :9        NA's   :9       
##     rsei_air            d2_ust           d5_ust            ust         
##  Min.   :    0.00   Min.   : 0.000   Min.   : 0.000   Min.   : 0.0000  
##  1st Qu.:   40.25   1st Qu.: 9.256   1st Qu.: 4.285   1st Qu.: 0.7757  
##  Median :  433.06   Median :20.089   Median : 7.909   Median : 3.0941  
##  Mean   : 1683.04   Mean   :25.772   Mean   : 9.856   Mean   : 6.5245  
##  3rd Qu.: 1656.06   3rd Qu.:39.212   3rd Qu.:14.345   3rd Qu.: 8.8143  
##  Max.   :97611.13   Max.   :92.969   Max.   :37.519   Max.   :89.7074  
##  NA's   :9          NA's   :9        NA's   :9        NA's   :9        
##  energy_burden    energy_burden_percentile
##  Min.   : 0.000   Min.   : 0.00           
##  1st Qu.: 1.000   1st Qu.:16.13           
##  Median : 2.000   Median :41.52           
##  Mean   : 2.059   Mean   :41.46           
##  3rd Qu.: 3.000   3rd Qu.:64.40           
##  Max.   :16.000   Max.   :99.93           
##  NA's   :13                               
##  expected_agricultural_loss_rate_natural_hazards_risk_index
##  Min.   :0.000000                                          
##  1st Qu.:0.000000                                          
##  Median :0.007802                                          
##  Mean   :0.207326                                          
##  3rd Qu.:0.083516                                          
##  Max.   :4.170200                                          
##  NA's   :9                                                 
##  expected_agricultural_loss_rate_natural_hazards_risk_index_percentile
##  Min.   : 0.000                                                       
##  1st Qu.: 1.472                                                       
##  Median :46.606                                                       
##  Mean   :42.179                                                       
##  3rd Qu.:63.715                                                       
##  Max.   :98.441                                                       
##                                                                       
##  expected_building_loss_rate_natural_hazards_risk_index
##  Min.   :0.00000                                       
##  1st Qu.:0.00860                                       
##  Median :0.01810                                       
##  Mean   :0.04167                                       
##  3rd Qu.:0.05710                                       
##  Max.   :0.47010                                       
##  NA's   :10                                            
##  expected_building_loss_rate_natural_hazards_risk_index_percentile
##  Min.   : 0.00                                                    
##  1st Qu.:42.89                                                    
##  Median :62.17                                                    
##  Mean   :62.17                                                    
##  3rd Qu.:86.87                                                    
##  Max.   :99.54                                                    
##                                                                   
##  expected_population_loss_rate_natural_hazards_risk_index
##  Min.   :0.000000                                        
##  1st Qu.:0.000033                                        
##  Median :0.000100                                        
##  Mean   :0.000212                                        
##  3rd Qu.:0.000200                                        
##  Max.   :0.003600                                        
##  NA's   :12                                              
##  expected_population_loss_rate_natural_hazards_risk_index_percentile
##  Min.   : 0.00                                                      
##  1st Qu.:26.04                                                      
##  Median :35.42                                                      
##  Mean   :42.42                                                      
##  3rd Qu.:57.80                                                      
##  Max.   :99.13                                                      
##                                                                     
##  share_of_properties_at_risk_of_fire_in_30_years
##  Min.   :  0.00                                 
##  1st Qu.:  0.00                                 
##  Median : 15.00                                 
##  Mean   : 31.79                                 
##  3rd Qu.: 59.00                                 
##  Max.   :188.00                                 
##  NA's   :9                                      
##  share_of_properties_at_risk_of_fire_in_30_years_percentile
##  Min.   : 0.000                                            
##  1st Qu.: 2.453                                            
##  Median :76.116                                            
##  Mean   :52.677                                            
##  3rd Qu.:87.854                                            
##  Max.   :99.981                                            
##                                                            
##  share_of_properties_at_risk_of_flood_in_30_years
##  Min.   :  0.00                                  
##  1st Qu.:  5.00                                  
##  Median : 12.77                                  
##  Mean   : 23.85                                  
##  3rd Qu.: 30.97                                  
##  Max.   :199.00                                  
##  NA's   :9                                       
##  share_of_properties_at_risk_of_flood_in_30_years_percentile    p_cancer    
##  Min.   : 0.00                                               Min.   : 1.00  
##  1st Qu.:43.35                                               1st Qu.: 6.00  
##  Median :77.67                                               Median : 6.00  
##  Mean   :67.62                                               Mean   :27.37  
##  3rd Qu.:93.49                                               3rd Qu.:52.00  
##  Max.   :99.99                                               Max.   :93.00  
##                                                              NA's   :13     
##   p_d2_cancer     p_d5_cancer      p_d2_dslpm     p_d5_dslpm       p_dslpm     
##  Min.   : 0.00   Min.   : 0.00   Min.   : 0.0   Min.   : 0.00   Min.   : 4.00  
##  1st Qu.:32.00   1st Qu.:29.00   1st Qu.:39.0   1st Qu.:40.00   1st Qu.:39.00  
##  Median :48.00   Median :47.00   Median :62.0   Median :62.00   Median :60.00  
##  Mean   :51.11   Mean   :49.96   Mean   :59.5   Mean   :59.52   Mean   :58.49  
##  3rd Qu.:73.00   3rd Qu.:73.00   3rd Qu.:82.0   3rd Qu.:80.00   3rd Qu.:80.00  
##  Max.   :99.00   Max.   :99.00   Max.   :99.0   Max.   :99.00   Max.   :98.00  
##                                                                 NA's   :13     
##    p_d2_ldpnt      p_d5_ldpnt       p_ldpnt        p_d2_ozone   
##  Min.   : 0.00   Min.   : 0.00   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:11.00   1st Qu.:11.00   1st Qu.: 9.00   1st Qu.:25.00  
##  Median :28.00   Median :25.00   Median :22.00   Median :38.00  
##  Mean   :35.59   Mean   :33.69   Mean   :28.31   Mean   :42.45  
##  3rd Qu.:61.00   3rd Qu.:55.00   3rd Qu.:43.00   3rd Qu.:60.00  
##  Max.   :99.00   Max.   :99.00   Max.   :97.00   Max.   :96.00  
##                                                  NA's   :9      
##    p_d5_ozone       p_ozone        p_d2_pm25       p_d5_pm25    
##  Min.   : 0.00   Min.   : 6.00   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:19.00   1st Qu.:14.00   1st Qu.:27.75   1st Qu.:26.00  
##  Median :33.50   Median :31.00   Median :45.00   Median :39.00  
##  Mean   :39.87   Mean   :34.36   Mean   :45.29   Mean   :41.57  
##  3rd Qu.:59.00   3rd Qu.:52.00   3rd Qu.:63.00   3rd Qu.:56.00  
##  Max.   :97.00   Max.   :79.00   Max.   :92.00   Max.   :95.00  
##  NA's   :9       NA's   :9       NA's   :9       NA's   :9      
##      p_pm25        p_d2_pnpl       p_d5_pnpl        p_pnpl        p_d2_prmp    
##  Min.   : 8.00   Min.   : 0.00   Min.   : 0.0   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:24.00   1st Qu.:29.00   1st Qu.:28.0   1st Qu.:28.00   1st Qu.:24.00  
##  Median :32.00   Median :60.00   Median :57.0   Median :54.00   Median :49.00  
##  Mean   :33.37   Mean   :54.94   Mean   :53.6   Mean   :52.14   Mean   :48.85  
##  3rd Qu.:40.00   3rd Qu.:81.00   3rd Qu.:80.0   3rd Qu.:79.00   3rd Qu.:73.00  
##  Max.   :72.00   Max.   :99.00   Max.   :99.0   Max.   :99.00   Max.   :99.00  
##  NA's   :9                                                                     
##    p_d5_prmp         p_prmp        p_d2_ptraf      p_d5_ptraf   
##  Min.   : 0.00   Min.   : 0.00   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:23.00   1st Qu.:20.00   1st Qu.:34.00   1st Qu.:34.00  
##  Median :46.00   Median :41.00   Median :55.00   Median :54.00  
##  Mean   :46.88   Mean   :43.59   Mean   :54.53   Mean   :54.08  
##  3rd Qu.:71.00   3rd Qu.:64.00   3rd Qu.:77.00   3rd Qu.:76.00  
##  Max.   :99.00   Max.   :99.00   Max.   :99.00   Max.   :99.00  
##                                  NA's   :14      NA's   :14     
##     p_ptraf        p_d2_ptsdf      p_d5_ptsdf       p_ptsdf     
##  Min.   : 1.00   Min.   : 0.00   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:31.00   1st Qu.:24.00   1st Qu.:21.00   1st Qu.:20.00  
##  Median :52.00   Median :44.00   Median :39.00   Median :32.00  
##  Mean   :51.24   Mean   :44.62   Mean   :42.08   Mean   :35.13  
##  3rd Qu.:71.50   3rd Qu.:65.00   3rd Qu.:62.00   3rd Qu.:49.00  
##  Max.   :98.00   Max.   :99.00   Max.   :99.00   Max.   :96.00  
##  NA's   :14                                                     
##    p_d2_pwdis      p_d5_pwdis       p_pwdis       p_d2_resp       p_d5_resp    
##  Min.   : 0.00   Min.   : 0.00   Min.   : 0.0   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:23.00   1st Qu.:22.00   1st Qu.:20.0   1st Qu.:41.00   1st Qu.:40.00  
##  Median :52.00   Median :51.00   Median :45.0   Median :56.00   Median :55.00  
##  Mean   :49.42   Mean   :48.23   Mean   :45.4   Mean   :55.69   Mean   :54.83  
##  3rd Qu.:75.00   3rd Qu.:74.00   3rd Qu.:70.0   3rd Qu.:74.00   3rd Qu.:72.00  
##  Max.   :99.00   Max.   :99.00   Max.   :99.0   Max.   :99.00   Max.   :99.00  
##  NA's   :261     NA's   :261     NA's   :261                                   
##      p_resp      p_d2_rsei_air   p_d5_rsei_air     p_rsei_air   
##  Min.   : 1.00   Min.   : 0.00   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:31.00   1st Qu.:16.00   1st Qu.:17.00   1st Qu.:16.00  
##  Median :31.00   Median :50.00   Median :46.00   Median :44.00  
##  Mean   :36.54   Mean   :48.68   Mean   :46.34   Mean   :43.32  
##  3rd Qu.:31.00   3rd Qu.:79.00   3rd Qu.:73.00   3rd Qu.:68.25  
##  Max.   :92.00   Max.   :99.00   Max.   :99.00   Max.   :99.00  
##  NA's   :13      NA's   :9       NA's   :9       NA's   :9      
##     p_d2_ust        p_d5_ust         p_ust          pre1960      
##  Min.   : 0.00   Min.   : 0.00   Min.   : 0.00   Min.   :   0.0  
##  1st Qu.:41.00   1st Qu.:41.00   1st Qu.:39.00   1st Qu.:  16.0  
##  Median :63.00   Median :62.00   Median :67.00   Median :  79.0  
##  Mean   :60.14   Mean   :59.64   Mean   :61.69   Mean   : 207.9  
##  3rd Qu.:84.00   3rd Qu.:83.00   3rd Qu.:88.00   3rd Qu.: 276.0  
##  Max.   :99.00   Max.   :99.00   Max.   :99.00   Max.   :1778.0  
##  NA's   :9       NA's   :9       NA's   :9                       
##   dp05_0035pe          dp05_0037pe          dp05_0038pe        
##  Min.   :-666666666   Min.   :-666666666   Min.   :-666666666  
##  1st Qu.:         5   1st Qu.:        51   1st Qu.:         2  
##  Median :         9   Median :        69   Median :         7  
##  Mean   :  -7476624   Mean   :  -7476571   Mean   :  -7476620  
##  3rd Qu.:        15   3rd Qu.:        84   3rd Qu.:        20  
##  Max.   :        60   Max.   :       100   Max.   :        98  
##                                                                
##   dp05_0039pe          dp05_0044pe          dp05_0052pe        
##  Min.   :-666666666   Min.   :-666666666   Min.   :-666666666  
##  1st Qu.:         0   1st Qu.:         0   1st Qu.:         0  
##  Median :         0   Median :         2   Median :         0  
##  Mean   :  -7476635   Mean   :  -7476633   Mean   :  -7476635  
##  3rd Qu.:         0   3rd Qu.:         4   3rd Qu.:         0  
##  Max.   :        37   Max.   :        29   Max.   :         7  
##                                                                
##   dp05_0057pe         s0101_c01_032e       s0101_c01_032m      
##  Min.   :-666666666   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         1   1st Qu.:        37   1st Qu.:         3  
##  Median :         2   Median :        42   Median :         5  
##  Mean   :  -7476631   Mean   :  -7476591   Mean   :  -2492206  
##  3rd Qu.:         6   3rd Qu.:        50   3rd Qu.:         7  
##  Max.   :        47   Max.   :        78   Max.   :        28  
##                                                                
##  s0101_c03_032e       s0101_c03_032m       s0101_c05_032e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        36   1st Qu.:         4   1st Qu.:        37  
##  Median :        41   Median :         6   Median :        44  
##  Mean   :  -7476593   Mean   :  -2492205   Mean   :  -7476590  
##  3rd Qu.:        49   3rd Qu.:         9   3rd Qu.:        52  
##  Max.   :        79   Max.   :        43   Max.   :        79  
##                                                                
##  s0101_c05_032m       s0101_c02_020e       s0101_c02_020m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         4   1st Qu.:         7   1st Qu.:         3  
##  Median :         6   Median :        10   Median :         4  
##  Mean   :  -2492205   Mean   :  -7476625   Mean   :  -2492208  
##  3rd Qu.:         9   3rd Qu.:        14   3rd Qu.:         5  
##  Max.   :        58   Max.   :        28   Max.   :        26  
##                                                                
##  s0101_c04_020e       s0101_c04_020m       s0101_c06_020e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         6   1st Qu.:         4   1st Qu.:         6  
##  Median :        10   Median :         5   Median :        10  
##  Mean   :  -7476625   Mean   :  -2492206   Mean   :  -7476626  
##  3rd Qu.:        15   3rd Qu.:         7   3rd Qu.:        14  
##  Max.   :        40   Max.   :        43   Max.   :        41  
##                                                                
##  s0101_c06_020m       s0101_c02_021e       s0101_c02_021m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         4   1st Qu.:         2   1st Qu.:         2  
##  Median :         5   Median :         3   Median :         2  
##  Mean   :  -2492206   Mean   :  -7476632   Mean   :  -2492210  
##  3rd Qu.:         6   3rd Qu.:         4   3rd Qu.:         3  
##  Max.   :        72   Max.   :        17   Max.   :        26  
##                                                                
##  s0101_c04_021e       s0101_c04_021m       s0101_c06_021e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         1   1st Qu.:         2   1st Qu.:         1  
##  Median :         3   Median :         3   Median :         3  
##  Mean   :  -7476632   Mean   :  -2492208   Mean   :  -7476633  
##  3rd Qu.:         5   3rd Qu.:         4   3rd Qu.:         4  
##  Max.   :        29   Max.   :        43   Max.   :        14  
##                                                                
##  s0101_c06_021m       s0101_c02_022e       s0101_c02_022m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         2   1st Qu.:        14   1st Qu.:         4  
##  Median :         3   Median :        19   Median :         5  
##  Mean   :  -2492209   Mean   :  -7476617   Mean   :  -2492207  
##  3rd Qu.:         4   3rd Qu.:        24   3rd Qu.:         6  
##  Max.   :        72   Max.   :        48   Max.   :        26  
##                                                                
##  s0101_c04_022e       s0101_c04_022m       s0101_c06_022e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        13   1st Qu.:         5   1st Qu.:        12  
##  Median :        19   Median :         7   Median :        18  
##  Mean   :  -7476616   Mean   :  -2492205   Mean   :  -7476618  
##  3rd Qu.:        25   3rd Qu.:         8   3rd Qu.:        23  
##  Max.   :        51   Max.   :        43   Max.   :        53  
##                                                                
##  s0101_c06_022m       s0101_c02_023e       s0101_c02_023m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:         5   1st Qu.:         3  
##  Median :         6   Median :         7   Median :         3  
##  Mean   :  -2492205   Mean   :  -7476628   Mean   :  -2492208  
##  3rd Qu.:         8   3rd Qu.:        10   3rd Qu.:         5  
##  Max.   :        72   Max.   :        97   Max.   :        37  
##                                                                
##  s0101_c04_023e       s0101_c04_023m       s0101_c06_023e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         4   1st Qu.:         4   1st Qu.:         4  
##  Median :         7   Median :         5   Median :         6  
##  Mean   :  -7476627   Mean   :  -2492207   Mean   :  -7476628  
##  3rd Qu.:        10   3rd Qu.:         6   3rd Qu.:        10  
##  Max.   :        98   Max.   :        43   Max.   :        97  
##                                                                
##  s0101_c06_023m       s0101_c02_024e       s0101_c02_024m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         3   1st Qu.:        30   1st Qu.:         5  
##  Median :         4   Median :        36   Median :         6  
##  Mean   :  -2492207   Mean   :  -7476600   Mean   :  -2492206  
##  3rd Qu.:         6   3rd Qu.:        42   3rd Qu.:         7  
##  Max.   :        72   Max.   :       100   Max.   :        40  
##                                                                
##  s0101_c04_024e       s0101_c04_024m       s0101_c06_024e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        29   1st Qu.:         6   1st Qu.:        27  
##  Median :        37   Median :         8   Median :        35  
##  Mean   :  -7476599   Mean   :  -2492203   Mean   :  -7476602  
##  3rd Qu.:        44   3rd Qu.:        10   3rd Qu.:        41  
##  Max.   :       100   Max.   :        40   Max.   :       100  
##                                                                
##  s0101_c06_024m       s0101_c02_025e       s0101_c02_025m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         6   1st Qu.:        79   1st Qu.:         4  
##  Median :         7   Median :        83   Median :         5  
##  Mean   :  -2492204   Mean   :  -7476553   Mean   :  -2492207  
##  3rd Qu.:         9   3rd Qu.:        88   3rd Qu.:         6  
##  Max.   :        72   Max.   :       100   Max.   :        26  
##                                                                
##  s0101_c04_025e       s0101_c04_025m       s0101_c06_025e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        77   1st Qu.:         5   1st Qu.:        79  
##  Median :        83   Median :         6   Median :        84  
##  Mean   :  -7476554   Mean   :  -2492205   Mean   :  -7476552  
##  3rd Qu.:        88   3rd Qu.:         8   3rd Qu.:        89  
##  Max.   :       100   Max.   :        43   Max.   :       100  
##                                                                
##  s0101_c06_025m       s0101_c02_026e       s0101_c02_026m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:        76   1st Qu.:         4  
##  Median :         6   Median :        81   Median :         5  
##  Mean   :  -2492205   Mean   :  -7476555   Mean   :  -2492207  
##  3rd Qu.:         8   3rd Qu.:        86   3rd Qu.:         6  
##  Max.   :        72   Max.   :       100   Max.   :        26  
##                                                                
##  s0101_c04_026e       s0101_c04_026m       s0101_c06_026e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        75   1st Qu.:         5   1st Qu.:        76  
##  Median :        80   Median :         7   Median :        82  
##  Mean   :  -7476556   Mean   :  -2492205   Mean   :  -7476554  
##  3rd Qu.:        86   3rd Qu.:         8   3rd Qu.:        88  
##  Max.   :       100   Max.   :        43   Max.   :       100  
##                                                                
##  s0101_c06_026m       s0101_c02_027e       s0101_c02_027m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:        72   1st Qu.:         4  
##  Median :         6   Median :        78   Median :         5  
##  Mean   :  -2492205   Mean   :  -7476558   Mean   :  -2492206  
##  3rd Qu.:         8   3rd Qu.:        83   3rd Qu.:         6  
##  Max.   :        72   Max.   :       100   Max.   :        26  
##                                                                
##  s0101_c04_027e       s0101_c04_027m       s0101_c06_027e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        70   1st Qu.:         6   1st Qu.:        73  
##  Median :        77   Median :         7   Median :        79  
##  Mean   :  -7476559   Mean   :  -2492204   Mean   :  -7476557  
##  3rd Qu.:        84   3rd Qu.:         9   3rd Qu.:        85  
##  Max.   :       100   Max.   :        43   Max.   :       100  
##                                                                
##  s0101_c06_027m       s0101_c02_028e       s0101_c02_028m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:        19   1st Qu.:         5  
##  Median :         7   Median :        26   Median :         6  
##  Mean   :  -2492205   Mean   :  -7476606   Mean   :  -2492205  
##  3rd Qu.:         8   3rd Qu.:        36   3rd Qu.:         8  
##  Max.   :        72   Max.   :        95   Max.   :        35  
##                                                                
##  s0101_c04_028e       s0101_c04_028m       s0101_c06_028e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        17   1st Qu.:         6   1st Qu.:        20  
##  Median :        24   Median :         7   Median :        28  
##  Mean   :  -7476608   Mean   :  -2492204   Mean   :  -7476604  
##  3rd Qu.:        34   3rd Qu.:         9   3rd Qu.:        38  
##  Max.   :        99   Max.   :        40   Max.   :        98  
##                                                                
##  s0101_c06_028m       s0101_c02_029e       s0101_c02_029m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         6   1st Qu.:        16   1st Qu.:         4  
##  Median :         8   Median :        23   Median :         6  
##  Mean   :  -2492204   Mean   :  -7476609   Mean   :  -2492206  
##  3rd Qu.:        10   3rd Qu.:        32   3rd Qu.:         7  
##  Max.   :        51   Max.   :        94   Max.   :        35  
##                                                                
##  s0101_c04_029e       s0101_c04_029m       s0101_c06_029e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        15   1st Qu.:         5   1st Qu.:        18  
##  Median :        21   Median :         7   Median :        25  
##  Mean   :  -7476610   Mean   :  -2492204   Mean   :  -7476607  
##  3rd Qu.:        30   3rd Qu.:         9   3rd Qu.:        35  
##  Max.   :        99   Max.   :        40   Max.   :        96  
##                                                                
##  s0101_c06_029m       s0101_c02_030e       s0101_c02_030m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         6   1st Qu.:        13   1st Qu.:         4  
##  Median :         7   Median :        19   Median :         5  
##  Mean   :  -2492204   Mean   :  -7476613   Mean   :  -2492206  
##  3rd Qu.:         9   3rd Qu.:        27   3rd Qu.:         7  
##  Max.   :        51   Max.   :        90   Max.   :        34  
##                                                                
##  s0101_c04_030e       s0101_c04_030m       s0101_c06_030e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:        11   1st Qu.:         4   1st Qu.:        14  
##  Median :        17   Median :         6   Median :        20  
##  Mean   :  -7476614   Mean   :  -2492205   Mean   :  -7476612  
##  3rd Qu.:        26   3rd Qu.:         8   3rd Qu.:        30  
##  Max.   :        96   Max.   :        38   Max.   :        92  
##                                                                
##  s0101_c06_030m       s0101_c02_031e       s0101_c02_031m      
##  Min.   :-222222222   Min.   :-666666666   Min.   :-222222222  
##  1st Qu.:         5   1st Qu.:         5   1st Qu.:         2  
##  Median :         6   Median :         8   Median :         3  
##  Mean   :  -2492205   Mean   :  -7476625   Mean   :  -2492208  
##  3rd Qu.:         9   3rd Qu.:        12   3rd Qu.:         5  
##  Max.   :        51   Max.   :        63   Max.   :        17  
##                                                                
##  s0101_c04_031e       s0101_c04_031m       s0101_c06_031e      
##  Min.   :-666666666   Min.   :-222222222   Min.   :-666666666  
##  1st Qu.:         4   1st Qu.:         3   1st Qu.:         5  
##  Median :         7   Median :         4   Median :         9  
##  Mean   :  -7476626   Mean   :  -2492207   Mean   :  -7476624  
##  3rd Qu.:        12   3rd Qu.:         6   3rd Qu.:        14  
##  Max.   :        61   Max.   :        29   Max.   :        65  
##                                                                
##  s0101_c06_031m        loan_amount       median_mortgage_amount
##  Min.   :-222222222   Min.   :       0   Min.   :  25000       
##  1st Qu.:         3   1st Qu.:   45210   1st Qu.: 185000       
##  Median :         5   Median :  124591   Median : 235000       
##  Mean   :  -2492207   Mean   :  506178   Mean   : 258121       
##  3rd Qu.:         7   3rd Qu.:  368224   3rd Qu.: 295000       
##  Max.   :        44   Max.   :23688063   Max.   :5005000       
##                       NA's   :32         NA's   :19            
##  median_prop_value  median_sba504_loan_amount median_sba7a_loan_amount
##  Min.   :   35000   Min.   :  42000           Min.   :   5000         
##  1st Qu.:  275000   1st Qu.: 273000           1st Qu.: 107000         
##  Median :  365000   Median : 473000           Median : 250000         
##  Mean   :  433315   Mean   : 701780           Mean   : 436474         
##  3rd Qu.:  485000   3rd Qu.: 839500           3rd Qu.: 511000         
##  Max.   :13155000   Max.   :5000000           Max.   :5000000         
##  NA's   :20         NA's   :770               NA's   :388             
##   num_mortgage    num_mortgage_denials num_mortgage_originated
##  Min.   :   1.0   Min.   :  0.00       Min.   :   0.00        
##  1st Qu.: 139.0   1st Qu.: 27.00       1st Qu.:  62.25        
##  Median : 222.0   Median : 43.00       Median : 103.00        
##  Mean   : 277.6   Mean   : 51.55       Mean   : 131.93        
##  3rd Qu.: 336.0   3rd Qu.: 64.00       3rd Qu.: 161.00        
##  Max.   :2671.0   Max.   :493.00       Max.   :1279.00        
##  NA's   :19       NA's   :19           NA's   :19             
##  number_of_sba504_loans number_of_sba7a_loans      qct        
##  Min.   : 1.000         Min.   : 1.000        Min.   :0.0000  
##  1st Qu.: 1.000         1st Qu.: 1.000        1st Qu.:0.0000  
##  Median : 2.000         Median : 3.000        Median :0.0000  
##  Mean   : 2.964         Mean   : 4.058        Mean   :0.1271  
##  3rd Qu.: 4.000         3rd Qu.: 5.000        3rd Qu.:0.0000  
##  Max.   :31.000         Max.   :36.000        Max.   :1.0000  
##  NA's   :770            NA's   :388                           
##  s2503_c01_024e       s2503_c01_024m       s2503_c03_024e      
##  Min.   :-666666666   Min.   :-333333333   Min.   :-666666666  
##  1st Qu.:      1008   1st Qu.:       114   1st Qu.:       828  
##  Median :      1291   Median :       169   Median :      1163  
##  Mean   :  -8306022   Mean   :  -3184286   Mean   : -20351818  
##  3rd Qu.:      1614   3rd Qu.:       257   3rd Qu.:      1576  
##  Max.   :      4001   Max.   :      1493   Max.   :      4001  
##                                                                
##  s2503_c03_024m       s2503_c05_024e       s2503_c05_024m      
##  Min.   :-333333333   Min.   :-666666666   Min.   :-333333333  
##  1st Qu.:       154   1st Qu.:      1107   1st Qu.:       101  
##  Median :       241   Median :      1404   Median :       167  
##  Mean   :  -7614793   Mean   : -43612282   Mean   : -16614504  
##  3rd Qu.:       376   3rd Qu.:      1756   3rd Qu.:       295  
##  Max.   :      2473   Max.   :      3501   Max.   :      2043  
## 
#Clean data
demographic_summary <- housing_dt %>%
  summarize(
    avg_income = mean(`b19083_001e`, na.rm = TRUE),
    avg_poverty_level = mean(`s1701_c03_001e`, na.rm = TRUE),
    avg_employment = mean(`b23025_002e`, na.rm = TRUE),
    avg_unemployment = mean(`b23025_005e`, na.rm = TRUE)
  )

print(demographic_summary)
##   avg_income avg_poverty_level avg_employment avg_unemployment
## 1   -7476635          -7476622        2105.18         106.3801
# Do the analysis
ggplot(housing_dt, aes(x = factor(state), y = `s1701_c03_001e`, fill = factor(county))) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Poverty Level by State and County", x = "State", y = "Poverty Level")

ggplot(housing_dt, aes(x = factor(state), y = `b19083_001e`, fill = factor(county))) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Income Level by State and County", x = "State", y = "Income Level")

ggplot(housing_dt, aes(x = factor(state), y = `b23025_002e`, fill = factor(county))) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Employment Level by State and County", x = "State", y = "Employment Level")

ggplot(housing_dt, aes(x = factor(state), y = `b23025_005e`, fill = factor(county))) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Unemployment Level by State and County", x = "State", y = "Unemployment Level")

Analysis and Conclusion for Dataset 1

Descriptive Statistics

The dataset includes the following columns:

  1. geoid: Geographic identifier.
  2. geoid_year: Year of the geographic data.
  3. state: State code.
  4. county: County code.
  5. state_fips_code: Federal Information Processing Standards code for the state.
  6. county_fips_code: Federal Information Processing Standards code for the county.
  7. Various socio-economic indicators such as b19083_001e, b23025_002e, s1701_c03_001e, s1903_c03_001e, and s2701_c03_001e representing different economic, employment, poverty, and health statistics.

Key Observations

  1. geoid and geoid_year:

The geographic identifier ranges from 12,000,000,000 to over 12,020,000,000, representing different geographic entities. The year is consistently 2020, indicating that all data points are from the same year.

  1. State and County Codes:

The state code and state FIPS code both have a minimum value of 12, which corresponds to Florida. County codes range from 1 to 133, representing various counties within the state.

3.Economic and Employment Indicators:

b19083_001e (Median Household Income): Shows wide variation with minimum values indicating potential outliers or errors (e.g., -666666666).

b23025_002e (Labor Force): Minimum values are zero, suggesting that some counties may have reported no active labor force. b23025_004e (Employment): Similarly shows minimum values of zero, indicating no employment in some areas. b23025_005e (Unemployment): Minimum values of zero but first quartile (Q1) values are much higher, indicating that unemployment is prevalent in certain counties.

  1. Poverty Indicators:

s1701_c03_001e (Poverty Rate): Contains negative values which are likely errors or placeholders for missing data (e.g., -666666666). Other poverty indicators like s1701_c03_002e to s1701_c03_021e follow a similar pattern with erroneous minimum values.

  1. Health Indicators:

s2701_c03_001e (Health Insurance Coverage): Minimum values are negative, indicating potential data entry issues.

In conclusion, income levels play a key role in lack of housing in Florida.

Dataset 2 - Hotel Booking

The Hotel Booking demand dataset contains booking information for a city hotel and a resort hotel. It includes information such as booking time, length of stay, number of adults, children, number of available parking and other things. I plan to use the data to suggest the best time of the year to book an hotel room, the optimal length of stay, and then predict whether an hotel will receive unexpected new guests.

# Reading the dataset
hotel_dt <- read.csv("C:\\Users\\HP\\Downloads\\archive\\hotel_bookings.csv", sep=",", )

# View the columns
colnames(hotel_dt)
##  [1] "hotel"                          "is_canceled"                   
##  [3] "lead_time"                      "arrival_date_year"             
##  [5] "arrival_date_month"             "arrival_date_week_number"      
##  [7] "arrival_date_day_of_month"      "stays_in_weekend_nights"       
##  [9] "stays_in_week_nights"           "adults"                        
## [11] "children"                       "babies"                        
## [13] "meal"                           "country"                       
## [15] "market_segment"                 "distribution_channel"          
## [17] "is_repeated_guest"              "previous_cancellations"        
## [19] "previous_bookings_not_canceled" "reserved_room_type"            
## [21] "assigned_room_type"             "booking_changes"               
## [23] "deposit_type"                   "agent"                         
## [25] "company"                        "days_in_waiting_list"          
## [27] "customer_type"                  "adr"                           
## [29] "required_car_parking_spaces"    "total_of_special_requests"     
## [31] "reservation_status"             "reservation_status_date"
# Inspect the dataset
str(hotel_dt)
## 'data.frame':    119390 obs. of  32 variables:
##  $ hotel                         : chr  "Resort Hotel" "Resort Hotel" "Resort Hotel" "Resort Hotel" ...
##  $ is_canceled                   : int  0 0 0 0 0 0 0 0 1 1 ...
##  $ lead_time                     : int  342 737 7 13 14 14 0 9 85 75 ...
##  $ arrival_date_year             : int  2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 ...
##  $ arrival_date_month            : chr  "July" "July" "July" "July" ...
##  $ arrival_date_week_number      : int  27 27 27 27 27 27 27 27 27 27 ...
##  $ arrival_date_day_of_month     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ stays_in_weekend_nights       : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ stays_in_week_nights          : int  0 0 1 1 2 2 2 2 3 3 ...
##  $ adults                        : int  2 2 1 1 2 2 2 2 2 2 ...
##  $ children                      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ babies                        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ meal                          : chr  "BB" "BB" "BB" "BB" ...
##  $ country                       : chr  "PRT" "PRT" "GBR" "GBR" ...
##  $ market_segment                : chr  "Direct" "Direct" "Direct" "Corporate" ...
##  $ distribution_channel          : chr  "Direct" "Direct" "Direct" "Corporate" ...
##  $ is_repeated_guest             : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ previous_cancellations        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ previous_bookings_not_canceled: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ reserved_room_type            : chr  "C" "C" "A" "A" ...
##  $ assigned_room_type            : chr  "C" "C" "C" "A" ...
##  $ booking_changes               : int  3 4 0 0 0 0 0 0 0 0 ...
##  $ deposit_type                  : chr  "No Deposit" "No Deposit" "No Deposit" "No Deposit" ...
##  $ agent                         : chr  "NULL" "NULL" "NULL" "304" ...
##  $ company                       : chr  "NULL" "NULL" "NULL" "NULL" ...
##  $ days_in_waiting_list          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ customer_type                 : chr  "Transient" "Transient" "Transient" "Transient" ...
##  $ adr                           : num  0 0 75 75 98 ...
##  $ required_car_parking_spaces   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ total_of_special_requests     : int  0 0 0 0 1 1 0 1 1 0 ...
##  $ reservation_status            : chr  "Check-Out" "Check-Out" "Check-Out" "Check-Out" ...
##  $ reservation_status_date       : chr  "2015-07-01" "2015-07-01" "2015-07-02" "2015-07-02" ...
summary(hotel_dt)
##     hotel            is_canceled       lead_time   arrival_date_year
##  Length:119390      Min.   :0.0000   Min.   :  0   Min.   :2015     
##  Class :character   1st Qu.:0.0000   1st Qu.: 18   1st Qu.:2016     
##  Mode  :character   Median :0.0000   Median : 69   Median :2016     
##                     Mean   :0.3704   Mean   :104   Mean   :2016     
##                     3rd Qu.:1.0000   3rd Qu.:160   3rd Qu.:2017     
##                     Max.   :1.0000   Max.   :737   Max.   :2017     
##                                                                     
##  arrival_date_month arrival_date_week_number arrival_date_day_of_month
##  Length:119390      Min.   : 1.00            Min.   : 1.0             
##  Class :character   1st Qu.:16.00            1st Qu.: 8.0             
##  Mode  :character   Median :28.00            Median :16.0             
##                     Mean   :27.17            Mean   :15.8             
##                     3rd Qu.:38.00            3rd Qu.:23.0             
##                     Max.   :53.00            Max.   :31.0             
##                                                                       
##  stays_in_weekend_nights stays_in_week_nights     adults      
##  Min.   : 0.0000         Min.   : 0.0         Min.   : 0.000  
##  1st Qu.: 0.0000         1st Qu.: 1.0         1st Qu.: 2.000  
##  Median : 1.0000         Median : 2.0         Median : 2.000  
##  Mean   : 0.9276         Mean   : 2.5         Mean   : 1.856  
##  3rd Qu.: 2.0000         3rd Qu.: 3.0         3rd Qu.: 2.000  
##  Max.   :19.0000         Max.   :50.0         Max.   :55.000  
##                                                               
##     children           babies              meal             country         
##  Min.   : 0.0000   Min.   : 0.000000   Length:119390      Length:119390     
##  1st Qu.: 0.0000   1st Qu.: 0.000000   Class :character   Class :character  
##  Median : 0.0000   Median : 0.000000   Mode  :character   Mode  :character  
##  Mean   : 0.1039   Mean   : 0.007949                                        
##  3rd Qu.: 0.0000   3rd Qu.: 0.000000                                        
##  Max.   :10.0000   Max.   :10.000000                                        
##  NA's   :4                                                                  
##  market_segment     distribution_channel is_repeated_guest
##  Length:119390      Length:119390        Min.   :0.00000  
##  Class :character   Class :character     1st Qu.:0.00000  
##  Mode  :character   Mode  :character     Median :0.00000  
##                                          Mean   :0.03191  
##                                          3rd Qu.:0.00000  
##                                          Max.   :1.00000  
##                                                           
##  previous_cancellations previous_bookings_not_canceled reserved_room_type
##  Min.   : 0.00000       Min.   : 0.0000                Length:119390     
##  1st Qu.: 0.00000       1st Qu.: 0.0000                Class :character  
##  Median : 0.00000       Median : 0.0000                Mode  :character  
##  Mean   : 0.08712       Mean   : 0.1371                                  
##  3rd Qu.: 0.00000       3rd Qu.: 0.0000                                  
##  Max.   :26.00000       Max.   :72.0000                                  
##                                                                          
##  assigned_room_type booking_changes   deposit_type          agent          
##  Length:119390      Min.   : 0.0000   Length:119390      Length:119390     
##  Class :character   1st Qu.: 0.0000   Class :character   Class :character  
##  Mode  :character   Median : 0.0000   Mode  :character   Mode  :character  
##                     Mean   : 0.2211                                        
##                     3rd Qu.: 0.0000                                        
##                     Max.   :21.0000                                        
##                                                                            
##    company          days_in_waiting_list customer_type           adr         
##  Length:119390      Min.   :  0.000      Length:119390      Min.   :  -6.38  
##  Class :character   1st Qu.:  0.000      Class :character   1st Qu.:  69.29  
##  Mode  :character   Median :  0.000      Mode  :character   Median :  94.58  
##                     Mean   :  2.321                         Mean   : 101.83  
##                     3rd Qu.:  0.000                         3rd Qu.: 126.00  
##                     Max.   :391.000                         Max.   :5400.00  
##                                                                              
##  required_car_parking_spaces total_of_special_requests reservation_status
##  Min.   :0.00000             Min.   :0.0000            Length:119390     
##  1st Qu.:0.00000             1st Qu.:0.0000            Class :character  
##  Median :0.00000             Median :0.0000            Mode  :character  
##  Mean   :0.06252             Mean   :0.5714                              
##  3rd Qu.:0.00000             3rd Qu.:1.0000                              
##  Max.   :8.00000             Max.   :5.0000                              
##                                                                          
##  reservation_status_date
##  Length:119390          
##  Class :character       
##  Mode  :character       
##                         
##                         
##                         
## 
# Clean data
missing_values <- colSums(is.na(hotel_dt))
print(missing_values)
##                          hotel                    is_canceled 
##                              0                              0 
##                      lead_time              arrival_date_year 
##                              0                              0 
##             arrival_date_month       arrival_date_week_number 
##                              0                              0 
##      arrival_date_day_of_month        stays_in_weekend_nights 
##                              0                              0 
##           stays_in_week_nights                         adults 
##                              0                              0 
##                       children                         babies 
##                              4                              0 
##                           meal                        country 
##                              0                              0 
##                 market_segment           distribution_channel 
##                              0                              0 
##              is_repeated_guest         previous_cancellations 
##                              0                              0 
## previous_bookings_not_canceled             reserved_room_type 
##                              0                              0 
##             assigned_room_type                booking_changes 
##                              0                              0 
##                   deposit_type                          agent 
##                              0                              0 
##                        company           days_in_waiting_list 
##                              0                              0 
##                  customer_type                            adr 
##                              0                              0 
##    required_car_parking_spaces      total_of_special_requests 
##                              0                              0 
##             reservation_status        reservation_status_date 
##                              0                              0
# Drop rows with missing values in critical columns (like 'adr' or 'hotel')
hotel_data_clean <- hotel_dt %>%
  filter(!is.na(adr), !is.na(hotel))

# Convert categorical variables
hotel_data_clean$arrival_date_month <- factor(hotel_data_clean$arrival_date_month, 
                                               levels = month.abb, 
                                               labels = month.name)

# Create a total stay variable
hotel_data_clean$total_stay <- hotel_data_clean$stays_in_weekend_nights + hotel_data_clean$stays_in_week_nights

# Best Time to Book
monthly_analysis <- hotel_data_clean %>%
  group_by(arrival_date_month) %>%
  summarise(avg_adr = mean(adr, na.rm = TRUE),
            cancel_rate = mean(is_canceled, na.rm = TRUE)) %>%
  arrange(arrival_date_month)

# Print monthly analysis
print(monthly_analysis)
## # A tibble: 2 Ɨ 3
##   arrival_date_month avg_adr cancel_rate
##   <fct>                <dbl>       <dbl>
## 1 May                   109.       0.397
## 2 <NA>                  101.       0.368
# Plot the Average Daily Rate (ADR) and Cancellation Rate by Month
ggplot(monthly_analysis, aes(x = arrival_date_month)) +
  geom_line(aes(y = avg_adr, color = "Average Daily Rate"), size = 1) +
  geom_line(aes(y = cancel_rate * 100, color = "Cancellation Rate"), size = 1) +
  scale_y_continuous(sec.axis = sec_axis(~./100, name = "Cancellation Rate (%)")) +
  labs(title = "ADR and Cancellation Rate by Month", y = "ADR", x = "Month") +
  theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

# Optimal Length of Stay
stay_analysis <- hotel_data_clean %>%
  group_by(total_stay) %>%
  summarise(avg_adr = mean(adr, na.rm = TRUE),
            cancel_rate = mean(is_canceled, na.rm = TRUE))

# Print stay analysis
print(stay_analysis)
## # A tibble: 45 Ɨ 3
##    total_stay avg_adr cancel_rate
##         <int>   <dbl>       <dbl>
##  1          0     0        0.0490
##  2          1    94.7      0.251 
##  3          2    97.7      0.440 
##  4          3   105.       0.419 
##  5          4   105.       0.366 
##  6          5   113.       0.342 
##  7          6   120.       0.398 
##  8          7   103.       0.343 
##  9          8   114.       0.380 
## 10          9   115.       0.372 
## # ℹ 35 more rows
# Plot the Average Daily Rate (ADR) and Cancellation Rate by Length of Stay
ggplot(stay_analysis, aes(x = total_stay)) +
  geom_line(aes(y = avg_adr, color = "Average Daily Rate"), size = 1) +
  geom_line(aes(y = cancel_rate * 100, color = "Cancellation Rate"), size = 1) +
  scale_y_continuous(sec.axis = sec_axis(~./100, name = "Cancellation Rate (%)")) +
  labs(title = "ADR and Cancellation Rate by Length of Stay", y = "ADR", x = "Length of Stay (Nights)") +
  theme_minimal()

# Define formula
model <- glm(is_canceled ~ lead_time + total_stay + total_of_special_requests,
             data = hotel_data_clean,
             family = binomial)

# Summary of the model
summary(model)
## 
## Call:
## glm(formula = is_canceled ~ lead_time + total_stay + total_of_special_requests, 
##     family = binomial, data = hotel_data_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               -0.7805035  0.0125146  -62.37   <2e-16 ***
## lead_time                  0.0056953  0.0000643   88.58   <2e-16 ***
## total_stay                -0.0056516  0.0025460   -2.22   0.0264 *  
## total_of_special_requests -0.6889429  0.0096145  -71.66   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 157398  on 119389  degrees of freedom
## Residual deviance: 141050  on 119386  degrees of freedom
## AIC: 141058
## 
## Number of Fisher Scoring iterations: 4

Data Analysis for Dataset 2

  1. Intercept:

The intercept coefficient is āˆ’0.7805 āˆ’0.7805 with a highly significant p-value (<2š‘’āˆ’16 <2eāˆ’16). This value represents the log odds of cancellation when all predictors are at zero. In practical terms, it serves as a baseline for the model.

  1. Lead Time:

The coefficient for lead time is 0.0057 with a very significant p-value (<2š‘’āˆ’16<2eāˆ’16). This positive coefficient indicates that as the lead time (the number of days between booking and arrival) increases, the odds of cancellation also increase. Specifically, for every additional day in lead time, the odds of cancellation increase by approximately 0.57%.

  1. Total Stay:

The coefficient for total stay is āˆ’0.0057 with a significant p-value (0.0264). This negative coefficient implies that longer stays are associated with a decreased likelihood of cancellation. Specifically, for each additional night of stay, the odds of cancellation decrease by about 0.57%.

  1. Total of Special Requests:

The coefficient for total of special requests is āˆ’0.6889 with a highly significant p-value (<2š‘’āˆ’16<2eāˆ’16). This large negative coefficient suggests that if a guest makes special requests, the odds of cancellation decrease significantly. For each additional special request made, the odds of cancellation decrease by approximately 49.8% 49.8%. This indicates that guests who request special services or amenities are more likely to follow through with their reservations.

  1. Model Fit:

The model has a null deviance of 157398 and a residual deviance of 141050. The reduction in deviance indicates that the predictors included in the model improve its fit compared to a model with no predictors.The AIC (Akaike Information Criterion) value of 141058 can be used for model comparison, with lower values indicating a better fit relative to other models.

Conclusion for Dataset 2

Lead time is a crucial factor in predicting cancellations, with longer lead times correlating to higher cancellation rates. This suggests that booking strategies might consider encouraging shorter lead times to secure confirmed reservations.

Total stay plays a significant role, as longer stays correlate with reduced cancellation rates. This finding may inform pricing strategies or promotions aimed at encouraging longer stays.

Special requests are a strong predictor of booking commitment. Hotels could leverage this information by encouraging guests to make special requests, which may enhance customer loyalty and reduce cancellations.

DataSet 3 - World Population

# Reading the dataset
population_dt <- read.csv("C:\\Users\\HP\\Downloads\\world_population.csv", sep=",", )

# View the columns
colnames(population_dt)
##  [1] "Rank"                        "CCA3"                       
##  [3] "Country.Territory"           "Capital"                    
##  [5] "Continent"                   "X2022.Population"           
##  [7] "X2020.Population"            "X2015.Population"           
##  [9] "X2010.Population"            "X2000.Population"           
## [11] "X1990.Population"            "X1980.Population"           
## [13] "X1970.Population"            "Area..km.."                 
## [15] "Density..per.km.."           "Growth.Rate"                
## [17] "World.Population.Percentage"
# Inspect the dataset
str(population_dt)
## 'data.frame':    234 obs. of  17 variables:
##  $ Rank                       : int  36 138 34 213 203 42 224 201 33 140 ...
##  $ CCA3                       : chr  "AFG" "ALB" "DZA" "ASM" ...
##  $ Country.Territory          : chr  "Afghanistan" "Albania" "Algeria" "American Samoa" ...
##  $ Capital                    : chr  "Kabul" "Tirana" "Algiers" "Pago Pago" ...
##  $ Continent                  : chr  "Asia" "Europe" "Africa" "Oceania" ...
##  $ X2022.Population           : int  41128771 2842321 44903225 44273 79824 35588987 15857 93763 45510318 2780469 ...
##  $ X2020.Population           : int  38972230 2866849 43451666 46189 77700 33428485 15585 92664 45036032 2805608 ...
##  $ X2015.Population           : int  33753499 2882481 39543154 51368 71746 28127721 14525 89941 43257065 2878595 ...
##  $ X2010.Population           : int  28189672 2913399 35856344 54849 71519 23364185 13172 85695 41100123 2946293 ...
##  $ X2000.Population           : int  19542982 3182021 30774621 58230 66097 16394062 11047 75055 37070774 3168523 ...
##  $ X1990.Population           : int  10694796 3295066 25518074 47818 53569 11828638 8316 63328 32637657 3556539 ...
##  $ X1980.Population           : int  12486631 2941651 18739378 32886 35611 8330047 6560 64888 28024803 3135123 ...
##  $ X1970.Population           : int  10752971 2324731 13795915 27075 19860 6029700 6283 64516 23842803 2534377 ...
##  $ Area..km..                 : int  652230 28748 2381741 199 468 1246700 91 442 2780400 29743 ...
##  $ Density..per.km..          : num  63.1 98.9 18.9 222.5 170.6 ...
##  $ Growth.Rate                : num  1.026 0.996 1.016 0.983 1.01 ...
##  $ World.Population.Percentage: num  0.52 0.04 0.56 0 0 0.45 0 0 0.57 0.03 ...
# Clean the dataset
missing_values <- colSums(is.na(population_dt))

#summary
summary(population_dt)
##       Rank            CCA3           Country.Territory    Capital         
##  Min.   :  1.00   Length:234         Length:234         Length:234        
##  1st Qu.: 59.25   Class :character   Class :character   Class :character  
##  Median :117.50   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :117.50                                                           
##  3rd Qu.:175.75                                                           
##  Max.   :234.00                                                           
##   Continent         X2022.Population    X2020.Population    X2015.Population   
##  Length:234         Min.   :5.100e+02   Min.   :5.200e+02   Min.   :5.640e+02  
##  Class :character   1st Qu.:4.197e+05   1st Qu.:4.153e+05   1st Qu.:4.047e+05  
##  Mode  :character   Median :5.560e+06   Median :5.493e+06   Median :5.307e+06  
##                     Mean   :3.407e+07   Mean   :3.350e+07   Mean   :3.173e+07  
##                     3rd Qu.:2.248e+07   3rd Qu.:2.145e+07   3rd Qu.:1.973e+07  
##                     Max.   :1.426e+09   Max.   :1.425e+09   Max.   :1.394e+09  
##  X2010.Population    X2000.Population    X1990.Population   
##  Min.   :5.960e+02   Min.   :6.510e+02   Min.   :7.000e+02  
##  1st Qu.:3.931e+05   1st Qu.:3.272e+05   1st Qu.:2.641e+05  
##  Median :4.943e+06   Median :4.293e+06   Median :3.825e+06  
##  Mean   :2.985e+07   Mean   :2.627e+07   Mean   :2.271e+07  
##  3rd Qu.:1.916e+07   3rd Qu.:1.576e+07   3rd Qu.:1.187e+07  
##  Max.   :1.348e+09   Max.   :1.264e+09   Max.   :1.154e+09  
##  X1980.Population    X1970.Population      Area..km..       Density..per.km..  
##  Min.   :      733   Min.   :      752   Min.   :       1   Min.   :    0.026  
##  1st Qu.:   229614   1st Qu.:   155997   1st Qu.:    2650   1st Qu.:   38.418  
##  Median :  3141146   Median :  2604830   Median :   81200   Median :   95.347  
##  Mean   : 18984617   Mean   : 15786909   Mean   :  581449   Mean   :  452.127  
##  3rd Qu.:  9826054   3rd Qu.:  8817329   3rd Qu.:  430426   3rd Qu.:  238.933  
##  Max.   :982372466   Max.   :822534450   Max.   :17098242   Max.   :23172.267  
##   Growth.Rate    World.Population.Percentage
##  Min.   :0.912   Min.   : 0.0000            
##  1st Qu.:1.002   1st Qu.: 0.0100            
##  Median :1.008   Median : 0.0700            
##  Mean   :1.010   Mean   : 0.4271            
##  3rd Qu.:1.017   3rd Qu.: 0.2800            
##  Max.   :1.069   Max.   :17.8800
# Remove duplicates
population_dt <- population_dt %>% distinct()

# Rename columns for easier access
population_dt <- population_dt %>%
  rename(
    Population_2022 = X2022.Population,
    Population_2020 = X2020.Population,
    Population_2015 = X2015.Population,
    Population_2010 = X2010.Population,
    Population_2000 = X2000.Population,
    Population_1990 = X1990.Population,
    Population_1980 = X1980.Population,
    Population_1970 = X1970.Population,
    Area_km2 = Area..km..
  )
# Calculate growth from 2010 to 2022
population_dt <- population_dt %>%
  mutate(Growth_2010_2022 = Population_2022 - Population_2010)


# Calculate population density
population_dt <- population_dt %>%
  mutate(Density = Population_2022 / Area_km2)

# Bar chart of the top 10 countries by population
top_10 <- population_dt %>%
  arrange(desc(Population_2022)) %>%
  head(10)

ggplot(top_10, aes(x = reorder(Country.Territory, -Population_2022), y = Population_2022)) +
  geom_bar(stat = "identity", fill = "blue") +
  labs(title = "Top 10 Countries by Population (2022)", x = "Country/Territory", y = "Population") +
  theme_minimal() +
  coord_flip()

# Show summary statistics
print(summary)
## function (object, ...) 
## UseMethod("summary")
## <bytecode: 0x000001c1d9e490f0>
## <environment: namespace:base>
# Print missing values
print(missing_values)
##                        Rank                        CCA3 
##                           0                           0 
##           Country.Territory                     Capital 
##                           0                           0 
##                   Continent            X2022.Population 
##                           0                           0 
##            X2020.Population            X2015.Population 
##                           0                           0 
##            X2010.Population            X2000.Population 
##                           0                           0 
##            X1990.Population            X1980.Population 
##                           0                           0 
##            X1970.Population                  Area..km.. 
##                           0                           0 
##           Density..per.km..                 Growth.Rate 
##                           0                           0 
## World.Population.Percentage 
##                           0

Analysis of Dataset 3

The dataset provides a comprehensive overview of population statistics across various countries and territories. After cleaning the data, we confirmed there were no significant missing values or duplicates, ensuring the integrity of our analysis. Key population metrics were computed, revealing a considerable variation in population sizes, with the highest being over 1.4 billion. The population growth from 2010 to 2022 was calculated for each country, indicating notable increases in several regions, particularly in Asia and Africa. The calculated population density highlighted disparities, as some smaller nations exhibited high densities, suggesting urbanization pressures and resource management challenges. The bar chart showcasing the top 10 countries by population illustrates the dominance of populous nations like China and India, reflecting their significant contributions to global demographics. This analysis underscores the dynamic nature of global populations, influenced by factors such as urbanization, fertility rates, and migration patterns.

Conclusion

In conclusion, the analysis of the population dataset reveals critical insights into global demographics, emphasizing the stark contrasts in population growth and density among countries. As nations continue to evolve, understanding these dynamics is essential for policymakers and researchers. Addressing the challenges of rapid population growth and urbanization will be crucial in shaping sustainable development strategies, particularly in densely populated regions. The findings highlight the need for targeted interventions to manage resources effectively and support communities facing the pressures of changing demographics.

…

LS0tDQp0aXRsZTogIldlZWsgNjogUHJvamVjdCAyIC0gRGF0YSBUcmFuc2Zvcm1hdGlvbiINCmF1dGhvcjogIk1kIEFzYWR1bCBJc2xhbSINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogb3BlbmludHJvOjpsYWJfcmVwb3J0DQotLS0NCg0KYGBge3IgbG9hZC1wYWNrYWdlcywgbWVzc2FnZT1GQUxTRX0NCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpgYGANCg0KIyMjIFdpZGUgRGF0YXNldCAxIC0gCUZMIC0gSG91c2luZyBJbnNlY3VyaXR5IEluZGljYXRvcnMgRGF0YXNldCANClRoaXMgZGF0YXNldCBvZiBwb3RlbnRpYWwgaW5kaWNhdG9ycyB0byBhc3Nlc3MgcGVvcGxlJ3MgcmlzayBvZiBsb3NpbmcgdGhlaXIgaG9tZXMgaW4gRmxvcmlkYS5UaGUgYXV0aG9yIGludGVuZGVkIHRvIHVzZSB0aGUgZGF0YXNldCB0byB1bmRlcnN0YW5kIHdoaWNoIGdyb3VwcyBvZiBwZW9wbGUgYXJlIGF0IGhpZ2hlciByaXNrIG9mIGxvc3NpbmcgdGhlaXIgaG9tZXMgaW4gRmxvcmlkYS5UaGUgZGF0YXNldCBhbmQgYW5hbHlzaXMgaXMgYXMgZG9uZSBiZWxvdzoNCg0KYGBge3IgY29kZS1jaHVuay1sYWJlbCBmb3IgZGF0YXNldCAxfQ0KIyBSZWFkaW5nIHRoZSBkYXRhc2V0DQpob3VzaW5nX2R0IDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXEhQXFxEb3dubG9hZHNcXGRhdGFfMS1GTC5jc3YiLCBzZXA9IiwiLCApDQoNCiMgVmlldyB0aGUgY29sdW1ucw0KY29sbmFtZXMoaG91c2luZ19kdCkNCg0KIyBJbnNwZWN0IHRoZSBkYXRhc2V0DQpzdHIoaG91c2luZ19kdCkNCnN1bW1hcnkoaG91c2luZ19kdCkNCiNDbGVhbiBkYXRhDQpkZW1vZ3JhcGhpY19zdW1tYXJ5IDwtIGhvdXNpbmdfZHQgJT4lDQogIHN1bW1hcml6ZSgNCiAgICBhdmdfaW5jb21lID0gbWVhbihgYjE5MDgzXzAwMWVgLCBuYS5ybSA9IFRSVUUpLA0KICAgIGF2Z19wb3ZlcnR5X2xldmVsID0gbWVhbihgczE3MDFfYzAzXzAwMWVgLCBuYS5ybSA9IFRSVUUpLA0KICAgIGF2Z19lbXBsb3ltZW50ID0gbWVhbihgYjIzMDI1XzAwMmVgLCBuYS5ybSA9IFRSVUUpLA0KICAgIGF2Z191bmVtcGxveW1lbnQgPSBtZWFuKGBiMjMwMjVfMDA1ZWAsIG5hLnJtID0gVFJVRSkNCiAgKQ0KDQpwcmludChkZW1vZ3JhcGhpY19zdW1tYXJ5KQ0KDQojIERvIHRoZSBhbmFseXNpcw0KZ2dwbG90KGhvdXNpbmdfZHQsIGFlcyh4ID0gZmFjdG9yKHN0YXRlKSwgeSA9IGBzMTcwMV9jMDNfMDAxZWAsIGZpbGwgPSBmYWN0b3IoY291bnR5KSkpICsNCiAgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIsIHBvc2l0aW9uID0gImRvZGdlIikgKw0KICBsYWJzKHRpdGxlID0gIlBvdmVydHkgTGV2ZWwgYnkgU3RhdGUgYW5kIENvdW50eSIsIHggPSAiU3RhdGUiLCB5ID0gIlBvdmVydHkgTGV2ZWwiKQ0KDQpnZ3Bsb3QoaG91c2luZ19kdCwgYWVzKHggPSBmYWN0b3Ioc3RhdGUpLCB5ID0gYGIxOTA4M18wMDFlYCwgZmlsbCA9IGZhY3Rvcihjb3VudHkpKSkgKw0KICBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5IiwgcG9zaXRpb24gPSAiZG9kZ2UiKSArDQogIGxhYnModGl0bGUgPSAiSW5jb21lIExldmVsIGJ5IFN0YXRlIGFuZCBDb3VudHkiLCB4ID0gIlN0YXRlIiwgeSA9ICJJbmNvbWUgTGV2ZWwiKQ0KDQpnZ3Bsb3QoaG91c2luZ19kdCwgYWVzKHggPSBmYWN0b3Ioc3RhdGUpLCB5ID0gYGIyMzAyNV8wMDJlYCwgZmlsbCA9IGZhY3Rvcihjb3VudHkpKSkgKw0KICBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5IiwgcG9zaXRpb24gPSAiZG9kZ2UiKSArDQogIGxhYnModGl0bGUgPSAiRW1wbG95bWVudCBMZXZlbCBieSBTdGF0ZSBhbmQgQ291bnR5IiwgeCA9ICJTdGF0ZSIsIHkgPSAiRW1wbG95bWVudCBMZXZlbCIpDQoNCmdncGxvdChob3VzaW5nX2R0LCBhZXMoeCA9IGZhY3RvcihzdGF0ZSksIHkgPSBgYjIzMDI1XzAwNWVgLCBmaWxsID0gZmFjdG9yKGNvdW50eSkpKSArDQogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCBwb3NpdGlvbiA9ICJkb2RnZSIpICsNCiAgbGFicyh0aXRsZSA9ICJVbmVtcGxveW1lbnQgTGV2ZWwgYnkgU3RhdGUgYW5kIENvdW50eSIsIHggPSAiU3RhdGUiLCB5ID0gIlVuZW1wbG95bWVudCBMZXZlbCIpDQoNCg0KDQpgYGANCg0KIyMjIEFuYWx5c2lzIGFuZCBDb25jbHVzaW9uIGZvciBEYXRhc2V0IDENCg0KRGVzY3JpcHRpdmUgU3RhdGlzdGljcw0KDQpUaGUgZGF0YXNldCBpbmNsdWRlcyB0aGUgZm9sbG93aW5nIGNvbHVtbnM6DQoNCjEuIGdlb2lkOiBHZW9ncmFwaGljIGlkZW50aWZpZXIuDQoyLiBnZW9pZF95ZWFyOiBZZWFyIG9mIHRoZSBnZW9ncmFwaGljIGRhdGEuDQozLiBzdGF0ZTogU3RhdGUgY29kZS4NCjQuIGNvdW50eTogQ291bnR5IGNvZGUuDQo1LiBzdGF0ZV9maXBzX2NvZGU6IEZlZGVyYWwgSW5mb3JtYXRpb24gUHJvY2Vzc2luZyBTdGFuZGFyZHMgY29kZSBmb3IgdGhlIHN0YXRlLg0KNi4gY291bnR5X2ZpcHNfY29kZTogRmVkZXJhbCBJbmZvcm1hdGlvbiBQcm9jZXNzaW5nIFN0YW5kYXJkcyBjb2RlIGZvciB0aGUgY291bnR5Lg0KNy4gVmFyaW91cyBzb2Npby1lY29ub21pYyBpbmRpY2F0b3JzIHN1Y2ggYXMgYjE5MDgzXzAwMWUsIGIyMzAyNV8wMDJlLCBzMTcwMV9jMDNfMDAxZSwgczE5MDNfYzAzXzAwMWUsIGFuZCBzMjcwMV9jMDNfMDAxZSByZXByZXNlbnRpbmcgZGlmZmVyZW50IGVjb25vbWljLCBlbXBsb3ltZW50LCBwb3ZlcnR5LCBhbmQgaGVhbHRoIHN0YXRpc3RpY3MuDQoNCktleSBPYnNlcnZhdGlvbnMNCg0KMS4gZ2VvaWQgYW5kIGdlb2lkX3llYXI6DQoNClRoZSBnZW9ncmFwaGljIGlkZW50aWZpZXIgcmFuZ2VzIGZyb20gMTIsMDAwLDAwMCwwMDAgdG8gb3ZlciAxMiwwMjAsMDAwLDAwMCwgcmVwcmVzZW50aW5nIGRpZmZlcmVudCBnZW9ncmFwaGljIGVudGl0aWVzLg0KVGhlIHllYXIgaXMgY29uc2lzdGVudGx5IDIwMjAsIGluZGljYXRpbmcgdGhhdCBhbGwgZGF0YSBwb2ludHMgYXJlIGZyb20gdGhlIHNhbWUgeWVhci4NCg0KMi4gU3RhdGUgYW5kIENvdW50eSBDb2RlczoNCg0KVGhlIHN0YXRlIGNvZGUgYW5kIHN0YXRlIEZJUFMgY29kZSBib3RoIGhhdmUgYSBtaW5pbXVtIHZhbHVlIG9mIDEyLCB3aGljaCBjb3JyZXNwb25kcyB0byBGbG9yaWRhLg0KQ291bnR5IGNvZGVzIHJhbmdlIGZyb20gMSB0byAxMzMsIHJlcHJlc2VudGluZyB2YXJpb3VzIGNvdW50aWVzIHdpdGhpbiB0aGUgc3RhdGUuDQoNCjMuRWNvbm9taWMgYW5kIEVtcGxveW1lbnQgSW5kaWNhdG9yczoNCg0KYjE5MDgzXzAwMWUgKE1lZGlhbiBIb3VzZWhvbGQgSW5jb21lKTogU2hvd3Mgd2lkZSB2YXJpYXRpb24gd2l0aCBtaW5pbXVtIHZhbHVlcyBpbmRpY2F0aW5nIHBvdGVudGlhbCBvdXRsaWVycyBvciBlcnJvcnMgKGUuZy4sIC02NjY2NjY2NjYpLg0KDQpiMjMwMjVfMDAyZSAoTGFib3IgRm9yY2UpOiBNaW5pbXVtIHZhbHVlcyBhcmUgemVybywgc3VnZ2VzdGluZyB0aGF0IHNvbWUgY291bnRpZXMgbWF5IGhhdmUgcmVwb3J0ZWQgbm8gYWN0aXZlIGxhYm9yIGZvcmNlLg0KYjIzMDI1XzAwNGUgKEVtcGxveW1lbnQpOiBTaW1pbGFybHkgc2hvd3MgbWluaW11bSB2YWx1ZXMgb2YgemVybywgaW5kaWNhdGluZyBubyBlbXBsb3ltZW50IGluIHNvbWUgYXJlYXMuDQpiMjMwMjVfMDA1ZSAoVW5lbXBsb3ltZW50KTogTWluaW11bSB2YWx1ZXMgb2YgemVybyBidXQgZmlyc3QgcXVhcnRpbGUgKFExKSB2YWx1ZXMgYXJlIG11Y2ggaGlnaGVyLCBpbmRpY2F0aW5nIHRoYXQgdW5lbXBsb3ltZW50IGlzIHByZXZhbGVudCBpbiBjZXJ0YWluIGNvdW50aWVzLg0KDQo0LiBQb3ZlcnR5IEluZGljYXRvcnM6DQoNCnMxNzAxX2MwM18wMDFlIChQb3ZlcnR5IFJhdGUpOiBDb250YWlucyBuZWdhdGl2ZSB2YWx1ZXMgd2hpY2ggYXJlIGxpa2VseSBlcnJvcnMgb3IgcGxhY2Vob2xkZXJzIGZvciBtaXNzaW5nIGRhdGEgKGUuZy4sIC02NjY2NjY2NjYpLg0KT3RoZXIgcG92ZXJ0eSBpbmRpY2F0b3JzIGxpa2UgczE3MDFfYzAzXzAwMmUgdG8gczE3MDFfYzAzXzAyMWUgZm9sbG93IGEgc2ltaWxhciBwYXR0ZXJuIHdpdGggZXJyb25lb3VzIG1pbmltdW0gdmFsdWVzLg0KDQo1LiBIZWFsdGggSW5kaWNhdG9yczoNCg0KczI3MDFfYzAzXzAwMWUgKEhlYWx0aCBJbnN1cmFuY2UgQ292ZXJhZ2UpOiBNaW5pbXVtIHZhbHVlcyBhcmUgbmVnYXRpdmUsIGluZGljYXRpbmcgcG90ZW50aWFsIGRhdGEgZW50cnkgaXNzdWVzLg0KDQpJbiBjb25jbHVzaW9uLCBpbmNvbWUgbGV2ZWxzIHBsYXkgYSBrZXkgcm9sZSBpbiBsYWNrIG9mIGhvdXNpbmcgaW4gRmxvcmlkYS4NCg0KIyMjIERhdGFzZXQgMiAtIEhvdGVsIEJvb2tpbmcNCg0KVGhlIEhvdGVsIEJvb2tpbmcgZGVtYW5kIGRhdGFzZXQgY29udGFpbnMgYm9va2luZyBpbmZvcm1hdGlvbiBmb3IgYSBjaXR5IGhvdGVsIGFuZCBhIHJlc29ydCBob3RlbC4gSXQgaW5jbHVkZXMgaW5mb3JtYXRpb24gc3VjaCBhcyBib29raW5nIHRpbWUsIGxlbmd0aCBvZiBzdGF5LCBudW1iZXIgb2YgYWR1bHRzLCBjaGlsZHJlbiwgbnVtYmVyIG9mIGF2YWlsYWJsZSBwYXJraW5nIGFuZCBvdGhlciB0aGluZ3MuIEkgcGxhbiB0byB1c2UgdGhlIGRhdGEgdG8gc3VnZ2VzdCB0aGUgYmVzdCB0aW1lIG9mIHRoZSB5ZWFyIHRvIGJvb2sgYW4gaG90ZWwgcm9vbSwgdGhlIG9wdGltYWwgbGVuZ3RoIG9mIHN0YXksIGFuZCB0aGVuIHByZWRpY3Qgd2hldGhlciBhbiBob3RlbCB3aWxsIHJlY2VpdmUgdW5leHBlY3RlZCBuZXcgZ3Vlc3RzLg0KDQpgYGB7UiBjb2RlIGNodW5rIGZvciBkYXRhc2V0IDJ9DQojIFJlYWRpbmcgdGhlIGRhdGFzZXQNCmhvdGVsX2R0IDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXEhQXFxEb3dubG9hZHNcXGFyY2hpdmVcXGhvdGVsX2Jvb2tpbmdzLmNzdiIsIHNlcD0iLCIsICkNCg0KIyBWaWV3IHRoZSBjb2x1bW5zDQpjb2xuYW1lcyhob3RlbF9kdCkNCg0KIyBJbnNwZWN0IHRoZSBkYXRhc2V0DQpzdHIoaG90ZWxfZHQpDQpzdW1tYXJ5KGhvdGVsX2R0KQ0KDQojIENsZWFuIGRhdGENCm1pc3NpbmdfdmFsdWVzIDwtIGNvbFN1bXMoaXMubmEoaG90ZWxfZHQpKQ0KcHJpbnQobWlzc2luZ192YWx1ZXMpDQoNCiMgRHJvcCByb3dzIHdpdGggbWlzc2luZyB2YWx1ZXMgaW4gY3JpdGljYWwgY29sdW1ucyAobGlrZSAnYWRyJyBvciAnaG90ZWwnKQ0KaG90ZWxfZGF0YV9jbGVhbiA8LSBob3RlbF9kdCAlPiUNCiAgZmlsdGVyKCFpcy5uYShhZHIpLCAhaXMubmEoaG90ZWwpKQ0KDQojIENvbnZlcnQgY2F0ZWdvcmljYWwgdmFyaWFibGVzDQpob3RlbF9kYXRhX2NsZWFuJGFycml2YWxfZGF0ZV9tb250aCA8LSBmYWN0b3IoaG90ZWxfZGF0YV9jbGVhbiRhcnJpdmFsX2RhdGVfbW9udGgsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsZXZlbHMgPSBtb250aC5hYmIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBtb250aC5uYW1lKQ0KDQojIENyZWF0ZSBhIHRvdGFsIHN0YXkgdmFyaWFibGUNCmhvdGVsX2RhdGFfY2xlYW4kdG90YWxfc3RheSA8LSBob3RlbF9kYXRhX2NsZWFuJHN0YXlzX2luX3dlZWtlbmRfbmlnaHRzICsgaG90ZWxfZGF0YV9jbGVhbiRzdGF5c19pbl93ZWVrX25pZ2h0cw0KDQojIEJlc3QgVGltZSB0byBCb29rDQptb250aGx5X2FuYWx5c2lzIDwtIGhvdGVsX2RhdGFfY2xlYW4gJT4lDQogIGdyb3VwX2J5KGFycml2YWxfZGF0ZV9tb250aCkgJT4lDQogIHN1bW1hcmlzZShhdmdfYWRyID0gbWVhbihhZHIsIG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICBjYW5jZWxfcmF0ZSA9IG1lYW4oaXNfY2FuY2VsZWQsIG5hLnJtID0gVFJVRSkpICU+JQ0KICBhcnJhbmdlKGFycml2YWxfZGF0ZV9tb250aCkNCg0KIyBQcmludCBtb250aGx5IGFuYWx5c2lzDQpwcmludChtb250aGx5X2FuYWx5c2lzKQ0KDQojIFBsb3QgdGhlIEF2ZXJhZ2UgRGFpbHkgUmF0ZSAoQURSKSBhbmQgQ2FuY2VsbGF0aW9uIFJhdGUgYnkgTW9udGgNCmdncGxvdChtb250aGx5X2FuYWx5c2lzLCBhZXMoeCA9IGFycml2YWxfZGF0ZV9tb250aCkpICsNCiAgZ2VvbV9saW5lKGFlcyh5ID0gYXZnX2FkciwgY29sb3IgPSAiQXZlcmFnZSBEYWlseSBSYXRlIiksIHNpemUgPSAxKSArDQogIGdlb21fbGluZShhZXMoeSA9IGNhbmNlbF9yYXRlICogMTAwLCBjb2xvciA9ICJDYW5jZWxsYXRpb24gUmF0ZSIpLCBzaXplID0gMSkgKw0KICBzY2FsZV95X2NvbnRpbnVvdXMoc2VjLmF4aXMgPSBzZWNfYXhpcyh+Li8xMDAsIG5hbWUgPSAiQ2FuY2VsbGF0aW9uIFJhdGUgKCUpIikpICsNCiAgbGFicyh0aXRsZSA9ICJBRFIgYW5kIENhbmNlbGxhdGlvbiBSYXRlIGJ5IE1vbnRoIiwgeSA9ICJBRFIiLCB4ID0gIk1vbnRoIikgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KIyBPcHRpbWFsIExlbmd0aCBvZiBTdGF5DQpzdGF5X2FuYWx5c2lzIDwtIGhvdGVsX2RhdGFfY2xlYW4gJT4lDQogIGdyb3VwX2J5KHRvdGFsX3N0YXkpICU+JQ0KICBzdW1tYXJpc2UoYXZnX2FkciA9IG1lYW4oYWRyLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgY2FuY2VsX3JhdGUgPSBtZWFuKGlzX2NhbmNlbGVkLCBuYS5ybSA9IFRSVUUpKQ0KDQojIFByaW50IHN0YXkgYW5hbHlzaXMNCnByaW50KHN0YXlfYW5hbHlzaXMpDQoNCiMgUGxvdCB0aGUgQXZlcmFnZSBEYWlseSBSYXRlIChBRFIpIGFuZCBDYW5jZWxsYXRpb24gUmF0ZSBieSBMZW5ndGggb2YgU3RheQ0KZ2dwbG90KHN0YXlfYW5hbHlzaXMsIGFlcyh4ID0gdG90YWxfc3RheSkpICsNCiAgZ2VvbV9saW5lKGFlcyh5ID0gYXZnX2FkciwgY29sb3IgPSAiQXZlcmFnZSBEYWlseSBSYXRlIiksIHNpemUgPSAxKSArDQogIGdlb21fbGluZShhZXMoeSA9IGNhbmNlbF9yYXRlICogMTAwLCBjb2xvciA9ICJDYW5jZWxsYXRpb24gUmF0ZSIpLCBzaXplID0gMSkgKw0KICBzY2FsZV95X2NvbnRpbnVvdXMoc2VjLmF4aXMgPSBzZWNfYXhpcyh+Li8xMDAsIG5hbWUgPSAiQ2FuY2VsbGF0aW9uIFJhdGUgKCUpIikpICsNCiAgbGFicyh0aXRsZSA9ICJBRFIgYW5kIENhbmNlbGxhdGlvbiBSYXRlIGJ5IExlbmd0aCBvZiBTdGF5IiwgeSA9ICJBRFIiLCB4ID0gIkxlbmd0aCBvZiBTdGF5IChOaWdodHMpIikgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KIyBEZWZpbmUgZm9ybXVsYQ0KbW9kZWwgPC0gZ2xtKGlzX2NhbmNlbGVkIH4gbGVhZF90aW1lICsgdG90YWxfc3RheSArIHRvdGFsX29mX3NwZWNpYWxfcmVxdWVzdHMsDQogICAgICAgICAgICAgZGF0YSA9IGhvdGVsX2RhdGFfY2xlYW4sDQogICAgICAgICAgICAgZmFtaWx5ID0gYmlub21pYWwpDQoNCiMgU3VtbWFyeSBvZiB0aGUgbW9kZWwNCnN1bW1hcnkobW9kZWwpDQoNCg0KYGBgDQojIyMgRGF0YSBBbmFseXNpcyBmb3IgRGF0YXNldCAyDQoNCjEuIEludGVyY2VwdDoNCg0KVGhlIGludGVyY2VwdCBjb2VmZmljaWVudCBpcyDiiJIwLjc4MDUg4oiSMC43ODA1IHdpdGggYSBoaWdobHkgc2lnbmlmaWNhbnQgcC12YWx1ZSAoPDLwnZGS4oiSMTYNCjwyZeKIkjE2KS4gVGhpcyB2YWx1ZSByZXByZXNlbnRzIHRoZSBsb2cgb2RkcyBvZiBjYW5jZWxsYXRpb24gd2hlbiBhbGwgcHJlZGljdG9ycyBhcmUgYXQgemVyby4gSW4gcHJhY3RpY2FsIHRlcm1zLCBpdCBzZXJ2ZXMgYXMgYSBiYXNlbGluZSBmb3IgdGhlIG1vZGVsLg0KDQoyLiBMZWFkIFRpbWU6DQoNClRoZSBjb2VmZmljaWVudCBmb3IgbGVhZCB0aW1lIGlzIDAuMDA1NyB3aXRoIGEgdmVyeSBzaWduaWZpY2FudCBwLXZhbHVlICg8MvCdkZLiiJIxNjwyZeKIkjE2KS4gVGhpcyBwb3NpdGl2ZSBjb2VmZmljaWVudCBpbmRpY2F0ZXMgdGhhdCBhcyB0aGUgbGVhZCB0aW1lICh0aGUgbnVtYmVyIG9mIGRheXMgYmV0d2VlbiBib29raW5nIGFuZCBhcnJpdmFsKSBpbmNyZWFzZXMsIHRoZSBvZGRzIG9mIGNhbmNlbGxhdGlvbiBhbHNvIGluY3JlYXNlLiBTcGVjaWZpY2FsbHksIGZvciBldmVyeSBhZGRpdGlvbmFsIGRheSBpbiBsZWFkIHRpbWUsIHRoZSBvZGRzIG9mIGNhbmNlbGxhdGlvbiBpbmNyZWFzZSBieSBhcHByb3hpbWF0ZWx5IA0KMC41NyUuDQoNCjMuIFRvdGFsIFN0YXk6IA0KDQpUaGUgY29lZmZpY2llbnQgZm9yIHRvdGFsIHN0YXkgaXMg4oiSMC4wMDU3IHdpdGggYSBzaWduaWZpY2FudCBwLXZhbHVlICgwLjAyNjQpLiBUaGlzIG5lZ2F0aXZlIGNvZWZmaWNpZW50IGltcGxpZXMgdGhhdCBsb25nZXIgc3RheXMgYXJlIGFzc29jaWF0ZWQgd2l0aCBhIGRlY3JlYXNlZCBsaWtlbGlob29kIG9mIGNhbmNlbGxhdGlvbi4gU3BlY2lmaWNhbGx5LCBmb3IgZWFjaCBhZGRpdGlvbmFsIG5pZ2h0IG9mIHN0YXksIHRoZSBvZGRzIG9mIGNhbmNlbGxhdGlvbiBkZWNyZWFzZSBieSBhYm91dCAwLjU3JS4NCg0KNC4gVG90YWwgb2YgU3BlY2lhbCBSZXF1ZXN0czoNCg0KVGhlIGNvZWZmaWNpZW50IGZvciB0b3RhbCBvZiBzcGVjaWFsIHJlcXVlc3RzIGlzIOKIkjAuNjg4OSB3aXRoIGEgaGlnaGx5IHNpZ25pZmljYW50IHAtdmFsdWUgKDwy8J2RkuKIkjE2PDJl4oiSMTYpLiBUaGlzIGxhcmdlIG5lZ2F0aXZlIGNvZWZmaWNpZW50IHN1Z2dlc3RzIHRoYXQgaWYgYSBndWVzdCBtYWtlcyBzcGVjaWFsIHJlcXVlc3RzLCB0aGUgb2RkcyBvZiBjYW5jZWxsYXRpb24gZGVjcmVhc2Ugc2lnbmlmaWNhbnRseS4gRm9yIGVhY2ggYWRkaXRpb25hbCBzcGVjaWFsIHJlcXVlc3QgbWFkZSwgdGhlIG9kZHMgb2YgY2FuY2VsbGF0aW9uIGRlY3JlYXNlIGJ5IGFwcHJveGltYXRlbHkgNDkuOCUNCjQ5LjglLiBUaGlzIGluZGljYXRlcyB0aGF0IGd1ZXN0cyB3aG8gcmVxdWVzdCBzcGVjaWFsIHNlcnZpY2VzIG9yIGFtZW5pdGllcyBhcmUgbW9yZSBsaWtlbHkgdG8gZm9sbG93IHRocm91Z2ggd2l0aCB0aGVpciByZXNlcnZhdGlvbnMuDQoNCjUuIE1vZGVsIEZpdDoNCg0KVGhlIG1vZGVsIGhhcyBhIG51bGwgZGV2aWFuY2Ugb2YgMTU3Mzk4IGFuZCBhIHJlc2lkdWFsIGRldmlhbmNlIG9mIDE0MTA1MC4gVGhlIHJlZHVjdGlvbiBpbiBkZXZpYW5jZSBpbmRpY2F0ZXMgdGhhdCB0aGUgcHJlZGljdG9ycyBpbmNsdWRlZCBpbiB0aGUgbW9kZWwgaW1wcm92ZSBpdHMgZml0IGNvbXBhcmVkIHRvIGEgbW9kZWwgd2l0aCBubyBwcmVkaWN0b3JzLlRoZSBBSUMgKEFrYWlrZSBJbmZvcm1hdGlvbiBDcml0ZXJpb24pIHZhbHVlIG9mIDE0MTA1OCBjYW4gYmUgdXNlZCBmb3IgbW9kZWwgY29tcGFyaXNvbiwgd2l0aCBsb3dlciB2YWx1ZXMgaW5kaWNhdGluZyBhIGJldHRlciBmaXQgcmVsYXRpdmUgdG8gb3RoZXIgbW9kZWxzLg0KDQojIyMgQ29uY2x1c2lvbiBmb3IgRGF0YXNldCAyDQpMZWFkIHRpbWUgaXMgYSBjcnVjaWFsIGZhY3RvciBpbiBwcmVkaWN0aW5nIGNhbmNlbGxhdGlvbnMsIHdpdGggbG9uZ2VyIGxlYWQgdGltZXMgY29ycmVsYXRpbmcgdG8gaGlnaGVyIGNhbmNlbGxhdGlvbiByYXRlcy4gVGhpcyBzdWdnZXN0cyB0aGF0IGJvb2tpbmcgc3RyYXRlZ2llcyBtaWdodCBjb25zaWRlciBlbmNvdXJhZ2luZyBzaG9ydGVyIGxlYWQgdGltZXMgdG8gc2VjdXJlIGNvbmZpcm1lZCByZXNlcnZhdGlvbnMuDQoNClRvdGFsIHN0YXkgcGxheXMgYSBzaWduaWZpY2FudCByb2xlLCBhcyBsb25nZXIgc3RheXMgY29ycmVsYXRlIHdpdGggcmVkdWNlZCBjYW5jZWxsYXRpb24gcmF0ZXMuIFRoaXMgZmluZGluZyBtYXkgaW5mb3JtIHByaWNpbmcgc3RyYXRlZ2llcyBvciBwcm9tb3Rpb25zIGFpbWVkIGF0IGVuY291cmFnaW5nIGxvbmdlciBzdGF5cy4NCg0KU3BlY2lhbCByZXF1ZXN0cyBhcmUgYSBzdHJvbmcgcHJlZGljdG9yIG9mIGJvb2tpbmcgY29tbWl0bWVudC4gSG90ZWxzIGNvdWxkIGxldmVyYWdlIHRoaXMgaW5mb3JtYXRpb24gYnkgZW5jb3VyYWdpbmcgZ3Vlc3RzIHRvIG1ha2Ugc3BlY2lhbCByZXF1ZXN0cywgd2hpY2ggbWF5IGVuaGFuY2UgY3VzdG9tZXIgbG95YWx0eSBhbmQgcmVkdWNlIGNhbmNlbGxhdGlvbnMuDQoNCiMjIyBEYXRhU2V0IDMgLSAgV29ybGQgUG9wdWxhdGlvbg0KDQpgYGB7ciBjb2RlIGNodW5rIGZvciBkYXRhc2V0IDN9DQojIFJlYWRpbmcgdGhlIGRhdGFzZXQNCnBvcHVsYXRpb25fZHQgPC0gcmVhZC5jc3YoIkM6XFxVc2Vyc1xcSFBcXERvd25sb2Fkc1xcd29ybGRfcG9wdWxhdGlvbi5jc3YiLCBzZXA9IiwiLCApDQoNCiMgVmlldyB0aGUgY29sdW1ucw0KY29sbmFtZXMocG9wdWxhdGlvbl9kdCkNCg0KIyBJbnNwZWN0IHRoZSBkYXRhc2V0DQpzdHIocG9wdWxhdGlvbl9kdCkNCg0KIyBDbGVhbiB0aGUgZGF0YXNldA0KbWlzc2luZ192YWx1ZXMgPC0gY29sU3Vtcyhpcy5uYShwb3B1bGF0aW9uX2R0KSkNCg0KI3N1bW1hcnkNCnN1bW1hcnkocG9wdWxhdGlvbl9kdCkNCg0KIyBSZW1vdmUgZHVwbGljYXRlcw0KcG9wdWxhdGlvbl9kdCA8LSBwb3B1bGF0aW9uX2R0ICU+JSBkaXN0aW5jdCgpDQoNCiMgUmVuYW1lIGNvbHVtbnMgZm9yIGVhc2llciBhY2Nlc3MNCnBvcHVsYXRpb25fZHQgPC0gcG9wdWxhdGlvbl9kdCAlPiUNCiAgcmVuYW1lKA0KICAgIFBvcHVsYXRpb25fMjAyMiA9IFgyMDIyLlBvcHVsYXRpb24sDQogICAgUG9wdWxhdGlvbl8yMDIwID0gWDIwMjAuUG9wdWxhdGlvbiwNCiAgICBQb3B1bGF0aW9uXzIwMTUgPSBYMjAxNS5Qb3B1bGF0aW9uLA0KICAgIFBvcHVsYXRpb25fMjAxMCA9IFgyMDEwLlBvcHVsYXRpb24sDQogICAgUG9wdWxhdGlvbl8yMDAwID0gWDIwMDAuUG9wdWxhdGlvbiwNCiAgICBQb3B1bGF0aW9uXzE5OTAgPSBYMTk5MC5Qb3B1bGF0aW9uLA0KICAgIFBvcHVsYXRpb25fMTk4MCA9IFgxOTgwLlBvcHVsYXRpb24sDQogICAgUG9wdWxhdGlvbl8xOTcwID0gWDE5NzAuUG9wdWxhdGlvbiwNCiAgICBBcmVhX2ttMiA9IEFyZWEuLmttLi4NCiAgKQ0KIyBDYWxjdWxhdGUgZ3Jvd3RoIGZyb20gMjAxMCB0byAyMDIyDQpwb3B1bGF0aW9uX2R0IDwtIHBvcHVsYXRpb25fZHQgJT4lDQogIG11dGF0ZShHcm93dGhfMjAxMF8yMDIyID0gUG9wdWxhdGlvbl8yMDIyIC0gUG9wdWxhdGlvbl8yMDEwKQ0KDQoNCiMgQ2FsY3VsYXRlIHBvcHVsYXRpb24gZGVuc2l0eQ0KcG9wdWxhdGlvbl9kdCA8LSBwb3B1bGF0aW9uX2R0ICU+JQ0KICBtdXRhdGUoRGVuc2l0eSA9IFBvcHVsYXRpb25fMjAyMiAvIEFyZWFfa20yKQ0KDQojIEJhciBjaGFydCBvZiB0aGUgdG9wIDEwIGNvdW50cmllcyBieSBwb3B1bGF0aW9uDQp0b3BfMTAgPC0gcG9wdWxhdGlvbl9kdCAlPiUNCiAgYXJyYW5nZShkZXNjKFBvcHVsYXRpb25fMjAyMikpICU+JQ0KICBoZWFkKDEwKQ0KDQpnZ3Bsb3QodG9wXzEwLCBhZXMoeCA9IHJlb3JkZXIoQ291bnRyeS5UZXJyaXRvcnksIC1Qb3B1bGF0aW9uXzIwMjIpLCB5ID0gUG9wdWxhdGlvbl8yMDIyKSkgKw0KICBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5IiwgZmlsbCA9ICJibHVlIikgKw0KICBsYWJzKHRpdGxlID0gIlRvcCAxMCBDb3VudHJpZXMgYnkgUG9wdWxhdGlvbiAoMjAyMikiLCB4ID0gIkNvdW50cnkvVGVycml0b3J5IiwgeSA9ICJQb3B1bGF0aW9uIikgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KICBjb29yZF9mbGlwKCkNCg0KIyBTaG93IHN1bW1hcnkgc3RhdGlzdGljcw0KcHJpbnQoc3VtbWFyeSkNCg0KIyBQcmludCBtaXNzaW5nIHZhbHVlcw0KcHJpbnQobWlzc2luZ192YWx1ZXMpDQoNCmBgYA0KDQojIyMgQW5hbHlzaXMgb2YgRGF0YXNldCAzDQoNClRoZSBkYXRhc2V0IHByb3ZpZGVzIGEgY29tcHJlaGVuc2l2ZSBvdmVydmlldyBvZiBwb3B1bGF0aW9uIHN0YXRpc3RpY3MgYWNyb3NzIHZhcmlvdXMgY291bnRyaWVzIGFuZCB0ZXJyaXRvcmllcy4gQWZ0ZXIgY2xlYW5pbmcgdGhlIGRhdGEsIHdlIGNvbmZpcm1lZCB0aGVyZSB3ZXJlIG5vIHNpZ25pZmljYW50IG1pc3NpbmcgdmFsdWVzIG9yIGR1cGxpY2F0ZXMsIGVuc3VyaW5nIHRoZSBpbnRlZ3JpdHkgb2Ygb3VyIGFuYWx5c2lzLiBLZXkgcG9wdWxhdGlvbiBtZXRyaWNzIHdlcmUgY29tcHV0ZWQsIHJldmVhbGluZyBhIGNvbnNpZGVyYWJsZSB2YXJpYXRpb24gaW4gcG9wdWxhdGlvbiBzaXplcywgd2l0aCB0aGUgaGlnaGVzdCBiZWluZyBvdmVyIDEuNCBiaWxsaW9uLiBUaGUgcG9wdWxhdGlvbiBncm93dGggZnJvbSAyMDEwIHRvIDIwMjIgd2FzIGNhbGN1bGF0ZWQgZm9yIGVhY2ggY291bnRyeSwgaW5kaWNhdGluZyBub3RhYmxlIGluY3JlYXNlcyBpbiBzZXZlcmFsIHJlZ2lvbnMsIHBhcnRpY3VsYXJseSBpbiBBc2lhIGFuZCBBZnJpY2EuIFRoZSBjYWxjdWxhdGVkIHBvcHVsYXRpb24gZGVuc2l0eSBoaWdobGlnaHRlZCBkaXNwYXJpdGllcywgYXMgc29tZSBzbWFsbGVyIG5hdGlvbnMgZXhoaWJpdGVkIGhpZ2ggZGVuc2l0aWVzLCBzdWdnZXN0aW5nIHVyYmFuaXphdGlvbiBwcmVzc3VyZXMgYW5kIHJlc291cmNlIG1hbmFnZW1lbnQgY2hhbGxlbmdlcy4gVGhlIGJhciBjaGFydCBzaG93Y2FzaW5nIHRoZSB0b3AgMTAgY291bnRyaWVzIGJ5IHBvcHVsYXRpb24gaWxsdXN0cmF0ZXMgdGhlIGRvbWluYW5jZSBvZiBwb3B1bG91cyBuYXRpb25zIGxpa2UgQ2hpbmEgYW5kIEluZGlhLCByZWZsZWN0aW5nIHRoZWlyIHNpZ25pZmljYW50IGNvbnRyaWJ1dGlvbnMgdG8gZ2xvYmFsIGRlbW9ncmFwaGljcy4gVGhpcyBhbmFseXNpcyB1bmRlcnNjb3JlcyB0aGUgZHluYW1pYyBuYXR1cmUgb2YgZ2xvYmFsIHBvcHVsYXRpb25zLCBpbmZsdWVuY2VkIGJ5IGZhY3RvcnMgc3VjaCBhcyB1cmJhbml6YXRpb24sIGZlcnRpbGl0eSByYXRlcywgYW5kIG1pZ3JhdGlvbiBwYXR0ZXJucy4NCg0KIyMjIENvbmNsdXNpb24NCg0KSW4gY29uY2x1c2lvbiwgdGhlIGFuYWx5c2lzIG9mIHRoZSBwb3B1bGF0aW9uIGRhdGFzZXQgcmV2ZWFscyBjcml0aWNhbCBpbnNpZ2h0cyBpbnRvIGdsb2JhbCBkZW1vZ3JhcGhpY3MsIGVtcGhhc2l6aW5nIHRoZSBzdGFyayBjb250cmFzdHMgaW4gcG9wdWxhdGlvbiBncm93dGggYW5kIGRlbnNpdHkgYW1vbmcgY291bnRyaWVzLiBBcyBuYXRpb25zIGNvbnRpbnVlIHRvIGV2b2x2ZSwgdW5kZXJzdGFuZGluZyB0aGVzZSBkeW5hbWljcyBpcyBlc3NlbnRpYWwgZm9yIHBvbGljeW1ha2VycyBhbmQgcmVzZWFyY2hlcnMuIEFkZHJlc3NpbmcgdGhlIGNoYWxsZW5nZXMgb2YgcmFwaWQgcG9wdWxhdGlvbiBncm93dGggYW5kIHVyYmFuaXphdGlvbiB3aWxsIGJlIGNydWNpYWwgaW4gc2hhcGluZyBzdXN0YWluYWJsZSBkZXZlbG9wbWVudCBzdHJhdGVnaWVzLCBwYXJ0aWN1bGFybHkgaW4gZGVuc2VseSBwb3B1bGF0ZWQgcmVnaW9ucy4gVGhlIGZpbmRpbmdzIGhpZ2hsaWdodCB0aGUgbmVlZCBmb3IgdGFyZ2V0ZWQgaW50ZXJ2ZW50aW9ucyB0byBtYW5hZ2UgcmVzb3VyY2VzIGVmZmVjdGl2ZWx5IGFuZCBzdXBwb3J0IGNvbW11bml0aWVzIGZhY2luZyB0aGUgcHJlc3N1cmVzIG9mIGNoYW5naW5nIGRlbW9ncmFwaGljcy4NCg0KLi4uDQoNCg==