Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
last_plot
The following object is masked from 'package:stats':
filter
The following object is masked from 'package:graphics':
layout
library(scales)
Attaching package: 'scales'
The following object is masked from 'package:purrr':
discard
The following object is masked from 'package:readr':
col_factor
nations <-read_csv("nations.csv")
Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Get rid of NA and Mutate
clean_nations <-na.omit(nations)# Where I got the code, https://bookdown.org/rwnahhas/IntroToR/exclude-observations-with-missing-data.htmlclean_nations2 <- clean_nations |>mutate(GDP= gdp_percap * population /1,000,000,000,000 )
# A tibble: 88 × 12
iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AF AFG Afghan… 2009 1526. 27207291 40.3 39.1
2 AF AFG Afghan… 2011 1713. 28809167 37.6 38.1
3 AF AFG Afghan… 2002 896. 21487079 47.2 43.9
4 AF AFG Afghan… 2012 1934. 29726803 36.4 37.4
5 AF AFG Afghan… 2005 1039. 24399948 44.9 41.7
6 AF AFG Afghan… 2010 1629. 27962207 38.9 38.7
7 AF AFG Afghan… 2006 1096. 25183615 43.9 41
8 AF AFG Afghan… 2004 940. 23499850 45.8 42.5
9 AF AFG Afghan… 2014 1940. 31627506 34.2 36.1
10 AF AFG Afghan… 2003 946. 22507368 46.5 43.2
# ℹ 78 more rows
# ℹ 4 more variables: region <chr>, income <chr>, GDP <dbl>, `0` <dbl>
p1 <-ggplot(clean_nations3, aes(x= year, y= GDP, color = country )) +labs(title ="Gross Domestic Product Trend in Four Countries (1990-2015)" ,caption="Source: World Bank",x="Year" ,y="Gross Domestic Product (Trillions in USD)") +theme_grey(base_size =12) +geom_point() +geom_line() +scale_color_brewer(palette ="Set1") +scale_y_continuous(labels =label_number(scale =1e-10, prefix ="$", accuracy =1)) # Where I got the code, https://www.datakwery.com/post/2020-07-11-scientific-notation-in-r/p1
Second Chart of Countries Grouped by Region and Year
`summarise()` has grouped output by 'region'. You can override using the
`.groups` argument.
nations_4_p2
# A tibble: 175 × 4
# Groups: region [7]
region year count GDP_sum
<chr> <dbl> <int> <dbl>
1 East Asia & Pacific 1990 22 5.41e12
2 East Asia & Pacific 1991 23 5.91e12
3 East Asia & Pacific 1992 23 6.37e12
4 East Asia & Pacific 1993 24 6.90e12
5 East Asia & Pacific 1994 24 7.49e12
6 East Asia & Pacific 1995 24 8.13e12
7 East Asia & Pacific 1996 25 8.80e12
8 East Asia & Pacific 1997 24 9.37e12
9 East Asia & Pacific 1998 24 9.43e12
10 East Asia & Pacific 1999 25 9.97e12
# ℹ 165 more rows
p2 <-ggplot(nations_4_p2,aes(x= year, y= GDP_sum, fill= region))+labs( title ="Gross Domestic Product Trend in a Region",x="Year",y="Gross Domestic Product (Trillions in USD)",caption ="Source: World Bank") +theme_grey(base_size =12) +geom_area()+scale_fill_brewer(palette ="Set2")+scale_y_continuous(labels =label_number(scale =1e-12, prefix ="$", accuracy =1)) p2
# Where I got the code, https://www.datakwery.com/post/2020-07-11-scientific-notation-in-r/#Did not have any luck with interactivity #ggplotly(p2)