Setup

getwd()
## [1] "D:/34884/Documents"
setwd("D:/34884/Documents")

# Load packages
library(ggplot2)
library(readxl)
library(stringr)
library(dplyr)
## 
## 载入程序包:'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Read files

# Read dataset
Car1<-read.csv("Car_Survey_1a.csv")
Car2<-read.csv("Car_Survey_2a.csv")

summary(Car1)
##      Resp               Att_1           Att_2           Enj_1      
##  Length:1049        Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  Class :character   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Mode  :character   Median :6.000   Median :6.000   Median :6.000  
##                     Mean   :4.882   Mean   :5.287   Mean   :5.378  
##                     3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000  
##                     Max.   :7.000   Max.   :7.000   Max.   :7.000  
##                     NA's   :4                       NA's   :4      
##      Enj_2         Perform_1       Perform_2       Perform_3    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:3.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.575   Mean   :4.947   Mean   :4.831   Mean   :4.217  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##  NA's   :4       NA's   :2       NA's   :4       NA's   :1      
##      WOM_1           WOM_2        Futu_Pur_1      Futu_Pur_2     Valu_Percp_1  
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.00   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.00   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.286   Mean   :5.35   Mean   :5.321   Mean   :5.371   Mean   :5.411  
##  3rd Qu.:7.000   3rd Qu.:6.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.00   Max.   :9.000   Max.   :7.000   Max.   :7.000  
##  NA's   :1       NA's   :3      NA's   :5       NA's   :2       NA's   :4      
##   Valu_Percp_2    Pur_Proces_1    Pur_Proces_2     Residence    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:4.000   1st Qu.:1.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :1.000  
##  Mean   :5.114   Mean   :5.256   Mean   :4.923   Mean   :1.474  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:2.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :5.000  
##  NA's   :1       NA's   :3       NA's   :4       NA's   :5      
##     Pay_Meth      Insur_Type           Gender               Age       
##  Min.   :1.000   Length:1049        Length:1049        Min.   :18.00  
##  1st Qu.:1.000   Class :character   Class :character   1st Qu.:23.00  
##  Median :2.000   Mode  :character   Mode  :character   Median :34.00  
##  Mean   :2.153                                         Mean   :35.22  
##  3rd Qu.:3.000                                         3rd Qu.:48.00  
##  Max.   :3.000                                         Max.   :60.00  
##                                                                       
##    Education    
##  Min.   :1.000  
##  1st Qu.:2.000  
##  Median :2.000  
##  Mean   :1.989  
##  3rd Qu.:2.000  
##  Max.   :3.000  
## 
summary(Car2)
##  Respondents           Region             Model                MPG       
##  Length:1049        Length:1049        Length:1049        Min.   :14.00  
##  Class :character   Class :character   Class :character   1st Qu.:17.00  
##  Mode  :character   Mode  :character   Mode  :character   Median :19.00  
##                                                           Mean   :19.58  
##                                                           3rd Qu.:22.00  
##                                                           Max.   :26.00  
##       Cyl           acc1          C_cost.          H_Cost         Post.Satis  
##  Min.   :4.0   Min.   :3.600   Min.   : 7.00   Min.   : 6.000   Min.   :2.00  
##  1st Qu.:4.0   1st Qu.:5.100   1st Qu.:10.00   1st Qu.: 8.000   1st Qu.:5.00  
##  Median :6.0   Median :6.500   Median :12.00   Median :10.000   Median :6.00  
##  Mean   :5.8   Mean   :6.202   Mean   :11.35   Mean   : 9.634   Mean   :5.28  
##  3rd Qu.:6.0   3rd Qu.:7.500   3rd Qu.:13.00   3rd Qu.:11.000   3rd Qu.:6.00  
##  Max.   :8.0   Max.   :8.500   Max.   :16.00   Max.   :14.000   Max.   :7.00
# Rename unique ID
names(Car2)[1]<-c("Resp")

# Merge dataset
Car_Total<-merge(Car1, Car2, by="Resp")

# Separate Model
Car_Total[c('Make', 'Model_v1')] <- str_split_fixed(Car_Total$Model, " ", 2)

Replace Missing Value

Attitude_1

mean(Car_Total$Att_1)
## [1] NA
na_rows_Att_1 <- Car_Total[is.na(Car_Total$Att_1),]
print(na_rows_Att_1)
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 109 Res151    NA     2    NA     2         3        NA         2     2    NA
## 110 Res152    NA     5     5     4         5         6         4     5     6
## 112 Res154    NA     6     6     6         5         4         5     6     6
## 127 Res168    NA     3     3     3         6         5         3     5     6
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 109          2          2           NA            2            2            3
## 110          6          6            6            2            4            5
## 112          5          6            5            6            5            5
## 127          6          7            5            3            5            4
##     Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 109         1        2 Comprehensive Female  21         2 American
## 110         2        1 Comprehensive Female  21         2 American
## 112         2        2 Comprehensive Female  23         2 American
## 127         1        2     Collision   Male  29         2    Asian
##                 Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make
## 109     Chrysler Jeep  18   6  3.6      12   10.0          4 Chrysler
## 110     Chrysler Jeep  18   6  3.6      12   10.0          6 Chrysler
## 112     Chrysler Jeep  18   6  3.6      12   10.0          6 Chrysler
## 127 Toyota Highlander  20   6  7.2      10    8.5          6   Toyota
##       Model_v1
## 109       Jeep
## 110       Jeep
## 112       Jeep
## 127 Highlander
meanATT1<-mean(Car_Total$Att_1,na.rm=TRUE)
print(meanATT1)
## [1] 4.882297
Car_Total[is.na(Car_Total$Att_1), "Att_1"] <- meanATT1
Car_Total[c(rownames(na_rows_Att_1)),]
##       Resp    Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 109 Res151 4.882297     2    NA     2         3        NA         2     2    NA
## 110 Res152 4.882297     5     5     4         5         6         4     5     6
## 112 Res154 4.882297     6     6     6         5         4         5     6     6
## 127 Res168 4.882297     3     3     3         6         5         3     5     6
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 109          2          2           NA            2            2            3
## 110          6          6            6            2            4            5
## 112          5          6            5            6            5            5
## 127          6          7            5            3            5            4
##     Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 109         1        2 Comprehensive Female  21         2 American
## 110         2        1 Comprehensive Female  21         2 American
## 112         2        2 Comprehensive Female  23         2 American
## 127         1        2     Collision   Male  29         2    Asian
##                 Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make
## 109     Chrysler Jeep  18   6  3.6      12   10.0          4 Chrysler
## 110     Chrysler Jeep  18   6  3.6      12   10.0          6 Chrysler
## 112     Chrysler Jeep  18   6  3.6      12   10.0          6 Chrysler
## 127 Toyota Highlander  20   6  7.2      10    8.5          6   Toyota
##       Model_v1
## 109       Jeep
## 110       Jeep
## 112       Jeep
## 127 Highlander

Attutide_2

mean(Car_Total$Att_2)
## [1] 5.28694
na_rows_Att_2 <- Car_Total[is.na(Car_Total$Att_2),]
print(na_rows_Att_2)
##  [1] Resp         Att_1        Att_2        Enj_1        Enj_2       
##  [6] Perform_1    Perform_2    Perform_3    WOM_1        WOM_2       
## [11] Futu_Pur_1   Futu_Pur_2   Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## [16] Pur_Proces_2 Residence    Pay_Meth     Insur_Type   Gender      
## [21] Age          Education    Region       Model        MPG         
## [26] Cyl          acc1         C_cost.      H_Cost       Post.Satis  
## [31] Make         Model_v1    
## <0 行> (或0-长度的row.names)

Enjoyment_1

mean(Car_Total$Enj_1)
## [1] NA
na_rows_Enj_1 <- Car_Total[is.na(Car_Total$Enj_1),]
print(na_rows_Enj_1)
##       Resp    Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 73  Res119 6.000000     6    NA     5         4         4         4     4     4
## 109 Res151 4.882297     2    NA     2         3        NA         2     2    NA
## 113 Res155 5.000000     5    NA     5         4         4         1     7     7
## 917  Res88 7.000000     7    NA    NA         7         7         5     7     6
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 73           4          5            5            4            3            2
## 109          2          2           NA            2            2            3
## 113          5          5            5            5            5            4
## 917         NA          5            5            4            5            5
##     Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 73          2        3     Liability Female  45         2 American
## 109         1        2 Comprehensive Female  21         2 American
## 113         1        3 Comprehensive   Male  23         1 American
## 917         1        2     Collision Female  24         1 American
##             Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make Model_v1
## 73    Toyota Rav4  24   4  8.2      10      8          5   Toyota     Rav4
## 109 Chrysler Jeep  18   6  3.6      12     10          4 Chrysler     Jeep
## 113 Chrysler Jeep  18   6  3.6      12     10          6 Chrysler     Jeep
## 917     Honda CRV  26   4  8.5       8      7          4    Honda      CRV
meanEnj1<-mean(Car_Total$Enj_1,na.rm=TRUE)
print(meanEnj1)
## [1] 5.37799
Car_Total[is.na(Car_Total$Enj_1), "Enj_1"] <- meanEnj1
Car_Total[c(rownames(na_rows_Enj_1)),]
##       Resp    Att_1 Att_2   Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1
## 73  Res119 6.000000     6 5.37799     5         4         4         4     4
## 109 Res151 4.882297     2 5.37799     2         3        NA         2     2
## 113 Res155 5.000000     5 5.37799     5         4         4         1     7
## 917  Res88 7.000000     7 5.37799    NA         7         7         5     7
##     WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## 73      4          4          5            5            4            3
## 109    NA          2          2           NA            2            2
## 113     7          5          5            5            5            5
## 917     6         NA          5            5            4            5
##     Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 73             2         2        3     Liability Female  45         2 American
## 109            3         1        2 Comprehensive Female  21         2 American
## 113            4         1        3 Comprehensive   Male  23         1 American
## 917            5         1        2     Collision Female  24         1 American
##             Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make Model_v1
## 73    Toyota Rav4  24   4  8.2      10      8          5   Toyota     Rav4
## 109 Chrysler Jeep  18   6  3.6      12     10          4 Chrysler     Jeep
## 113 Chrysler Jeep  18   6  3.6      12     10          6 Chrysler     Jeep
## 917     Honda CRV  26   4  8.5       8      7          4    Honda      CRV

Enjoyment_2

mean(Car_Total$Enj_2)
## [1] NA
na_rows_Enj_2 <- Car_Total[is.na(Car_Total$Enj_2),]
print(na_rows_Enj_2)
##        Resp Att_1 Att_2   Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 165  Res201     4     4 5.00000    NA         6         5         1     7     7
## 188  Res222     6     3 4.00000    NA         6         6         4     6     7
## 917   Res88     7     7 5.37799    NA         7         7         5     7     6
## 1006  Res96     7     7 6.00000    NA         6         6         6     7     6
##      Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 165           6          6            6            7            7            7
## 188           7          7            6            6            7            2
## 917          NA          5            5            4            5            5
## 1006          6          7           NA            5            7            3
##      Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 165          2        1 Comprehensive   Male  55         2 American
## 188          2        3     Liability Female  21         2 European
## 917          1        2     Collision Female  24         1 American
## 1006         1        1     Collision Female  27         1 American
##              Model MPG Cyl acc1 C_cost. H_Cost Post.Satis   Make Model_v1
## 165  Ford Explorer  19   6  6.0      13     11          6   Ford Explorer
## 188    Toyota Rav4  24   4  8.2      10      8          5 Toyota     Rav4
## 917      Honda CRV  26   4  8.5       8      7          4  Honda      CRV
## 1006   Toyota Rav4  24   4  8.2      10      8          6 Toyota     Rav4
meanEnj2<-mean(Car_Total$Enj_2,na.rm=TRUE)
print(meanEnj2)
## [1] 4.57512
Car_Total[is.na(Car_Total$Enj_2), "Enj_2"] <- meanEnj2
Car_Total[c(rownames(na_rows_Enj_2)),]
##        Resp Att_1 Att_2   Enj_1   Enj_2 Perform_1 Perform_2 Perform_3 WOM_1
## 165  Res201     4     4 5.00000 4.57512         6         5         1     7
## 188  Res222     6     3 4.00000 4.57512         6         6         4     6
## 917   Res88     7     7 5.37799 4.57512         7         7         5     7
## 1006  Res96     7     7 6.00000 4.57512         6         6         6     7
##      WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## 165      7          6          6            6            7            7
## 188      7          7          7            6            6            7
## 917      6         NA          5            5            4            5
## 1006     6          6          7           NA            5            7
##      Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age Education
## 165             7         2        1 Comprehensive   Male  55         2
## 188             2         2        3     Liability Female  21         2
## 917             5         1        2     Collision Female  24         1
## 1006            3         1        1     Collision Female  27         1
##        Region         Model MPG Cyl acc1 C_cost. H_Cost Post.Satis   Make
## 165  American Ford Explorer  19   6  6.0      13     11          6   Ford
## 188  European   Toyota Rav4  24   4  8.2      10      8          5 Toyota
## 917  American     Honda CRV  26   4  8.5       8      7          4  Honda
## 1006 American   Toyota Rav4  24   4  8.2      10      8          6 Toyota
##      Model_v1
## 165  Explorer
## 188      Rav4
## 917       CRV
## 1006     Rav4

Performance_1

mean(Car_Total$Perform_1)
## [1] NA
na_rows_Perform_1 <- Car_Total[is.na(Car_Total$Perform_1),]
print(na_rows_Perform_1)
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 119 Res160     4     5     4     6        NA         6         3     6     7
## 873  Res84     6     6     6     6        NA        NA         5     5    NA
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 119          3          5            3            6            6            2
## 873         NA          6            6            5            5            6
##     Residence Pay_Meth    Insur_Type Gender Age Education         Region
## 119         1        3 Comprehensive   Male  24         1 Middle Eastern
## 873         2        1     Collision   Male  23         2       American
##             Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make Model_v1
## 119 Chrysler Jeep  18   6  3.6      12     10          4 Chrysler     Jeep
## 873     Honda CRV  26   4  8.5       8      7          4    Honda      CRV
meanPerform1<-mean(Car_Total$Perform_1,na.rm=TRUE)
print(meanPerform1)
## [1] 4.946514
Car_Total[is.na(Car_Total$Perform_1), "Perform_1"] <- meanPerform1
Car_Total[c(rownames(na_rows_Perform_1)),]
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 119 Res160     4     5     4     6  4.946514         6         3     6     7
## 873  Res84     6     6     6     6  4.946514        NA         5     5    NA
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 119          3          5            3            6            6            2
## 873         NA          6            6            5            5            6
##     Residence Pay_Meth    Insur_Type Gender Age Education         Region
## 119         1        3 Comprehensive   Male  24         1 Middle Eastern
## 873         2        1     Collision   Male  23         2       American
##             Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make Model_v1
## 119 Chrysler Jeep  18   6  3.6      12     10          4 Chrysler     Jeep
## 873     Honda CRV  26   4  8.5       8      7          4    Honda      CRV

Performance_2

mean(Car_Total$Perform_2)
## [1] NA
na_rows_Perform_2 <- Car_Total[is.na(Car_Total$Perform_2),]
print(na_rows_Perform_2)
##        Resp    Att_1 Att_2   Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1
## 57  Res1049 3.000000     4 4.00000     5  5.000000        NA         5     4
## 109  Res151 4.882297     2 5.37799     2  3.000000        NA         2     2
## 396   Res41 1.000000     1 1.00000     1  1.000000        NA         1     1
## 873   Res84 6.000000     6 6.00000     6  4.946514        NA         5     5
##     WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## 57      5          4          4            7            5            5
## 109    NA          2          2           NA            2            2
## 396     1          3          3            2            2            2
## 873    NA         NA          6            6            5            5
##     Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 57             6         2        1     Collision Female  21         2 European
## 109            3         1        2 Comprehensive Female  21         2 American
## 396            5         2        2     Collision   Male  36         2 American
## 873            6         2        1     Collision   Male  23         2 American
##             Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make Model_v1
## 57      Fiat 500x  22   4 8.00       8      6          5     Fiat     500x
## 109 Chrysler Jeep  18   6 3.60      12     10          4 Chrysler     Jeep
## 396 Dodge Journey  16   6 5.75      12     11          4    Dodge  Journey
## 873     Honda CRV  26   4 8.50       8      7          4    Honda      CRV
meanPerform2<-mean(Car_Total$Perform_2,na.rm=TRUE)
print(meanPerform2)
## [1] 4.830622
Car_Total[is.na(Car_Total$Perform_2), "Perform_2"] <- meanPerform2
Car_Total[c(rownames(na_rows_Perform_2)),]
##        Resp    Att_1 Att_2   Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1
## 57  Res1049 3.000000     4 4.00000     5  5.000000  4.830622         5     4
## 109  Res151 4.882297     2 5.37799     2  3.000000  4.830622         2     2
## 396   Res41 1.000000     1 1.00000     1  1.000000  4.830622         1     1
## 873   Res84 6.000000     6 6.00000     6  4.946514  4.830622         5     5
##     WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## 57      5          4          4            7            5            5
## 109    NA          2          2           NA            2            2
## 396     1          3          3            2            2            2
## 873    NA         NA          6            6            5            5
##     Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 57             6         2        1     Collision Female  21         2 European
## 109            3         1        2 Comprehensive Female  21         2 American
## 396            5         2        2     Collision   Male  36         2 American
## 873            6         2        1     Collision   Male  23         2 American
##             Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make Model_v1
## 57      Fiat 500x  22   4 8.00       8      6          5     Fiat     500x
## 109 Chrysler Jeep  18   6 3.60      12     10          4 Chrysler     Jeep
## 396 Dodge Journey  16   6 5.75      12     11          4    Dodge  Journey
## 873     Honda CRV  26   4 8.50       8      7          4    Honda      CRV

Performance_3

mean(Car_Total$Perform_3)
## [1] NA
na_rows_Perform_3 <- Car_Total[is.na(Car_Total$Perform_3),]
print(na_rows_Perform_3)
##      Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 62 Res109     6     6     6     5         5         6        NA    NA     4
##    Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62         NA         NA           NA           NA           NA           NA
##    Residence Pay_Meth Insur_Type Gender Age Education   Region       Model MPG
## 62         1        3  Liability   Male  36         2 American Toyota Rav4  24
##    Cyl acc1 C_cost. H_Cost Post.Satis   Make Model_v1
## 62   4  8.2      10      8          3 Toyota     Rav4
meanPerform3<-mean(Car_Total$Perform_3,na.rm=TRUE)
print(meanPerform3)
## [1] 4.216603
Car_Total[is.na(Car_Total$Perform_3), "Perform_3"] <- meanPerform3
Car_Total[c(rownames(na_rows_Perform_3)),]
##      Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 62 Res109     6     6     6     5         5         6  4.216603    NA     4
##    Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62         NA         NA           NA           NA           NA           NA
##    Residence Pay_Meth Insur_Type Gender Age Education   Region       Model MPG
## 62         1        3  Liability   Male  36         2 American Toyota Rav4  24
##    Cyl acc1 C_cost. H_Cost Post.Satis   Make Model_v1
## 62   4  8.2      10      8          3 Toyota     Rav4

Word-of-Mouth_1

mean(Car_Total$WOM_1)
## [1] NA
na_rows_WOM_1 <- Car_Total[is.na(Car_Total$WOM_1),]
print(na_rows_WOM_1)
##      Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1 WOM_2
## 62 Res109     6     6     6     5         5         6  4.216603    NA     4
##    Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62         NA         NA           NA           NA           NA           NA
##    Residence Pay_Meth Insur_Type Gender Age Education   Region       Model MPG
## 62         1        3  Liability   Male  36         2 American Toyota Rav4  24
##    Cyl acc1 C_cost. H_Cost Post.Satis   Make Model_v1
## 62   4  8.2      10      8          3 Toyota     Rav4
meanWOM1<-mean(Car_Total$WOM_1,na.rm=TRUE)
print(meanWOM1)
## [1] 5.28626
Car_Total[is.na(Car_Total$WOM_1), "WOM_1"] <- meanWOM1
Car_Total[c(rownames(na_rows_WOM_1)),]
##      Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62 Res109     6     6     6     5         5         6  4.216603 5.28626     4
##    Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62         NA         NA           NA           NA           NA           NA
##    Residence Pay_Meth Insur_Type Gender Age Education   Region       Model MPG
## 62         1        3  Liability   Male  36         2 American Toyota Rav4  24
##    Cyl acc1 C_cost. H_Cost Post.Satis   Make Model_v1
## 62   4  8.2      10      8          3 Toyota     Rav4

Word-of-Mouth_2

mean(Car_Total$WOM_2)
## [1] NA
na_rows_WOM_2 <- Car_Total[is.na(Car_Total$WOM_2),]
print(na_rows_WOM_2)
##       Resp    Att_1 Att_2   Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1
## 109 Res151 4.882297     2 5.37799     2  3.000000  4.830622         2     2
## 462  Res47 6.000000     5 5.00000     4  5.000000  4.000000         7     5
## 873  Res84 6.000000     6 6.00000     6  4.946514  4.830622         5     5
##     WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## 109    NA          2          2           NA            2            2
## 462    NA          5          6            5            3            3
## 873    NA         NA          6            6            5            5
##     Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 109            3         1        2 Comprehensive Female  21         2 American
## 462            6         2        1 Comprehensive Female  42         1 American
## 873            6         2        1     Collision   Male  23         2 American
##               Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make   Model_v1
## 109   Chrysler Jeep  18   6  3.6      12     10          4 Chrysler       Jeep
## 462 Ford Expedition  15   8  5.5      16     14          5     Ford Expedition
## 873       Honda CRV  26   4  8.5       8      7          4    Honda        CRV
meanWOM2<-mean(Car_Total$WOM_2,na.rm=TRUE)
print(meanWOM2)
## [1] 5.349904
Car_Total[is.na(Car_Total$WOM_2), "WOM_2"] <- meanWOM2
Car_Total[c(rownames(na_rows_WOM_2)),]
##       Resp    Att_1 Att_2   Enj_1 Enj_2 Perform_1 Perform_2 Perform_3 WOM_1
## 109 Res151 4.882297     2 5.37799     2  3.000000  4.830622         2     2
## 462  Res47 6.000000     5 5.00000     4  5.000000  4.000000         7     5
## 873  Res84 6.000000     6 6.00000     6  4.946514  4.830622         5     5
##        WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## 109 5.349904          2          2           NA            2            2
## 462 5.349904          5          6            5            3            3
## 873 5.349904         NA          6            6            5            5
##     Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 109            3         1        2 Comprehensive Female  21         2 American
## 462            6         2        1 Comprehensive Female  42         1 American
## 873            6         2        1     Collision   Male  23         2 American
##               Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make   Model_v1
## 109   Chrysler Jeep  18   6  3.6      12     10          4 Chrysler       Jeep
## 462 Ford Expedition  15   8  5.5      16     14          5     Ford Expedition
## 873       Honda CRV  26   4  8.5       8      7          4    Honda        CRV

Future Purchase Intention_1

mean(Car_Total$Futu_Pur_1)
## [1] NA
na_rows_Futu_Pur_1 <- Car_Total[is.na(Car_Total$Futu_Pur_1),]
print(na_rows_Futu_Pur_1)
##       Resp Att_1 Att_2   Enj_1   Enj_2 Perform_1 Perform_2 Perform_3   WOM_1
## 62  Res109     6     6 6.00000 5.00000  5.000000  6.000000  4.216603 5.28626
## 120 Res161     6     6 6.00000 3.00000  5.000000  1.000000  4.000000 5.00000
## 181 Res216     5     6 6.00000 7.00000  7.000000  4.000000  4.000000 5.00000
## 873  Res84     6     6 6.00000 6.00000  4.946514  4.830622  5.000000 5.00000
## 917  Res88     7     7 5.37799 4.57512  7.000000  7.000000  5.000000 7.00000
##        WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## 62  4.000000         NA         NA           NA           NA           NA
## 120 5.000000         NA          5            5            6            5
## 181 5.000000         NA          6            5            5            5
## 873 5.349904         NA          6            6            5            5
## 917 6.000000         NA          5            5            4            5
##     Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age Education
## 62            NA         1        3     Liability   Male  36         2
## 120            5         1        3 Comprehensive   Male  24         3
## 181            5         2        1     Liability   Male  19         3
## 873            6         2        1     Collision   Male  23         2
## 917            5         1        2     Collision Female  24         1
##             Region         Model MPG Cyl acc1 C_cost. H_Cost Post.Satis
## 62        American   Toyota Rav4  24   4  8.2      10      8          3
## 120 Middle Eastern Chrysler Jeep  18   6  3.6      12     10          4
## 181       American   Toyota Rav4  24   4  8.2      10      8          6
## 873       American     Honda CRV  26   4  8.5       8      7          4
## 917       American     Honda CRV  26   4  8.5       8      7          4
##         Make Model_v1
## 62    Toyota     Rav4
## 120 Chrysler     Jeep
## 181   Toyota     Rav4
## 873    Honda      CRV
## 917    Honda      CRV
meanFutu1<-mean(Car_Total$Futu_Pur_1,na.rm=TRUE)
print(meanFutu1)
## [1] 5.320881
Car_Total[is.na(Car_Total$Futu_Pur_1), "Futu_Pur_1"] <- meanFutu1
Car_Total[c(rownames(na_rows_Futu_Pur_1)),]
##       Resp Att_1 Att_2   Enj_1   Enj_2 Perform_1 Perform_2 Perform_3   WOM_1
## 62  Res109     6     6 6.00000 5.00000  5.000000  6.000000  4.216603 5.28626
## 120 Res161     6     6 6.00000 3.00000  5.000000  1.000000  4.000000 5.00000
## 181 Res216     5     6 6.00000 7.00000  7.000000  4.000000  4.000000 5.00000
## 873  Res84     6     6 6.00000 6.00000  4.946514  4.830622  5.000000 5.00000
## 917  Res88     7     7 5.37799 4.57512  7.000000  7.000000  5.000000 7.00000
##        WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1
## 62  4.000000   5.320881         NA           NA           NA           NA
## 120 5.000000   5.320881          5            5            6            5
## 181 5.000000   5.320881          6            5            5            5
## 873 5.349904   5.320881          6            6            5            5
## 917 6.000000   5.320881          5            5            4            5
##     Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age Education
## 62            NA         1        3     Liability   Male  36         2
## 120            5         1        3 Comprehensive   Male  24         3
## 181            5         2        1     Liability   Male  19         3
## 873            6         2        1     Collision   Male  23         2
## 917            5         1        2     Collision Female  24         1
##             Region         Model MPG Cyl acc1 C_cost. H_Cost Post.Satis
## 62        American   Toyota Rav4  24   4  8.2      10      8          3
## 120 Middle Eastern Chrysler Jeep  18   6  3.6      12     10          4
## 181       American   Toyota Rav4  24   4  8.2      10      8          6
## 873       American     Honda CRV  26   4  8.5       8      7          4
## 917       American     Honda CRV  26   4  8.5       8      7          4
##         Make Model_v1
## 62    Toyota     Rav4
## 120 Chrysler     Jeep
## 181   Toyota     Rav4
## 873    Honda      CRV
## 917    Honda      CRV

Future Purchase Intention_2

mean(Car_Total$Futu_Pur_2)
## [1] NA
na_rows_Futu_Pur_2 <- Car_Total[is.na(Car_Total$Futu_Pur_2),]
print(na_rows_Futu_Pur_2)
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62  Res109     6     6     6     5         5         6  4.216603 5.28626     4
## 507  Res51     4     4     4     1         2         3  3.000000 3.00000     3
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62    5.320881         NA           NA           NA           NA           NA
## 507   2.000000         NA            2            2            2            6
##     Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 62          1        3     Liability   Male  36         2 American
## 507         2        1 Comprehensive   Male  48         2 American
##               Model MPG Cyl acc1 C_cost. H_Cost Post.Satis   Make   Model_v1
## 62      Toyota Rav4  24   4  8.2      10      8          3 Toyota       Rav4
## 507 Ford Expedition  15   8  5.5      16     14          4   Ford Expedition
meanFutu2<-mean(Car_Total$Futu_Pur_2,na.rm=TRUE)
print(meanFutu2)
## [1] 5.370583
Car_Total[is.na(Car_Total$Futu_Pur_2), "Futu_Pur_2"] <- meanFutu2
Car_Total[c(rownames(na_rows_Futu_Pur_2)),]
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62  Res109     6     6     6     5         5         6  4.216603 5.28626     4
## 507  Res51     4     4     4     1         2         3  3.000000 3.00000     3
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62    5.320881   5.370583           NA           NA           NA           NA
## 507   2.000000   5.370583            2            2            2            6
##     Residence Pay_Meth    Insur_Type Gender Age Education   Region
## 62          1        3     Liability   Male  36         2 American
## 507         2        1 Comprehensive   Male  48         2 American
##               Model MPG Cyl acc1 C_cost. H_Cost Post.Satis   Make   Model_v1
## 62      Toyota Rav4  24   4  8.2      10      8          3 Toyota       Rav4
## 507 Ford Expedition  15   8  5.5      16     14          4   Ford Expedition

Value Perception_1

mean(Car_Total$Valu_Percp_1)
## [1] NA
na_rows_Valu_Percp_1 <- Car_Total[is.na(Car_Total$Valu_Percp_1),]
print(na_rows_Valu_Percp_1)
##        Resp    Att_1 Att_2   Enj_1   Enj_2 Perform_1 Perform_2 Perform_3
## 62   Res109 6.000000     6 6.00000 5.00000         5  6.000000  4.216603
## 109  Res151 4.882297     2 5.37799 2.00000         3  4.830622  2.000000
## 178  Res213 6.000000     2 3.00000 3.00000         5  6.000000  4.000000
## 1006  Res96 7.000000     7 6.00000 4.57512         6  6.000000  6.000000
##        WOM_1    WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2
## 62   5.28626 4.000000   5.320881   5.370583           NA           NA
## 109  2.00000 5.349904   2.000000   2.000000           NA            2
## 178  7.00000 7.000000   7.000000   7.000000           NA            6
## 1006 7.00000 6.000000   6.000000   7.000000           NA            5
##      Pur_Proces_1 Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age
## 62             NA           NA         1        3     Liability   Male  36
## 109             2            3         1        2 Comprehensive Female  21
## 178             7            2         1        1     Liability   Male  19
## 1006            7            3         1        1     Collision Female  27
##      Education   Region         Model MPG Cyl acc1 C_cost. H_Cost Post.Satis
## 62           2 American   Toyota Rav4  24   4  8.2      10      8          3
## 109          2 American Chrysler Jeep  18   6  3.6      12     10          4
## 178          1 American   Toyota Rav4  24   4  8.2      10      8          7
## 1006         1 American   Toyota Rav4  24   4  8.2      10      8          6
##          Make Model_v1
## 62     Toyota     Rav4
## 109  Chrysler     Jeep
## 178    Toyota     Rav4
## 1006   Toyota     Rav4
meanValu1<-mean(Car_Total$Valu_Percp_1,na.rm=TRUE)
print(meanValu1)
## [1] 5.411483
Car_Total[is.na(Car_Total$Valu_Percp_1), "Valu_Percp_1"] <- meanValu1
Car_Total[c(rownames(na_rows_Valu_Percp_1)),]
##        Resp    Att_1 Att_2   Enj_1   Enj_2 Perform_1 Perform_2 Perform_3
## 62   Res109 6.000000     6 6.00000 5.00000         5  6.000000  4.216603
## 109  Res151 4.882297     2 5.37799 2.00000         3  4.830622  2.000000
## 178  Res213 6.000000     2 3.00000 3.00000         5  6.000000  4.000000
## 1006  Res96 7.000000     7 6.00000 4.57512         6  6.000000  6.000000
##        WOM_1    WOM_2 Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2
## 62   5.28626 4.000000   5.320881   5.370583     5.411483           NA
## 109  2.00000 5.349904   2.000000   2.000000     5.411483            2
## 178  7.00000 7.000000   7.000000   7.000000     5.411483            6
## 1006 7.00000 6.000000   6.000000   7.000000     5.411483            5
##      Pur_Proces_1 Pur_Proces_2 Residence Pay_Meth    Insur_Type Gender Age
## 62             NA           NA         1        3     Liability   Male  36
## 109             2            3         1        2 Comprehensive Female  21
## 178             7            2         1        1     Liability   Male  19
## 1006            7            3         1        1     Collision Female  27
##      Education   Region         Model MPG Cyl acc1 C_cost. H_Cost Post.Satis
## 62           2 American   Toyota Rav4  24   4  8.2      10      8          3
## 109          2 American Chrysler Jeep  18   6  3.6      12     10          4
## 178          1 American   Toyota Rav4  24   4  8.2      10      8          7
## 1006         1 American   Toyota Rav4  24   4  8.2      10      8          6
##          Make Model_v1
## 62     Toyota     Rav4
## 109  Chrysler     Jeep
## 178    Toyota     Rav4
## 1006   Toyota     Rav4

Value Perception_2

mean(Car_Total$Valu_Percp_2)
## [1] NA
na_rows_Valu_Percp_2 <- Car_Total[is.na(Car_Total$Valu_Percp_2),]
print(na_rows_Valu_Percp_2)
##      Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62 Res109     6     6     6     5         5         6  4.216603 5.28626     4
##    Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62   5.320881   5.370583     5.411483           NA           NA           NA
##    Residence Pay_Meth Insur_Type Gender Age Education   Region       Model MPG
## 62         1        3  Liability   Male  36         2 American Toyota Rav4  24
##    Cyl acc1 C_cost. H_Cost Post.Satis   Make Model_v1
## 62   4  8.2      10      8          3 Toyota     Rav4
meanValu2<-mean(Car_Total$Valu_Percp_2,na.rm=TRUE)
print(meanValu2)
## [1] 5.11355
Car_Total[is.na(Car_Total$Valu_Percp_2), "Valu_Percp_2"] <- meanValu2
Car_Total[c(rownames(na_rows_Valu_Percp_2)),]
##      Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62 Res109     6     6     6     5         5         6  4.216603 5.28626     4
##    Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62   5.320881   5.370583     5.411483      5.11355           NA           NA
##    Residence Pay_Meth Insur_Type Gender Age Education   Region       Model MPG
## 62         1        3  Liability   Male  36         2 American Toyota Rav4  24
##    Cyl acc1 C_cost. H_Cost Post.Satis   Make Model_v1
## 62   4  8.2      10      8          3 Toyota     Rav4

Purchase Process_1

mean(Car_Total$Pur_Proces_1)
## [1] NA
na_rows_Pur_Proces_1 <- Car_Total[is.na(Car_Total$Pur_Proces_1),]
print(na_rows_Pur_Proces_1)
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62  Res109     6     6     6     5         5         6  4.216603 5.28626     4
## 136 Res176     3     6     6     5         5         6  7.000000 6.00000     6
## 806  Res78     7     6     7     7         7         7  5.000000 3.00000     4
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62    5.320881   5.370583     5.411483      5.11355           NA           NA
## 136   4.000000   4.000000     4.000000      1.00000           NA           NA
## 806   6.000000   7.000000     6.000000      7.00000           NA            7
##     Residence Pay_Meth Insur_Type Gender Age Education   Region
## 62          1        3  Liability   Male  36         2 American
## 136         1        1  Collision Female  34         1    Asian
## 806         2        3  Liability   Male  21         2    Asian
##                 Model MPG Cyl acc1 C_cost. H_Cost Post.Satis   Make   Model_v1
## 62        Toyota Rav4  24   4  8.2      10    8.0          3 Toyota       Rav4
## 136 Toyota Highlander  20   6  7.2      10    8.5          6 Toyota Highlander
## 806         Honda CRV  26   4  8.5       8    7.0          6  Honda        CRV
meanPur1<-mean(Car_Total$Pur_Proces_1,na.rm=TRUE)
print(meanPur1)
## [1] 5.256214
Car_Total[is.na(Car_Total$Pur_Proces_1), "Pur_Proces_1"] <- meanPur1
Car_Total[c(rownames(na_rows_Pur_Proces_1)),]
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62  Res109     6     6     6     5         5         6  4.216603 5.28626     4
## 136 Res176     3     6     6     5         5         6  7.000000 6.00000     6
## 806  Res78     7     6     7     7         7         7  5.000000 3.00000     4
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62    5.320881   5.370583     5.411483      5.11355     5.256214           NA
## 136   4.000000   4.000000     4.000000      1.00000     5.256214           NA
## 806   6.000000   7.000000     6.000000      7.00000     5.256214            7
##     Residence Pay_Meth Insur_Type Gender Age Education   Region
## 62          1        3  Liability   Male  36         2 American
## 136         1        1  Collision Female  34         1    Asian
## 806         2        3  Liability   Male  21         2    Asian
##                 Model MPG Cyl acc1 C_cost. H_Cost Post.Satis   Make   Model_v1
## 62        Toyota Rav4  24   4  8.2      10    8.0          3 Toyota       Rav4
## 136 Toyota Highlander  20   6  7.2      10    8.5          6 Toyota Highlander
## 806         Honda CRV  26   4  8.5       8    7.0          6  Honda        CRV

Purchase Process_2

mean(Car_Total$Pur_Proces_2)
## [1] NA
na_rows_Pur_Proces_2 <- Car_Total[is.na(Car_Total$Pur_Proces_2),]
print(na_rows_Pur_Proces_2)
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62  Res109     6     6     6     5         5         6  4.216603 5.28626     4
## 115 Res157     2     2     2     2         3         2  2.000000 2.00000     2
## 136 Res176     3     6     6     5         5         6  7.000000 6.00000     6
## 163  Res20     7     7     6     6         6         5  1.000000 6.00000     6
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62    5.320881   5.370583     5.411483      5.11355     5.256214           NA
## 115   2.000000   2.000000     2.000000      2.00000     2.000000           NA
## 136   4.000000   4.000000     4.000000      1.00000     5.256214           NA
## 163   5.000000   5.000000     3.000000      3.00000     4.000000           NA
##     Residence Pay_Meth    Insur_Type Gender Age Education         Region
## 62          1        3     Liability   Male  36         2       American
## 115         2        3 Comprehensive   Male  23         1 Middle Eastern
## 136         1        1     Collision Female  34         1          Asian
## 163         1        2     Collision Female  24         3       American
##                 Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make
## 62        Toyota Rav4  24   4  8.2      10    8.0          3   Toyota
## 115     Chrysler Jeep  18   6  3.6      12   10.0          4 Chrysler
## 136 Toyota Highlander  20   6  7.2      10    8.5          6   Toyota
## 163   Ford Expedition  15   8  5.5      16   14.0          6     Ford
##       Model_v1
## 62        Rav4
## 115       Jeep
## 136 Highlander
## 163 Expedition
meanPur2<-mean(Car_Total$Pur_Proces_2,na.rm=TRUE)
print(meanPur2)
## [1] 4.923445
Car_Total[is.na(Car_Total$Pur_Proces_2), "Pur_Proces_2"] <- meanPur2
Car_Total[c(rownames(na_rows_Pur_Proces_2)),]
##       Resp Att_1 Att_2 Enj_1 Enj_2 Perform_1 Perform_2 Perform_3   WOM_1 WOM_2
## 62  Res109     6     6     6     5         5         6  4.216603 5.28626     4
## 115 Res157     2     2     2     2         3         2  2.000000 2.00000     2
## 136 Res176     3     6     6     5         5         6  7.000000 6.00000     6
## 163  Res20     7     7     6     6         6         5  1.000000 6.00000     6
##     Futu_Pur_1 Futu_Pur_2 Valu_Percp_1 Valu_Percp_2 Pur_Proces_1 Pur_Proces_2
## 62    5.320881   5.370583     5.411483      5.11355     5.256214     4.923445
## 115   2.000000   2.000000     2.000000      2.00000     2.000000     4.923445
## 136   4.000000   4.000000     4.000000      1.00000     5.256214     4.923445
## 163   5.000000   5.000000     3.000000      3.00000     4.000000     4.923445
##     Residence Pay_Meth    Insur_Type Gender Age Education         Region
## 62          1        3     Liability   Male  36         2       American
## 115         2        3 Comprehensive   Male  23         1 Middle Eastern
## 136         1        1     Collision Female  34         1          Asian
## 163         1        2     Collision Female  24         3       American
##                 Model MPG Cyl acc1 C_cost. H_Cost Post.Satis     Make
## 62        Toyota Rav4  24   4  8.2      10    8.0          3   Toyota
## 115     Chrysler Jeep  18   6  3.6      12   10.0          4 Chrysler
## 136 Toyota Highlander  20   6  7.2      10    8.5          6   Toyota
## 163   Ford Expedition  15   8  5.5      16   14.0          6     Ford
##       Model_v1
## 62        Rav4
## 115       Jeep
## 136 Highlander
## 163 Expedition

Calculate Mean

Car_Total$Att_Mean = (Car_Total$Att_1 +
                        Car_Total$Att_2) / 2
Car_Total$Enj_Mean = (Car_Total$Enj_1 +
                        Car_Total$Enj_2) / 2
Car_Total$Perform_Mean = (Car_Total$Perform_1 +
                            Car_Total$Perform_2 +
                            Car_Total$Perform_3) / 3
Car_Total$WOM_Mean = (Car_Total$WOM_1 +
                        Car_Total$WOM_2) / 2
Car_Total$Futu_Pur_Mean = (Car_Total$Futu_Pur_1 +
                             Car_Total$Futu_Pur_2) / 2
Car_Total$Valu_Percp_Mean = (Car_Total$Valu_Percp_1 +
                               Car_Total$Valu_Percp_2) / 2
Car_Total$Pur_Proces_Mean = (Car_Total$Pur_Proces_1 +
                               Car_Total$Pur_Proces_2) / 2

Setting Interval

Attitude_Mean

Car_Total$AttGrp<-cut(Car_Total$Att_Mean,
                      breaks = c(0, 1, 2, 3, 4, 5, 6, 7, Inf),
                      Labels = c("0+", "1+", "2+", "3+", "4+", "5+", "6+", "7"),
                      right=FALSE)
names(Car_Total)
##  [1] "Resp"            "Att_1"           "Att_2"           "Enj_1"          
##  [5] "Enj_2"           "Perform_1"       "Perform_2"       "Perform_3"      
##  [9] "WOM_1"           "WOM_2"           "Futu_Pur_1"      "Futu_Pur_2"     
## [13] "Valu_Percp_1"    "Valu_Percp_2"    "Pur_Proces_1"    "Pur_Proces_2"   
## [17] "Residence"       "Pay_Meth"        "Insur_Type"      "Gender"         
## [21] "Age"             "Education"       "Region"          "Model"          
## [25] "MPG"             "Cyl"             "acc1"            "C_cost."        
## [29] "H_Cost"          "Post.Satis"      "Make"            "Model_v1"       
## [33] "Att_Mean"        "Enj_Mean"        "Perform_Mean"    "WOM_Mean"       
## [37] "Futu_Pur_Mean"   "Valu_Percp_Mean" "Pur_Proces_Mean" "AttGrp"
head(Car_Total$AttGrp)
## [1] [6,7) [6,7) [6,7) [6,7) [6,7) [2,3)
## Levels: [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,Inf)

Enjoyment_Mean

Car_Total$EnjGrp<-cut(Car_Total$Enj_Mean,
                      breaks = c(0, 1, 2, 3, 4, 5, 6, 7, Inf),
                      Labels = c("0+", "1+", "2+", "3+", "4+", "5+", "6+", "7"),
                      right=FALSE)
names(Car_Total)
##  [1] "Resp"            "Att_1"           "Att_2"           "Enj_1"          
##  [5] "Enj_2"           "Perform_1"       "Perform_2"       "Perform_3"      
##  [9] "WOM_1"           "WOM_2"           "Futu_Pur_1"      "Futu_Pur_2"     
## [13] "Valu_Percp_1"    "Valu_Percp_2"    "Pur_Proces_1"    "Pur_Proces_2"   
## [17] "Residence"       "Pay_Meth"        "Insur_Type"      "Gender"         
## [21] "Age"             "Education"       "Region"          "Model"          
## [25] "MPG"             "Cyl"             "acc1"            "C_cost."        
## [29] "H_Cost"          "Post.Satis"      "Make"            "Model_v1"       
## [33] "Att_Mean"        "Enj_Mean"        "Perform_Mean"    "WOM_Mean"       
## [37] "Futu_Pur_Mean"   "Valu_Percp_Mean" "Pur_Proces_Mean" "AttGrp"         
## [41] "EnjGrp"
head(Car_Total$EnjGrp)
## [1] [6,7) [4,5) [5,6) [6,7) [6,7) [3,4)
## Levels: [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,Inf)

Performance_Mean

Car_Total$PerformGrp<-cut(Car_Total$Perform_Mean,
                      breaks = c(0, 1, 2, 3, 4, 5, 6, 7, Inf),
                      Labels = c("0+", "1+", "2+", "3+", "4+", "5+", "6+", "7"),
                      right=FALSE)
names(Car_Total)
##  [1] "Resp"            "Att_1"           "Att_2"           "Enj_1"          
##  [5] "Enj_2"           "Perform_1"       "Perform_2"       "Perform_3"      
##  [9] "WOM_1"           "WOM_2"           "Futu_Pur_1"      "Futu_Pur_2"     
## [13] "Valu_Percp_1"    "Valu_Percp_2"    "Pur_Proces_1"    "Pur_Proces_2"   
## [17] "Residence"       "Pay_Meth"        "Insur_Type"      "Gender"         
## [21] "Age"             "Education"       "Region"          "Model"          
## [25] "MPG"             "Cyl"             "acc1"            "C_cost."        
## [29] "H_Cost"          "Post.Satis"      "Make"            "Model_v1"       
## [33] "Att_Mean"        "Enj_Mean"        "Perform_Mean"    "WOM_Mean"       
## [37] "Futu_Pur_Mean"   "Valu_Percp_Mean" "Pur_Proces_Mean" "AttGrp"         
## [41] "EnjGrp"          "PerformGrp"
head(Car_Total$PerformGrp)
## [1] [4,5) [3,4) [5,6) [6,7) [6,7) [5,6)
## Levels: [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,Inf)

Word-of-Mouth_Mean

Car_Total$WOMGrp<-cut(Car_Total$WOM_Mean,
                      breaks = c(0, 1, 2, 3, 4, 5, 6, 7, Inf),
                      Labels = c("0+", "1+", "2+", "3+", "4+", "5+", "6+", "7"),
                      right=FALSE)
names(Car_Total)
##  [1] "Resp"            "Att_1"           "Att_2"           "Enj_1"          
##  [5] "Enj_2"           "Perform_1"       "Perform_2"       "Perform_3"      
##  [9] "WOM_1"           "WOM_2"           "Futu_Pur_1"      "Futu_Pur_2"     
## [13] "Valu_Percp_1"    "Valu_Percp_2"    "Pur_Proces_1"    "Pur_Proces_2"   
## [17] "Residence"       "Pay_Meth"        "Insur_Type"      "Gender"         
## [21] "Age"             "Education"       "Region"          "Model"          
## [25] "MPG"             "Cyl"             "acc1"            "C_cost."        
## [29] "H_Cost"          "Post.Satis"      "Make"            "Model_v1"       
## [33] "Att_Mean"        "Enj_Mean"        "Perform_Mean"    "WOM_Mean"       
## [37] "Futu_Pur_Mean"   "Valu_Percp_Mean" "Pur_Proces_Mean" "AttGrp"         
## [41] "EnjGrp"          "PerformGrp"      "WOMGrp"
head(Car_Total$WOMGrp)
## [1] [3,4) [5,6) [4,5) [6,7) [4,5) [4,5)
## Levels: [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,Inf)

Future Purchase Intention_Mean

Car_Total$FutuGrp<-cut(Car_Total$Futu_Pur_Mean,
                      breaks = c(0, 1, 2, 3, 4, 5, 6, 7, Inf),
                      Labels = c("0+", "1+", "2+", "3+", "4+", "5+", "6+", "7"),
                      right=FALSE)
names(Car_Total)
##  [1] "Resp"            "Att_1"           "Att_2"           "Enj_1"          
##  [5] "Enj_2"           "Perform_1"       "Perform_2"       "Perform_3"      
##  [9] "WOM_1"           "WOM_2"           "Futu_Pur_1"      "Futu_Pur_2"     
## [13] "Valu_Percp_1"    "Valu_Percp_2"    "Pur_Proces_1"    "Pur_Proces_2"   
## [17] "Residence"       "Pay_Meth"        "Insur_Type"      "Gender"         
## [21] "Age"             "Education"       "Region"          "Model"          
## [25] "MPG"             "Cyl"             "acc1"            "C_cost."        
## [29] "H_Cost"          "Post.Satis"      "Make"            "Model_v1"       
## [33] "Att_Mean"        "Enj_Mean"        "Perform_Mean"    "WOM_Mean"       
## [37] "Futu_Pur_Mean"   "Valu_Percp_Mean" "Pur_Proces_Mean" "AttGrp"         
## [41] "EnjGrp"          "PerformGrp"      "WOMGrp"          "FutuGrp"
head(Car_Total$FutuGrp)
## [1] [3,4) [6,7) [6,7) [6,7) [5,6) [6,7)
## Levels: [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,Inf)

Value Perception_Mean

Car_Total$ValuGrp<-cut(Car_Total$Valu_Percp_Mean,
                      breaks = c(0, 1, 2, 3, 4, 5, 6, 7, Inf),
                      Labels = c("0+", "1+", "2+", "3+", "4+", "5+", "6+", "7"),
                      right=FALSE)
names(Car_Total)
##  [1] "Resp"            "Att_1"           "Att_2"           "Enj_1"          
##  [5] "Enj_2"           "Perform_1"       "Perform_2"       "Perform_3"      
##  [9] "WOM_1"           "WOM_2"           "Futu_Pur_1"      "Futu_Pur_2"     
## [13] "Valu_Percp_1"    "Valu_Percp_2"    "Pur_Proces_1"    "Pur_Proces_2"   
## [17] "Residence"       "Pay_Meth"        "Insur_Type"      "Gender"         
## [21] "Age"             "Education"       "Region"          "Model"          
## [25] "MPG"             "Cyl"             "acc1"            "C_cost."        
## [29] "H_Cost"          "Post.Satis"      "Make"            "Model_v1"       
## [33] "Att_Mean"        "Enj_Mean"        "Perform_Mean"    "WOM_Mean"       
## [37] "Futu_Pur_Mean"   "Valu_Percp_Mean" "Pur_Proces_Mean" "AttGrp"         
## [41] "EnjGrp"          "PerformGrp"      "WOMGrp"          "FutuGrp"        
## [45] "ValuGrp"
head(Car_Total$ValuGrp)
## [1] [3,4) [6,7) [6,7) [5,6) [5,6) [4,5)
## Levels: [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,Inf)

Purchase Process

Car_Total$PurGrp<-cut(Car_Total$Pur_Proces_Mean,
                      breaks = c(0, 1, 2, 3, 4, 5, 6, 7, Inf),
                      Labels = c("0+", "1+", "2+", "3+", "4+", "5+", "6+", "7"),
                      right=FALSE)
names(Car_Total)
##  [1] "Resp"            "Att_1"           "Att_2"           "Enj_1"          
##  [5] "Enj_2"           "Perform_1"       "Perform_2"       "Perform_3"      
##  [9] "WOM_1"           "WOM_2"           "Futu_Pur_1"      "Futu_Pur_2"     
## [13] "Valu_Percp_1"    "Valu_Percp_2"    "Pur_Proces_1"    "Pur_Proces_2"   
## [17] "Residence"       "Pay_Meth"        "Insur_Type"      "Gender"         
## [21] "Age"             "Education"       "Region"          "Model"          
## [25] "MPG"             "Cyl"             "acc1"            "C_cost."        
## [29] "H_Cost"          "Post.Satis"      "Make"            "Model_v1"       
## [33] "Att_Mean"        "Enj_Mean"        "Perform_Mean"    "WOM_Mean"       
## [37] "Futu_Pur_Mean"   "Valu_Percp_Mean" "Pur_Proces_Mean" "AttGrp"         
## [41] "EnjGrp"          "PerformGrp"      "WOMGrp"          "FutuGrp"        
## [45] "ValuGrp"         "PurGrp"
head(Car_Total$PurGrp)
## [1] [5,6) [6,7) [5,6) [4,5) [6,7) [5,6)
## Levels: [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,Inf)

Age

summary(Car_Total$Age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   18.00   23.00   34.00   35.22   48.00   60.00
Car_Total$AgeGrp<-cut(Car_Total$Age,
                      breaks = c(18, 30, 42, 54, Inf),
                      Labels = c("18-30", "30-42", "42-54", "54+"),
                      right=FALSE)
names(Car_Total)
##  [1] "Resp"            "Att_1"           "Att_2"           "Enj_1"          
##  [5] "Enj_2"           "Perform_1"       "Perform_2"       "Perform_3"      
##  [9] "WOM_1"           "WOM_2"           "Futu_Pur_1"      "Futu_Pur_2"     
## [13] "Valu_Percp_1"    "Valu_Percp_2"    "Pur_Proces_1"    "Pur_Proces_2"   
## [17] "Residence"       "Pay_Meth"        "Insur_Type"      "Gender"         
## [21] "Age"             "Education"       "Region"          "Model"          
## [25] "MPG"             "Cyl"             "acc1"            "C_cost."        
## [29] "H_Cost"          "Post.Satis"      "Make"            "Model_v1"       
## [33] "Att_Mean"        "Enj_Mean"        "Perform_Mean"    "WOM_Mean"       
## [37] "Futu_Pur_Mean"   "Valu_Percp_Mean" "Pur_Proces_Mean" "AttGrp"         
## [41] "EnjGrp"          "PerformGrp"      "WOMGrp"          "FutuGrp"        
## [45] "ValuGrp"         "PurGrp"          "AgeGrp"
head(Car_Total$AgeGrp)
## [1] [18,30) [18,30) [30,42) [18,30) [18,30) [18,30)
## Levels: [18,30) [30,42) [42,54) [54,Inf)

Toyota

Toyota = Car_Total %>% filter(Make == "Toyota") 
summary(Toyota)
##      Resp               Att_1           Att_2           Enj_1      
##  Length:292         Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  Class :character   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Mode  :character   Median :6.000   Median :6.000   Median :6.000  
##                     Mean   :5.003   Mean   :5.507   Mean   :5.583  
##                     3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##                     Max.   :7.000   Max.   :7.000   Max.   :7.000  
##                                                                    
##      Enj_2         Perform_1       Perform_2       Perform_3    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:4.000   1st Qu.:3.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.857   Mean   :5.247   Mean   :5.161   Mean   :4.371  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##                                                                 
##      WOM_1           WOM_2         Futu_Pur_1      Futu_Pur_2   
##  Min.   :2.000   Min.   :1.000   Min.   :1.000   Min.   :2.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.631   Mean   :5.678   Mean   :5.307   Mean   :5.337  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :9.000   Max.   :7.000  
##                                                                 
##   Valu_Percp_1    Valu_Percp_2    Pur_Proces_1    Pur_Proces_2  
##  Min.   :2.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:3.000  
##  Median :6.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :5.449   Mean   :4.918   Mean   :5.132   Mean   :4.592  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##                                                                 
##    Residence        Pay_Meth      Insur_Type           Gender         
##  Min.   :1.000   Min.   :1.000   Length:292         Length:292        
##  1st Qu.:1.000   1st Qu.:1.000   Class :character   Class :character  
##  Median :1.000   Median :2.000   Mode  :character   Mode  :character  
##  Mean   :1.431   Mean   :2.158                                        
##  3rd Qu.:2.000   3rd Qu.:3.000                                        
##  Max.   :2.000   Max.   :3.000                                        
##  NA's   :4                                                            
##       Age          Education        Region             Model          
##  Min.   :18.00   Min.   :1.000   Length:292         Length:292        
##  1st Qu.:26.00   1st Qu.:2.000   Class :character   Class :character  
##  Median :34.00   Median :2.000   Mode  :character   Mode  :character  
##  Mean   :35.11   Mean   :2.017                                        
##  3rd Qu.:42.75   3rd Qu.:2.000                                        
##  Max.   :60.00   Max.   :3.000                                        
##                                                                       
##       MPG             Cyl             acc1          C_cost.      
##  Min.   :20.00   Min.   :4.000   Min.   :7.200   Min.   : 7.000  
##  1st Qu.:20.00   1st Qu.:4.000   1st Qu.:7.200   1st Qu.: 7.000  
##  Median :24.00   Median :4.000   Median :8.000   Median :10.000  
##  Mean   :22.74   Mean   :4.945   Mean   :7.668   Mean   : 9.055  
##  3rd Qu.:26.00   3rd Qu.:6.000   3rd Qu.:8.000   3rd Qu.:10.000  
##  Max.   :26.00   Max.   :6.000   Max.   :8.200   Max.   :10.000  
##                                                                  
##      H_Cost        Post.Satis        Make             Model_v1        
##  Min.   :6.000   Min.   :3.000   Length:292         Length:292        
##  1st Qu.:6.000   1st Qu.:5.000   Class :character   Class :character  
##  Median :8.000   Median :6.000   Mode  :character   Mode  :character  
##  Mean   :7.604   Mean   :5.545                                        
##  3rd Qu.:8.500   3rd Qu.:6.000                                        
##  Max.   :8.500   Max.   :7.000                                        
##                                                                       
##     Att_Mean        Enj_Mean     Perform_Mean      WOM_Mean     Futu_Pur_Mean  
##  Min.   :1.000   Min.   :1.00   Min.   :1.333   Min.   :2.000   Min.   :2.000  
##  1st Qu.:4.000   1st Qu.:4.50   1st Qu.:4.333   1st Qu.:5.000   1st Qu.:4.500  
##  Median :5.500   Median :5.50   Median :5.000   Median :6.000   Median :6.000  
##  Mean   :5.255   Mean   :5.22   Mean   :4.926   Mean   :5.655   Mean   :5.322  
##  3rd Qu.:6.500   3rd Qu.:6.50   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##                                                                                
##  Valu_Percp_Mean Pur_Proces_Mean     AttGrp       EnjGrp     PerformGrp
##  Min.   :2.000   Min.   :1.500   [6,7)  :87   [6,7)  :87   [5,6)  :90  
##  1st Qu.:4.500   1st Qu.:4.000   [4,5)  :82   [5,6)  :80   [4,5)  :79  
##  Median :5.500   Median :5.000   [7,Inf):47   [4,5)  :45   [6,7)  :60  
##  Mean   :5.184   Mean   :4.862   [5,6)  :43   [7,Inf):34   [3,4)  :30  
##  3rd Qu.:6.000   3rd Qu.:6.000   [3,4)  :20   [3,4)  :29   [7,Inf):15  
##  Max.   :7.000   Max.   :7.000   [2,3)  :10   [2,3)  : 9   [2,3)  :14  
##                                  (Other): 3   (Other): 8   (Other): 4  
##      WOMGrp      FutuGrp       ValuGrp        PurGrp        AgeGrp   
##  [6,7)  :94   [6,7)  :119   [5,6)  :112   [5,6)  :81   [18,30) :104  
##  [7,Inf):75   [5,6)  : 59   [6,7)  : 86   [6,7)  :74   [30,42) :108  
##  [5,6)  :55   [4,5)  : 50   [4,5)  : 62   [4,5)  :71   [42,54) : 57  
##  [4,5)  :43   [7,Inf): 28   [2,3)  : 12   [3,4)  :38   [54,Inf): 23  
##  [3,4)  :21   [3,4)  : 27   [3,4)  : 11   [2,3)  :16                 
##  [2,3)  : 4   [2,3)  :  9   [7,Inf):  9   [7,Inf):10                 
##  (Other): 0   (Other):  0   (Other):  0   (Other): 2

Attitude

Summary

summary(Toyota[Toyota$Region == "American", "Att_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   4.500   6.000   5.422   6.500   7.000
summary(Toyota[Toyota$Region == "Asian", "Att_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.500   4.000   5.500   5.058   6.500   7.000
summary(Toyota[Toyota$Region == "European", "Att_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.500   4.000   5.000   5.269   6.500   7.000
summary(Toyota[Toyota$Region == "Middle Eastern", "Att_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   4.000   4.500   5.250   5.500   6.625   7.000

Graphic

ggplot(Toyota,aes(x=AttGrp,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")
## Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(count)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

labs(y="Number of Different Level Agree of Attitude",
     title = "Number of Different Level Agree of Attitude by Region")
## $y
## [1] "Number of Different Level Agree of Attitude"
## 
## $title
## [1] "Number of Different Level Agree of Attitude by Region"
## 
## attr(,"class")
## [1] "labels"

Enjoyment

Summary

summary(Toyota[Toyota$Region == "American", "Enj_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   4.500   5.500   5.269   6.500   7.000
summary(Toyota[Toyota$Region == "Asian", "Enj_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   4.000   5.500   4.951   6.500   7.000
summary(Toyota[Toyota$Region == "European", "Enj_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   5.000   5.500   5.541   6.500   7.000
summary(Toyota[Toyota$Region == "Middle Eastern", "Enj_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.500   3.875   4.500   4.812   5.750   6.500

Graphic

ggplot(Toyota,aes(x=EnjGrp,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")

labs(y="Number of Different Level Agree of Enjoyment",
     title = "Number of Different Level Agree of Enjoyment by Region")
## $y
## [1] "Number of Different Level Agree of Enjoyment"
## 
## $title
## [1] "Number of Different Level Agree of Enjoyment by Region"
## 
## attr(,"class")
## [1] "labels"

Performance

Summary

summary(Toyota[Toyota$Region == "American", "Perform_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.333   4.000   5.000   4.798   5.667   7.000
summary(Toyota[Toyota$Region == "Asian", "Perform_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.333   4.333   5.000   4.859   6.000   7.000
summary(Toyota[Toyota$Region == "European", "Perform_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   4.667   5.000   5.208   6.000   7.000
summary(Toyota[Toyota$Region == "Middle Eastern", "Perform_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.667   3.833   4.500   4.583   5.000   7.000

Graphic

ggplot(Toyota,aes(x=PerformGrp,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Different Level Agree of Performance",
     title = "Number of Different Level Agree of Performance by Region")

Word-of-Mouth

Summary

summary(Toyota[Toyota$Region == "American", "WOM_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   5.000   6.000   5.683   6.500   7.000
summary(Toyota[Toyota$Region == "Asian", "WOM_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   4.500   5.500   5.564   6.500   7.000
summary(Toyota[Toyota$Region == "European", "WOM_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.500   5.000   6.000   5.763   7.000   7.000
summary(Toyota[Toyota$Region == "Middle Eastern", "WOM_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.500   5.000   6.000   5.375   6.000   6.500

Graphic

ggplot(Toyota,aes(x=WOMGrp,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Different Level Agree of Word-of-Mouth",
     title = "Number of Different Level Agree of Word-of-Mouth by Region")

Future Purchase Intention

Summary

summary(Toyota[Toyota$Region == "American", "Futu_Pur_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   4.500   6.000   5.314   6.000   7.000
summary(Toyota[Toyota$Region == "Asian", "Futu_Pur_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   4.500   5.500   5.382   6.500   7.000
summary(Toyota[Toyota$Region == "European", "Futu_Pur_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   4.500   5.500   5.275   6.000   7.000
summary(Toyota[Toyota$Region == "Middle Eastern", "Futu_Pur_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.875   5.500   5.125   6.125   7.000

Graphic

ggplot(Toyota,aes(x=FutuGrp,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Different Level Agree of Future Purchase Intention",
     title = "Number of Different Level Agree of Future Purchase Intention by Region")

Value Perception

Summary

summary(Toyota[Toyota$Region == "American", "Valu_Percp_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.500   4.500   5.000   5.119   6.000   7.000
summary(Toyota[Toyota$Region == "Asian", "Valu_Percp_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   4.500   5.500   5.127   6.000   7.000
summary(Toyota[Toyota$Region == "European", "Valu_Percp_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.500   5.000   5.500   5.281   6.000   7.000
summary(Toyota[Toyota$Region == "Middle Eastern", "Valu_Percp_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   4.500   4.500   6.000   5.750   6.625   7.000

Graphic

ggplot(Toyota,aes(x=ValuGrp,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Different Level Agree of Value Perception",
     title = "Number of Different Level Agree of Value Perception by Region")

Purchase Process

Summary

summary(Toyota[Toyota$Region == "American", "Pur_Proces_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.50    4.00    5.00    4.77    5.50    7.00
summary(Toyota[Toyota$Region == "Asian", "Pur_Proces_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   4.500   5.500   5.079   6.000   7.000
summary(Toyota[Toyota$Region == "European", "Pur_Proces_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   4.000   4.500   4.625   5.500   6.500
summary(Toyota[Toyota$Region == "Middle Eastern", "Pur_Proces_Mean"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   4.875   6.250   5.625   7.000   7.000

Graphic

ggplot(Toyota,aes(x=PurGrp,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Different Level Agree of Purchase Process",
     title = "Number of Different Level Agree of Purchase Process by Region")

#Graphic

Age

ggplot(Toyota,aes(x=AgeGrp,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Different Level of Age",
     title = "Number of Different Level of Age by Region")

Gender

ggplot(Toyota,aes(x=Gender,fill=Gender)) +
  theme_bw()+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Gender",
     title = "Number of Gender by Region")

Education

ggplot(Toyota,aes(x=Education,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Education",
     title = "Number of Education by Region")

Model

ggplot(Toyota,aes(x=Model,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Model",
       title = "Number of Model by Region")

Insurance Type

ggplot(Toyota,aes(x=Pay_Meth,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Pay Method",
       title = "Number of Different Pay Method by Region")

Sales Quantity

In Total

ggplot(Car_Total,aes(x=Region, fill = Region))+
  theme_bw()+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue") +
  labs(y="Number of Cars",
       x = "Region",
       title = "Number of Cars by Region")

In Different Region

ggplot(Car_Total,aes(x=Make,fill=Region)) +
  theme_bw()+
  facet_wrap(~Region)+
  geom_bar()+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Model",
       title = "Number of Model by Region")

Toyota Car Data

MPG

ggplot(Car_Total,aes(x=MPG,fill=Model)) +
  theme_bw()+
  facet_wrap(~Make)+
  geom_bar()+scale_x_continuous(breaks = 15:26)+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of MPG",
       title = "Number of MPG by Make")

Cylinder

ggplot(Car_Total,aes(x=Cyl,fill=Model)) +
  theme_bw()+
  facet_wrap(~Make)+
  geom_bar()+scale_x_continuous(breaks = 3:10)+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Cylinder",
       title = "Number of Cylinder by Make")

Acceleration

ggplot(Car_Total,aes(x=acc1,fill=Model)) +
  theme_bw()+
  facet_wrap(~Make)+
  geom_bar()+scale_x_continuous(breaks = 5:10)+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Acceleration",
       title = "Number of Acceleration by Make")

City Cost

ggplot(Car_Total,aes(x=C_cost.,fill=Model)) +
  theme_bw()+
  facet_wrap(~Make)+
  geom_bar()+scale_x_continuous(breaks = 7:17)+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of City Cost",
       title = "Number of City Cost by Model")

Highway Cost

ggplot(Car_Total,aes(x=H_Cost,fill=Model)) +
  theme_bw()+
  facet_wrap(~Make)+
  geom_bar()+scale_x_continuous(breaks = 6:20)+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Highway Cost",
       title = "Number of Highway Cost by Model")

Post Purchase Satisfaction

ggplot(Car_Total,aes(x=Post.Satis,fill=Make)) +
  theme_bw()+
  facet_wrap(~Make)+
  geom_bar()+scale_x_continuous(breaks = 1:10)+
  geom_text(stat="count", aes(label=..count..), vjust=0, size=5, color="blue")+
  labs(y="Number of Post Purcahse Satisfaction",
       title = "Number of Post Purchase Satisfaction by Make")