data()
data(package = .packages(all.available = TRUE))
library(psych)
podatki <- force(sat.act)
head(podatki)
## gender education age ACT SATV SATQ
## 29442 2 3 19 24 500 500
## 29457 2 3 23 35 600 500
## 29498 2 3 20 21 480 470
## 29503 1 4 27 26 550 520
## 29504 1 2 33 31 600 550
## 29518 1 5 26 28 640 640
Opis spremenljivk:
podatki$spol_faktor <- factor(podatki$gender,
levels = c(1, 2),
labels = c("moski", "zenski"))
head(podatki)
## gender education age ACT SATV SATQ spol_faktor
## 29442 2 3 19 24 500 500 zenski
## 29457 2 3 23 35 600 500 zenski
## 29498 2 3 20 21 480 470 zenski
## 29503 1 4 27 26 550 520 moski
## 29504 1 2 33 31 600 550 moski
## 29518 1 5 26 28 640 640 moski
#podatki1 <- podatki[ spol_faktor =="zenski" , ]
#podatki_zenske <- subset(podatki, spol_faktor == "zenski")
Pisanje s pomočjo pipe: %>% (then)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
podatki2 <- podatki %>%
filter(spol_faktor == "zenski")
Preimnujmo spremenljivko age v starost
podatki <- podatki %>%
rename(starost = age)
head(podatki)
## gender education starost ACT SATV SATQ spol_faktor
## 29442 2 3 19 24 500 500 zenski
## 29457 2 3 23 35 600 500 zenski
## 29498 2 3 20 21 480 470 zenski
## 29503 1 4 27 26 550 520 moski
## 29504 1 2 33 31 600 550 moski
## 29518 1 5 26 28 640 640 moski
colnames(podatki)[3] <- "Starost"
summary(podatki[ , c("ACT", "SATV", "SATQ")])
## ACT SATV SATQ
## Min. : 3.00 Min. :200.0 Min. :200.0
## 1st Qu.:25.00 1st Qu.:550.0 1st Qu.:530.0
## Median :29.00 Median :620.0 Median :620.0
## Mean :28.55 Mean :612.2 Mean :610.2
## 3rd Qu.:32.00 3rd Qu.:700.0 3rd Qu.:700.0
## Max. :36.00 Max. :800.0 Max. :800.0
## NA's :13
library(tidyr)
podatki <- drop_na(podatki)
Prikažite opisno statistiko za SATV, ločeno za moške in ženske
library(psych)
describeBy(podatki$SATV, podatki$spol_faktor)
##
## Descriptive statistics by group
## group: moski
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 245 615.36 114.33 630 622.44 118.61 200 800 600 -0.63 0.14
## se
## X1 7.3
## ------------------------------------------------------------
## group: zenski
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 442 610.66 112.81 620 618.09 103.78 200 800 600 -0.66 0.43
## se
## X1 5.37