Which airplanes fly LGA to XNA (1 POINT)
Q1 <- left_join(planes, flights, by = 'tailnum') %>%
filter(origin == 'LGA' & dest == 'XNA') %>%
select(manufacturer, model, engine, origin, dest) %>%
distinct()
print(Q1)
## # A tibble: 4 × 5
## manufacturer model engine origin dest
## <chr> <chr> <chr> <chr> <chr>
## 1 GULFSTREAM AEROSPACE G1159B Turbo-jet LGA XNA
## 2 BOMBARDIER INC CL-600-2C10 Turbo-fan LGA XNA
## 3 CESSNA 172N Reciprocating LGA XNA
## 4 CANADAIR LTD CF-5D Turbo-jet LGA XNA
Add the airline name to the flights table (1 POINT)
Q2 <- right_join(airlines, flights, by = 'carrier') %>%
select(name, carrier, everything()) %>%
arrange(time_hour)
print(Q2)
## # A tibble: 336,776 × 20
## name carrier year month day dep_time sched_dep_time dep_delay arr_time
## <chr> <chr> <int> <int> <int> <int> <int> <dbl> <int>
## 1 America… AA 2013 1 1 542 540 2 923
## 2 JetBlue… B6 2013 1 1 544 545 -1 1004
## 3 JetBlue… B6 2013 1 1 559 559 0 702
## 4 United … UA 2013 1 1 517 515 2 830
## 5 United … UA 2013 1 1 533 529 4 850
## 6 United … UA 2013 1 1 554 558 -4 740
## 7 America… AA 2013 1 1 558 600 -2 753
## 8 America… AA 2013 1 1 559 600 -1 941
## 9 America… AA 2013 1 1 606 610 -4 858
## 10 America… AA 2013 1 1 623 610 13 920
## # ℹ 336,766 more rows
## # ℹ 11 more variables: sched_arr_time <int>, arr_delay <dbl>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
Which airports have no commercial flights (1 POINT)
Q3 <- anti_join(airports, flights, by = c('faa' = 'origin')) %>%
anti_join(flights, by = c('faa' = 'dest')) %>%
select(faa, name, tzone) %>%
distinct()
print(Q3)
## # A tibble: 1,355 × 3
## faa name tzone
## <chr> <chr> <chr>
## 1 04G Lansdowne Airport America/New_York
## 2 06A Moton Field Municipal Airport America/Chicago
## 3 06C Schaumburg Regional America/Chicago
## 4 06N Randall Airport America/New_York
## 5 09J Jekyll Island Airport America/New_York
## 6 0A9 Elizabethton Municipal Airport America/New_York
## 7 0G6 Williams County Airport America/New_York
## 8 0G7 Finger Lakes Regional Airport America/New_York
## 9 0P2 Shoestring Aviation Airfield America/New_York
## 10 0S9 Jefferson County Intl America/Los_Angeles
## # ℹ 1,345 more rows
Create a table with the names of the airports with the most winds (wind_speed > 30). The table must contain only the airport name (airports$name) and no duplicate rows
high_wind_weather <- weather %>%
filter(wind_speed > 30)
high_wind_airports <- high_wind_weather %>%
left_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
print(high_wind_airports)
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia