library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(correlationfunnel)
## ══ correlationfunnel Tip #2 ════════════════════════════════════════════════════
## Clean your NA's prior to using `binarize()`.
## Missing values and cleaning data are critical to getting great correlations. :)
library(tidymodels) #for building models
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom 1.0.5 ✔ rsample 1.2.1
## ✔ dials 1.2.1 ✔ tune 1.2.1
## ✔ infer 1.0.7 ✔ workflows 1.1.4
## ✔ modeldata 1.4.0 ✔ workflowsets 1.1.0
## ✔ parsnip 1.2.1 ✔ yardstick 1.3.1
## ✔ recipes 1.0.10
## Warning: package 'modeldata' was built under R version 4.3.3
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ recipes::fixed() masks stringr::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step() masks stats::step()
## • Use suppressPackageStartupMessages() to eliminate package startup messages
library(textrecipes) # For processing string variable
library(tidytext)
members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl (6): hired, success, solo, oxygen_used, died, injured
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
departures <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-04-27/departures.csv')
## Rows: 9423 Columns: 19
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (8): coname, exec_fullname, interim_coceo, still_there, notes, sources...
## dbl (10): dismissal_dataset_id, gvkey, fyear, co_per_rol, departure_code, c...
## dttm (1): leftofc
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
skimr::skim(members)
Name | members |
Number of rows | 76519 |
Number of columns | 21 |
_______________________ | |
Column type frequency: | |
character | 10 |
logical | 6 |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
expedition_id | 0 | 1.00 | 9 | 9 | 0 | 10350 | 0 |
member_id | 0 | 1.00 | 12 | 12 | 0 | 76518 | 0 |
peak_id | 0 | 1.00 | 4 | 4 | 0 | 391 | 0 |
peak_name | 15 | 1.00 | 4 | 25 | 0 | 390 | 0 |
season | 0 | 1.00 | 6 | 7 | 0 | 5 | 0 |
sex | 2 | 1.00 | 1 | 1 | 0 | 2 | 0 |
citizenship | 10 | 1.00 | 2 | 23 | 0 | 212 | 0 |
expedition_role | 21 | 1.00 | 4 | 25 | 0 | 524 | 0 |
death_cause | 75413 | 0.01 | 3 | 27 | 0 | 12 | 0 |
injury_type | 74807 | 0.02 | 3 | 27 | 0 | 11 | 0 |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
hired | 0 | 1 | 0.21 | FAL: 60788, TRU: 15731 |
success | 0 | 1 | 0.38 | FAL: 47320, TRU: 29199 |
solo | 0 | 1 | 0.00 | FAL: 76398, TRU: 121 |
oxygen_used | 0 | 1 | 0.24 | FAL: 58286, TRU: 18233 |
died | 0 | 1 | 0.01 | FAL: 75413, TRU: 1106 |
injured | 0 | 1 | 0.02 | FAL: 74806, TRU: 1713 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1.00 | 2000.36 | 14.78 | 1905 | 1991 | 2004 | 2012 | 2019 | ▁▁▁▃▇ |
age | 3497 | 0.95 | 37.33 | 10.40 | 7 | 29 | 36 | 44 | 85 | ▁▇▅▁▁ |
highpoint_metres | 21833 | 0.71 | 7470.68 | 1040.06 | 3800 | 6700 | 7400 | 8400 | 8850 | ▁▁▆▃▇ |
death_height_metres | 75451 | 0.01 | 6592.85 | 1308.19 | 400 | 5800 | 6600 | 7550 | 8830 | ▁▁▂▇▆ |
injury_height_metres | 75510 | 0.01 | 7049.91 | 1214.24 | 400 | 6200 | 7100 | 8000 | 8880 | ▁▁▂▇▇ |
skimr::skim(departures)
Name | departures |
Number of rows | 9423 |
Number of columns | 19 |
_______________________ | |
Column type frequency: | |
character | 8 |
numeric | 10 |
POSIXct | 1 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
coname | 0 | 1.00 | 2 | 30 | 0 | 3860 | 0 |
exec_fullname | 0 | 1.00 | 5 | 790 | 0 | 8701 | 0 |
interim_coceo | 9105 | 0.03 | 6 | 7 | 0 | 6 | 0 |
still_there | 7311 | 0.22 | 3 | 10 | 0 | 77 | 0 |
notes | 1644 | 0.83 | 5 | 3117 | 0 | 7755 | 0 |
sources | 1475 | 0.84 | 18 | 1843 | 0 | 7915 | 0 |
eight_ks | 4499 | 0.52 | 69 | 3884 | 0 | 4914 | 0 |
_merge | 0 | 1.00 | 11 | 11 | 0 | 1 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
dismissal_dataset_id | 0 | 1.00 | 5684.10 | 25005.46 | 1 | 2305.5 | 4593 | 6812.5 | 559044 | ▇▁▁▁▁ |
gvkey | 0 | 1.00 | 40132.48 | 53921.34 | 1004 | 7337.0 | 14385 | 60900.5 | 328795 | ▇▁▁▁▁ |
fyear | 0 | 1.00 | 2007.74 | 8.19 | 1987 | 2000.0 | 2008 | 2016.0 | 2020 | ▁▆▅▅▇ |
co_per_rol | 0 | 1.00 | 25580.22 | 18202.38 | -1 | 8555.5 | 22980 | 39275.5 | 64602 | ▇▆▅▃▃ |
departure_code | 1667 | 0.82 | 5.20 | 1.53 | 1 | 5.0 | 5 | 7.0 | 9 | ▁▃▇▅▁ |
ceo_dismissal | 1813 | 0.81 | 0.20 | 0.40 | 0 | 0.0 | 0 | 0.0 | 1 | ▇▁▁▁▂ |
tenure_no_ceodb | 0 | 1.00 | 1.03 | 0.17 | 0 | 1.0 | 1 | 1.0 | 3 | ▁▇▁▁▁ |
max_tenure_ceodb | 0 | 1.00 | 1.05 | 0.24 | 1 | 1.0 | 1 | 1.0 | 4 | ▇▁▁▁▁ |
fyear_gone | 1802 | 0.81 | 2006.64 | 13.63 | 1980 | 2000.0 | 2007 | 2013.0 | 2997 | ▇▁▁▁▁ |
cik | 245 | 0.97 | 741469.17 | 486551.43 | 1750 | 106413.0 | 857323 | 1050375.8 | 1808065 | ▆▁▇▂▁ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
leftofc | 1802 | 0.81 | 1981-01-01 | 2998-04-27 | 2006-12-31 | 3627 |
factors_vec <- departures %>% select(gvkey, fyear, departure_code, ceo_dismissal, fyear_gone) %>% names()
depatures_clean2 <- departures %>%
# Address factors imported as numeric
mutate(across(all_of(factors_vec), as.factor)) %>%
# Drop zero-variance variables
select(-c(`_merge`, max_tenure_ceodb, leftofc, interim_coceo, notes, sources, eight_ks))
depatures_clean2 %>% count(ceo_dismissal)
## # A tibble: 3 × 2
## ceo_dismissal n
## <fct> <int>
## 1 0 6121
## 2 1 1489
## 3 <NA> 1813
depatures_clean2 %>%
ggplot(aes(ceo_dismissal)) +
geom_bar()
Correlation plot
# Step 1: binarze
data_binarized <- depatures_clean2 %>%
select(-c(still_there, ceo_dismissal, fyear_gone, departure_code, cik)) %>%
binarize()
data_binarized %>% glimpse()
## Rows: 9,423
## Columns: 45
## $ `dismissal_dataset_id__-Inf_2305.5` <dbl> 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ dismissal_dataset_id__2305.5_4593 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ dismissal_dataset_id__4593_6812.5 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ dismissal_dataset_id__6812.5_Inf <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ coname__SEARS_HOLDINGS_CORP <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `coname__-OTHER` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ gvkey__6307 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `gvkey__-OTHER` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ fyear__1993 <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0…
## $ fyear__1994 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__1995 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__1996 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__1997 <dbl> 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0…
## $ fyear__1998 <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__1999 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2000 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…
## $ fyear__2001 <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2002 <dbl> 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2003 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2004 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2005 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2006 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2007 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
## $ fyear__2008 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2009 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2010 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2011 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2012 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2013 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2014 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2015 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2016 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2017 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2018 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ fyear__2019 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `fyear__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `co_per_rol__-Inf_8555.5` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ co_per_rol__8555.5_22980 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ co_per_rol__22980_39275.5 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ co_per_rol__39275.5_Inf <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ exec_fullname__Amin_J._Khoury <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `exec_fullname__-OTHER` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ tenure_no_ceodb__1 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ tenure_no_ceodb__2 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `tenure_no_ceodb__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
# Step 2: correlation
data_correlation <- data_binarized %>%
correlate(dismissal_dataset_id__6812.5_Inf)
data_correlation
## # A tibble: 45 × 3
## feature bin correlation
## <fct> <chr> <dbl>
## 1 dismissal_dataset_id 6812.5_Inf 1
## 2 dismissal_dataset_id -Inf_2305.5 -0.333
## 3 dismissal_dataset_id 2305.5_4593 -0.333
## 4 dismissal_dataset_id 4593_6812.5 -0.333
## 5 co_per_rol -Inf_8555.5 -0.330
## 6 co_per_rol 39275.5_Inf 0.251
## 7 co_per_rol 22980_39275.5 0.124
## 8 fyear 2017 0.101
## 9 fyear 1996 -0.0941
## 10 fyear 1994 -0.0933
## # ℹ 35 more rows
# Step 3: plot
data_correlation %>%
correlationfunnel::plot_correlation_funnel()
## Warning: ggrepel: 28 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
members1 <- members %>%
# Treat missing values
select(-expedition_id, -member_id)
factors_vec1 <- members1 %>% select(year, age, highpoint_metres, death_height_metres, injury_height_metres) %>% names()
members1_clean <- members1 %>%
# Address factors imported as numeric
mutate(across(all_of(factors_vec1), as.factor))
# Drop zero-variance variables
members %>% count(died)
## # A tibble: 2 × 2
## died n
## <lgl> <int>
## 1 FALSE 75413
## 2 TRUE 1106
members %>%
ggplot(aes(died)) +
geom_bar()
Died vs. age
members %>%
ggplot(aes(died, age)) +
geom_boxplot()
## Warning: Removed 3497 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
Correlation plot
# Step 1: binarze
data_binarized1 <- members1_clean %>%
select(-c(injury_height_metres, death_height_metres, death_cause, injury_type, highpoint_metres, age, expedition_role, peak_name, citizenship, sex)) %>%
binarize()
data_binarized1 %>% glimpse()
## Rows: 76,519
## Columns: 71
## $ peak_id__AMAD <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ peak_id__ANN1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__ANN4 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__BARU <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__CHOY <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__DHA1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__EVER <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__HIML <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__KANG <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__LHOT <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__MAKA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__MANA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_id__PUMO <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `peak_id__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1980 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1981 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1982 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1983 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1984 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1985 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1986 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1987 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1988 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1989 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1990 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1991 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1992 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1993 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1994 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1995 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1996 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1997 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1998 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__1999 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2000 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2001 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2002 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2003 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2004 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2005 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2006 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2007 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2008 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2009 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2010 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2011 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2012 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2013 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2014 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2015 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2016 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2017 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2018 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ year__2019 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `year__-OTHER` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ season__Autumn <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ season__Spring <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ season__Winter <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `season__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ hired__0 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ hired__1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ success__0 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0…
## $ success__1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1…
## $ solo__0 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ `solo__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ oxygen_used__0 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ oxygen_used__1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ died__0 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ died__1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ injured__0 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ injured__1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
# Step 2: correlation
data_correlation2 <- data_binarized1 %>%
correlate(died__1)
## Warning: correlate(): [Data Imbalance Detected] Consider sampling to balance the classes more than 5%
## Column with imbalance: died__1
data_correlation2
## # A tibble: 71 × 3
## feature bin correlation
## <fct> <chr> <dbl>
## 1 died 0 -1
## 2 died 1 1
## 3 year -OTHER 0.0587
## 4 success 0 0.0415
## 5 success 1 -0.0415
## 6 peak_id ANN1 0.0359
## 7 peak_id AMAD -0.0313
## 8 peak_id DHA1 0.0288
## 9 peak_id CHOY -0.0261
## 10 peak_id KANG 0.0254
## # ℹ 61 more rows
# Step 3: plot
data_correlation2 %>%
correlationfunnel::plot_correlation_funnel()
## Warning: ggrepel: 55 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps