Os seguintes objetos são mascarados por 'package:stats':
filter, lag
Os seguintes objetos são mascarados por 'package:base':
intersect, setdiff, setequal, union
Code
library(plotly)
Anexando pacote: 'plotly'
O seguinte objeto é mascarado por 'package:ggplot2':
last_plot
O seguinte objeto é mascarado por 'package:stats':
filter
O seguinte objeto é mascarado por 'package:graphics':
layout
Code
library(corrplot)
corrplot 0.95 loaded
Code
library(polycor)library(ltm)
Carregando pacotes exigidos: MASS
Anexando pacote: 'MASS'
O seguinte objeto é mascarado por 'package:plotly':
select
O seguinte objeto é mascarado por 'package:dplyr':
select
Carregando pacotes exigidos: msm
Introducao
Nesta aula, vamos investigar as relações entre variáveis qualitativas e quantitativas, qualitativa e qualitativa, e quantitativa e quantitativa em um conjunto de dados relacionados à saúde e nutrição. Utilizaremos tabelas de contingência, gráficos e medidas estatísticas apropriadas para realizar esta análise
Code
# Definindo semente para reprodutibilidadeset.seed(12322)# Criando conjunto de dados simuladon <-150dados <-data.frame(Idade =round(rnorm(n, mean =40, sd =15)),IMC =round(rnorm(n, mean =25, sd =4), 1),Atividade_Fisica =factor(sample(c("Baixa", "Moderada", "Alta"), n, replace =TRUE)),Fumante =factor(sample(c("Sim", "Não"), n, replace =TRUE)),Colesterol =round(rnorm(n, mean =200, sd =30)), Pressão_Arterial =round(rnorm(n, mean =120, sd =15)))# Visualizando as primeiras linhas do conjunto de dadoshead(dados)
Idade IMC Atividade_Fisica Fumante Colesterol Pressão_Arterial
1 16 29.3 Moderada Sim 193 109
2 51 20.1 Baixa Não 239 119
3 29 26.8 Alta Não 235 144
4 57 27.0 Baixa Não 203 113
5 40 26.3 Alta Não 151 133
6 37 27.7 Baixa Não 220 95
Relação entre Variáveis Qualitativas e Quantitativas
Exemplo: Relação entre Atividade Física e IMC
Para investigar a relação entre uma variável qualitativa (Atividade_Fisica) e uma quantitativa (IMC), podemos calcular estatísticas descritivas de IMC para cada nível de Atividade_Física.
Code
# Estatísticas descritivas do IMC por nível de Atividade Físicalibrary(dplyr)dados %>%group_by(Atividade_Fisica) %>%summarise( Média_IMC =mean(IMC),Mediana_IMC =median(IMC), Desvio_Padrão_IMC =sd(IMC) )
Gráfico de boxplot para IMC por nível de Atividade Física
Code
# Gráfico de boxplot para IMC por nível de Atividade Físicalibrary(ggplot2)p<-ggplot(dados, aes(x = Atividade_Fisica, y = IMC, fill = Atividade_Fisica)) +geom_boxplot() +labs(title ="Boxplot de IMC por Nível de Atividade Física",x ="Nível de Atividade Física",y ="IMC") +theme_minimal()p1<-ggplotly(p)p1
Gráfico 1: Boxplot de IMC por Nível de Atividade Física
Interpretação:
O gráfico de boxplot exibe a distribuição do Índice de Massa Corporal (IMC) para cada nível de atividade física (“Baixa”, “Moderada”, “Alta”). Ele mostra os seguintes pontos principais:
Mediana (linha central): Representa o valor mediano de IMC em cada grupo de atividade física.
Os indivíduos com atividade física alta tendem a ter um IMC mediano um pouco menor do que aqueles com atividade física moderada e baixa.
Dispersão (caixa e bigodes): Indica a variação do IMC em cada grupo.
A atividade física baixa apresenta uma maior variação no IMC, sugerindo que pessoas com atividade física baixa têm IMCs mais variados, enquanto a atividade física alta tem a menor dispersão.
Outliers (pontos fora da caixa e dos bigodes): Indivíduos com valores de IMC muito acima ou abaixo do esperado para cada grupo.
Alguns outliers são visíveis no grupo de atividade física baixa, alta e moderada indicando a presença de indivíduos com IMC muito altos neste grupo.
Conclusão: Há uma leve tendência de que, conforme aumenta o nível de atividade física, o IMC tende a diminuir, mas há também variações consideráveis dentro de cada grupo.
IMC está associado com a frequência de atividade física ?
Para investigar a associação entre uma variável qualitativa (como Atividade Física, caso seja dicotômica ou ordinal) e uma variável quantitativa contínua (como IMC), o coeficientie de correlação bisserial ou correlação polissérica são apropriados. Para calcular esses coeficientes no R, você pode usar pacotes como polycor, que oferece funções para obter tanto a correlação bisserial quanto a polissérica.
Correlação polissérica
Esse coeficiente é indicado se Atividade Física tiver mais de dois níveis ordenados (como “Nenhuma”, “Moderada”, “Alta”). Ele generaliza a correlação bisserial para uma variável qualitativa com categorias ordenadas e mede a associação entre uma variável contínua e uma qualitativa ordinal, assumindo uma normalidade latente subjacente
polyserial_corr
Interpretação: indica uma associação fraca, sugerindo que as categorias da variável ordinal não correspondem a variações sistemáticas na variável contínua.
`Interpretação dos Coeficientes de Correlação
Para interpretar os coeficientes de correlação bisserial e polissérica e testar sua significância, segue:
**Correlação Polissérica ( $r_poly$): O coeficiente polissérico mede a associação entre uma variável contínua e uma variável ordinal, assumindo que a variável ordinal representa uma discretização de uma distribuição normal subjacente.
Valores altos de $r_ply$ (próximos de 1 ou -1) indicam uma associação forte entre a variável contínua e a variável ordinal, sugerindo uma mudança substancial nos valores médios ou na distribuição da variável contínua conforme as categorias da variável ordinal. - Valores baixos (próximos de 0) indicam uma associação fraca ou inexistente, sugerindo que as categorias da variável ordinal não correspondem a variações sistemáticas na variável contínua.
Testes de Significância
Para verificar a significância desses coeficientes, você pode aplicar testes estatísticos apropriados que avaliam a hipótese nula de que a correlação é zero (ou seja, que não há associação entre as variáveis).
Correlação Polissérica:
A significância do coeficiente de correlação polissérica é normalmente testada via estimativas de erro padrão obtidas durante o ajuste da correlação. Essas estimativas podem ser usadas para construir um teste t:
$z=\frac{r_p}{ErroP}$
O coeficiente polissérico. Esse teste z pode ser usado para calcular o valor-p, assumindo uma distribuição normal padrão para o teste de significância.
No pacote polycor em R, a função polyserial() fornece uma estimativa do erro padrão para a correlação polissérica, permitindo realizar o teste de significância.
Esses métodos ajudam a avaliar se os coeficientes são estatisticamente diferentes de zero, confirmando a existência de uma associação significativa entre as variáveis contínua e qualitativa.
Code
# Exemplo de dados para correlação polissérica# Suponha uma variável contínua Y e uma variável ordinal Xpolyserial_corr <-polyserial(dados$IMC,dados$Atividade_Fisica)tabela_contingencia <-table(dados$Fumante, dados$Atividade_Fisica)tabela_contingencia
Alta Baixa Moderada
Não 21 26 32
Sim 22 26 23
Tabela de Contingência - Relação entre Fumar e Atividade Física
Interpretação:
A tabela de contingência fornece a contagem de fumantes e não fumantes dentro de cada nível de atividade física. A partir dessa tabela, podemos observar:
Atividade Física Alta: Parece ter uma proporção menor de fumantes comparado aos níveis de atividade física moderada e baixa.
Atividade Física Baixa: Apresenta uma maior proporção de fumantes em relação à atividade física alta.
Essas observações podem indicar uma possível associação entre fumar e o nível de atividade física. Indivíduos com alta atividade física tendem a fumar menos.
Podemos testar a associação entre essas variáveis com o teste do qui-quadrado.
Hipóteses e Pressuposições para o Teste Qui-Quadrado
Nesta seção, descrevemos as hipóteses e as pressuposições envolvidas no teste qui-quadrado, aplicado para investigar a associação entre as variáveis “Fumar” e “Atividade Física”.
Hipóteses do Teste Qui-Quadrado
O teste qui-quadrado é utilizado para verificar se há uma associação entre duas variáveis qualitativas. No caso deste estudo, estamos interessados em avaliar a relação entre ser fumante e o nível de atividade física.
Hipótese Nula (H₀): As variáveis “Fumar” e “Atividade Física” são independentes, ou seja, a proporção de fumantes não difere entre os diferentes níveis de atividade física.
{[ H_0: \text{As variáveis Fumar e Atividade Física são independentes.} ]}
H_0: ]
Hipótese Alternativa (H₁): As variáveis “Fumar” e “Atividade Física” não são independentes, ou seja, a proporção de fumantes varia conforme o nível de atividade física.
[ H_1: ]
Pressuposições do Teste Qui-Quadrado
O teste qui-quadrado possui algumas pressuposições importantes que devem ser verificadas para garantir a validade do teste. Essas pressuposições são as seguintes:
Amostra Aleatória: A amostra de dados deve ser obtida por um processo de amostragem aleatória, garantindo que cada observação seja independente das outras.
Tamanho da Amostra Adequado: As frequências esperadas em cada célula da tabela de contingência devem ser maiores ou iguais a 5. Caso contrário, o teste qui-quadrado pode não ser apropriado.
Medida de Associação: O teste qui-quadrado mede a associação entre as variáveis, mas não indica a direção ou a magnitude dessa associação.
Variáveis Categóricas: As variáveis analisadas devem ser qualitativas (categóricas), e a análise se dá por meio de uma tabela de contingência.
# Teste do Qui-Quadrado para verificar associação entre Fumar e Atividade Física
Após realizar o teste qui-quadrado, avaliamos o valor-p obtido:
Se o valor-p for menor que o nível de significância (geralmente 0,05), rejeitamos a hipótese nula, o que indica que existe uma associação significativa entre “Fumar” e “Atividade Física”.
Se o valor-p for maior ou igual a 0,05, não rejeitamos a hipótese nula, ou seja, não temos evidências suficientes para concluir que as variáveis são dependentes.
Essas hipóteses e pressuposições são essenciais para realizar o teste qui-quadrado de forma correta e interpretar seus resultados adequadamente.
Três Tipos de Relação Linear
Neste exemplo, apresentamos três tipos de relação linear: Correlação Positiva, Correlação Negativa e Ausência de Correlação. Abaixo, as figuras são exibidas lado a lado para facilitar a visualização.
Relação entre Variáveis Quantitativas
Hipóteses e Pressuposições para a Correlação de Pearson
Nesta seção, descrevemos as hipóteses e pressuposições para a aplicação da correlação de Pearson, que é usada para medir a relação linear entre duas variáveis quantitativas. No exemplo, investigamos a relação entre as variáveis “Colesterol” e “Pressão Arterial”.
Hipóteses da Correlação de Pearson
A correlação de Pearson avalia a força e a direção da relação linear entre duas variáveis contínuas. Suas hipóteses são definidas da seguinte maneira:
Hipótese Nula (H₀): Não existe correlação linear entre as duas variáveis; o coeficiente de correlação populacional é igual a zero.
[ H_0: = 0 ]
Onde ( ) é o coeficiente de correlação populacional.
Hipótese Alternativa (H₁): Existe uma correlação linear entre as duas variáveis; o coeficiente de correlação populacional é diferente de zero.
[ H_1: ]
Pressuposições da Correlação de Pearson
Para que a correlação de Pearson seja aplicada corretamente, as seguintes pressuposições devem ser atendidas:
Linearidade: As duas variáveis devem apresentar uma relação linear. Isso pode ser verificado visualmente com um gráfico de dispersão. Se a relação entre as variáveis for não-linear, a correlação de Pearson não é adequada.
Normalidade: As duas variáveis devem ser aproximadamente normalmente distribuídas, especialmente se o tamanho da amostra for pequeno. Essa pressuposição pode ser verificada através de testes de normalidade ou gráficos como o Q-Q plot.
Homocedasticidade: A variância dos valores ao longo da linha de regressão deve ser constante, ou seja, a dispersão dos pontos deve ser similar para todos os valores das variáveis. Caso contrário, pode haver heterocedasticidade, o que viola esta pressuposição.
Escala de Medição: Ambas as variáveis devem ser medidas em uma escala intervalar ou de razão.
Cálculo e Interpretação da Correlação de Pearson
O coeficiente de correlação de Pearson (( r )) varia entre -1 e 1:
( r = 1 ): Correlação linear perfeita positiva.
( r = -1 ): Correlação linear perfeita negativa.( r = 0 ): Nenhuma correlação linear.
Após calcular a correlação, o valor-p associado ao teste pode ser utilizado para verificar a significância estatística:
Se o valor-p for menor que o nível de significância (geralmente 0,05), rejeitamos a hipótese nula e concluímos que existe uma correlação linear significativa entre as duas variáveis.
Se o valor-p for maior ou igual a 0,05, não rejeitamos a hipótese nula, o que indica que não há evidências suficientes de uma correlação linear significativa entre as variáveis.
Interpretação dos Resultados
A magnitude e a direção da correlação são determinadas pelo valor de ( r ):
Correlação forte: Quando ( r ) está próximo de -1 ou 1, indicando uma forte relação linear.
Correlação fraca: Quando ( r ) está próximo de 0, indicando uma fraca ou inexistente relação linear.
Significado do sinal: Se ( r ) for positivo, a relação entre as variáveis é direta (aumento de uma variável corresponde ao aumento da outra). Se ( r ) for negativo, a relação é inversa (aumento de uma variável corresponde à diminuição da outra).
Essas hipóteses e pressuposições são fundamentais para realizar a análise de correlação de Pearson corretamente e interpretar seus resultados de forma adequada.
Três Tipos de Relação Linear
Neste exemplo, apresentamos três tipos de relação linear: Correlação Positiva, Correlação Negativa e Ausência de Correlação. Abaixo, as figuras são exibidas lado a lado para facilitar a visualização.
Relacao de person
Correlação entre Colesterol e Pressão Arterial
Code
ggplot(dados, aes(x = Colesterol, y = Pressão_Arterial)) +geom_point() +geom_smooth(method ="lm", col ="blue", se =FALSE) +labs(title ="Gráfico de Dispersão: Colesterol vs Pressão Arterial",x ="Colesterol",y ="Pressão Arterial") +theme_minimal()
Gráfico de Dispersão - Colesterol vs Pressão Arterial
Interpretação:
Hipóteses da Correlação de Pearson
A correlação de Pearson avalia a força e a direção da relação linear entre duas variáveis contínuas. Suas hipóteses são definidas da seguinte maneira:
Hipótese Nula (H₀): Não existe correlação linear entre as duas variáveis; o coeficiente de correlação populacional é igual a zero.
[ H_0: = 0 ]
Onde ( ) é o coeficiente de correlação populacional.
Hipótese Alternativa (H₁): Existe uma correlação linear entre as duas variáveis; o coeficiente de correlação populacional é diferente de zero.
[ H_1: ]
Pressuposições da Correlação de Pearson
Para que a correlação de Pearson seja aplicada corretamente, as seguintes pressuposições devem ser atendidas:
Linearidade: As duas variáveis devem apresentar uma relação linear. Isso pode ser verificado visualmente com um gráfico de dispersão. Se a relação entre as variáveis for não-linear, a correlação de Pearson não é adequada.
Normalidade: As duas variáveis devem ser aproximadamente normalmente distribuídas, especialmente se o tamanho da amostra for pequeno. Essa pressuposição pode ser verificada através de testes de normalidade ou gráficos como o Q-Q plot.
Teste de Shapiro Wilk
O teste de Shapiro-Wilk é usado para verificar a normalidade de uma distribuição, e ele testa as seguintes hipóteses:
Hipótese Nula (H₀): Os dados seguem uma distribuição normal.
Hipótese Alternativa (H₁): Os dados não seguem uma distribuição normal
O gráfico de dispersão mostra a relação entre os níveis de colesterol e a pressão arterial dos indivíduos.
1.Tendência Positiva:
O gráfico revela uma tendência de correlação positiva entre colesterol e pressão arterial. Isso significa que, conforme o nível de colesterol aumenta, a pressão arterial também tende a aumentar.
2.Linha de Tendência:
A linha de tendência ajustada confirma essa relação linear, indicando que a associação entre as variáveis é aproximadamente linear.
3.Dispersão dos Pontos:
Embora haja uma correlação positiva, também é possível ver uma dispersão considerável dos pontos, sugerindo que outros fatores podem estar influenciando a relação entre colesterol e pressão arterial
## Três Tipos de Relação Linear
Neste exemplo, apresentamos três tipos de relação linear:
**Correlação Positiva**, **Correlação Negativa** e
**Ausência de Correlação**.
Abaixo, as figuras são exibidas lado a lado para facilitar a visualização.
### Geração das Figuras no R
Conclusão
Neste relatório, exploramos a relação entre diferentes tipos de variáveis (qualitativas e quantitativas) utilizando medidas descritivas, gráficos e testes estatísticos. Essas técnicas são essenciais para compreender os fatores que influenciam a saúde e a nutrição dos indivíduos.
Conclusão Geral
A partir dos gráficos gerados, podemos concluir:
1.Atividade Física e IMC: Há uma relação moderada entre o nível de atividade física e o IMC, com tendência de IMC menor em indivíduos mais ativos.
2.Fumar e Atividade Física: Existe uma possível associação entre fumar e atividade física, com menor prevalência de fumantes entre os indivíduos com alta atividade física.
3.Colesterol e Pressão Arterial: Observa-se uma correlação positiva entre colesterol e pressão arterial, sugerindo que níveis mais altos de colesterol estão associados a uma maior pressão arterial.
Essas análises destacam a importância da atividade física na saúde geral, especialmente em relação ao controle de peso, hábitos prejudiciais (como fumar) e saúde cardiovascular.
Referências
Pagano, M., & Gauvreau, K. (2018). Princípios de Bioestatística. Cengage Learning.
Rosner, B. (2015). Fundamentals of Biostatistics. Cengage Learning.
Correlação polissérica
Esse coeficiente é indicado se Atividade Física tiver mais de dois níveis ordenados (como “Nenhuma”, “Moderada”, “Alta”). Ele generaliza a correlação bisserial para uma variável qualitativa com categorias ordenadas e mede a associação entre uma variável contínua e uma qualitativa ordinal, assumindo uma normalidade latente subjacente.
`Interpretação dos Coeficientes de Correlação
Para interpretar os coeficientes de correlação bisserial e polissérica e testar sua significância, segue:
**Correlação Polissérica ( $r_poly$): O coeficiente polissérico mede a associação entre uma variável contínua e uma variável ordinal, assumindo que a variável ordinal representa uma discretização de uma distribuição normal subjacente.
Valores altos de $r_ply$ (próximos de 1 ou -1) indicam uma associação forte entre a variável contínua e a variável ordinal, sugerindo uma mudança substancial nos valores médios ou na distribuição da variável contínua conforme as categorias da variável ordinal.
- Valores baixos (próximos de 0) indicam uma associação fraca ou inexistente, sugerindo que as categorias da variável ordinal não correspondem a variações sistemáticas na variável contínua.
Testes de Significância
Para verificar a significância desses coeficientes, você pode aplicar testes estatísticos apropriados que avaliam a hipótese nula de que a correlação é zero (ou seja, que não há associação entre as variáveis).
Correlação Polissérica:
A significância do coeficiente de correlação polissérica é normalmente testada via estimativas de erro padrão obtidas durante o ajuste da correlação. Essas estimativas podem ser usadas para construir um teste z:
```{r}# Extraia o valor de r_poly e o erro padrão}
**Cálculo e Interpretação da Correlação de Pearson*
O coeficiente de correlação de Pearson (( r )) varia entre -1 e 1:
( r = 1 ): Correlação linear perfeita positiva.
( r = -1 ): Correlação linear perfeita negativa.
( r = 0 ): Nenhuma correlação linear.
Após calcular a correlação, o valor-p associado ao teste pode ser utilizado para verificar a significância estatística:
Se o valor-p for menor que o nível de significância (geralmente 0,05), rejeitamos a hipótese nula e concluímos que existe uma correlação linear significativa entre as duas variáveis.
Se o valor-p for maior ou igual a 0,05, não rejeitamos a hipótese nula, o que indica que não há evidências suficientes de uma correlação linear significativa entre as variáveis.
Interpretação dos Resultados
A magnitude e a direção da correlação são determinadas pelo valor de ( r ):
Correlação forte: Quando ( r ) está próximo de -1 ou 1, indicando uma forte relação linear.
Correlação fraca: Quando ( r ) está próximo de 0, indicando uma fraca ou inexistente relação linear.
Significado do sinal: Se ( r ) for positivo, a relação entre as variáveis é direta (aumento de uma variável corresponde ao aumento da outra). Se ( r ) for negativo, a relação é inversa (aumento de uma variável corresponde à diminuição da outra).
Essas hipóteses e pressuposições são fundamentais para realizar a análise de correlação de Pearson corretamente e interpretar seus resultados de forma adequada.
Conclusão: De acordo com o gráfico de pontos e coeficiente de correlação de Pearson (r) indicam entre o nível de Colesterol e a pressão arterial é FRACA.
Warning in abbreviate(colnames(R), minlength = minlength): abbreaviate usado com caracteres não-ASCII
Code
str(Mmixed)
List of 6
$ rho : num [1:6, 1:6] 1 -0.1437 -0.1015 -0.0261 -0.0761 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:6] "Idade" "IMC" "Atividade_Fisica" "Fumante" ...
.. ..$ : chr [1:6] "Idade" "IMC" "Atividade_Fisica" "Fumante" ...
$ rx : 'psych' num [1:4, 1:4] 1 -0.14365 -0.07608 0.00119 -0.14365 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:4] "Idade" "IMC" "Colesterol" "Pressão_Arterial"
.. ..$ : chr [1:4] "Idade" "IMC" "Colesterol" "Pressão_Arterial"
$ poly :List of 2
..$ rho: num 1
..$ tau: NULL
$ tetra:List of 2
..$ rho: num 1
..$ tau: NULL
$ rpd : num [1, 1] -0.11
..- attr(*, "dimnames")=List of 2
.. ..$ : chr "Atividade_Fisica"
.. ..$ : chr "Fumante"
$ Call : language mixedCor(data = dados, c = c(1, 2, 5, 6), p = 3, d = 4, smooth = F, correct = 0)
- attr(*, "class")= chr [1:2] "psych" "mixed"
Observação: Variáveis Poli, são variáveis categóricas com mais de dois níveis.
A função mixedCor requer que todas as variáveis sejam de natureza numérica (Quantitativa).
Argumentos de função mixed Cor:
p= posição da variável categórica com mais de 2 níveis presentes no conjunto de dados;
c = posição de de variavies contínuas no conjunto de dados;
d= posição variáveis categóricas com 2 níveis (dicotômica) presentes no conjunto de dados
r_b <- polyserial_corr
Code
Rho<-Mmixed[["rho"]] #Considerando apenas os coeficientes de correlação (rho)Rho<-round(Rho,2) # Considerar 2 casas após a vírgulaRho<-as.data.frame(Rho) # transformando o conjunto com os valores dos coeficientes em "planilha"
Code
library(ggcorrplot)Correlogram<-ggcorrplot(Rho, type ="upper")library(plotly)Correlogram<-ggplotly(Correlogram)Correlogram