library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(correlationfunnel)
## ══ correlationfunnel Tip #3 ════════════════════════════════════════════════════
## Using `binarize()` with data containing many columns or many rows can increase dimensionality substantially.
## Try subsetting your data column-wise or row-wise to avoid creating too many columns.
## You can always make a big problem smaller by sampling. :)
# Import Data
museums <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-11-22/museums.csv')
## Rows: 4191 Columns: 35
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (24): museum_id, Name_of_museum, Address_line_1, Address_line_2, Village...
## dbl (11): Latitude, Longitude, DOMUS_identifier, Area_Deprivation_index, Are...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
skimr::skim(museums)
Data summary
Name |
museums |
Number of rows |
4191 |
Number of columns |
35 |
_______________________ |
|
Column type frequency: |
|
character |
24 |
numeric |
11 |
________________________ |
|
Group variables |
None |
Variable type: character
museum_id |
0 |
1.00 |
8 |
15 |
0 |
4191 |
0 |
Name_of_museum |
0 |
1.00 |
3 |
76 |
0 |
4190 |
0 |
Address_line_1 |
441 |
0.89 |
3 |
61 |
0 |
3212 |
0 |
Address_line_2 |
2816 |
0.33 |
3 |
39 |
0 |
1167 |
0 |
Village,_Town_or_City |
4 |
1.00 |
3 |
24 |
0 |
1696 |
0 |
Postcode |
0 |
1.00 |
6 |
9 |
0 |
3918 |
0 |
Admin_area |
0 |
1.00 |
12 |
137 |
0 |
393 |
0 |
Accreditation |
0 |
1.00 |
10 |
12 |
0 |
2 |
0 |
Governance |
0 |
1.00 |
7 |
41 |
0 |
13 |
0 |
Size |
0 |
1.00 |
4 |
7 |
0 |
5 |
0 |
Size_provenance |
179 |
0.96 |
2 |
29 |
0 |
16 |
0 |
Subject_Matter |
0 |
1.00 |
5 |
45 |
0 |
114 |
0 |
Year_opened |
0 |
1.00 |
9 |
9 |
0 |
351 |
0 |
Year_closed |
0 |
1.00 |
9 |
9 |
0 |
170 |
0 |
DOMUS_Subject_Matter |
2788 |
0.33 |
5 |
27 |
0 |
21 |
0 |
Primary_provenance_of_data |
0 |
1.00 |
3 |
8 |
0 |
18 |
0 |
Identifier_used_in_primary_data_source |
2056 |
0.51 |
2 |
8 |
0 |
2134 |
0 |
Area_Geodemographic_group |
49 |
0.99 |
11 |
40 |
0 |
17 |
0 |
Area_Geodemographic_group_code |
49 |
0.99 |
3 |
3 |
0 |
16 |
0 |
Area_Geodemographic_subgroup |
49 |
0.99 |
12 |
39 |
0 |
25 |
0 |
Area_Geodemographic_subgroup_code |
49 |
0.99 |
4 |
4 |
0 |
24 |
0 |
Area_Geodemographic_supergroup |
49 |
0.99 |
16 |
39 |
0 |
8 |
0 |
Area_Geodemographic_supergroup_code |
49 |
0.99 |
2 |
2 |
0 |
8 |
0 |
Notes |
2980 |
0.29 |
12 |
751 |
0 |
956 |
0 |
Variable type: numeric
Latitude |
0 |
1.00 |
52.93 |
2.09 |
49.18 |
51.48 |
52.47 |
53.96 |
100.00 |
▇▁▁▁▁ |
Longitude |
0 |
1.00 |
-1.96 |
1.84 |
-8.09 |
-3.10 |
-1.87 |
-0.48 |
1.76 |
▁▂▇▇▅ |
DOMUS_identifier |
2347 |
0.44 |
1303.45 |
1597.19 |
1.00 |
486.50 |
991.50 |
1470.25 |
7746.00 |
▇▂▁▁▁ |
Area_Deprivation_index |
49 |
0.99 |
5.44 |
2.48 |
1.00 |
4.00 |
5.00 |
7.00 |
10.00 |
▃▆▇▆▃ |
Area_Deprivation_index_crime |
49 |
0.99 |
5.43 |
3.07 |
1.00 |
3.00 |
6.00 |
8.00 |
10.00 |
▇▆▅▇▇ |
Area_Deprivation_index_education |
49 |
0.99 |
6.04 |
2.61 |
1.00 |
4.00 |
6.00 |
8.00 |
10.00 |
▃▅▇▇▆ |
Area_Deprivation_index_employment |
49 |
0.99 |
6.08 |
2.76 |
1.00 |
4.00 |
6.00 |
8.00 |
10.00 |
▅▆▇▇▇ |
Area_Deprivation_index_health |
49 |
0.99 |
6.02 |
2.82 |
1.00 |
4.00 |
6.00 |
8.00 |
10.00 |
▅▆▆▇▇ |
Area_Deprivation_index_housing |
49 |
0.99 |
3.97 |
2.75 |
1.00 |
1.00 |
3.00 |
6.00 |
10.00 |
▇▅▃▂▂ |
Area_Deprivation_index_income |
49 |
0.99 |
5.99 |
2.62 |
1.00 |
4.00 |
6.00 |
8.00 |
10.00 |
▃▆▇▇▆ |
Area_Deprivation_index_services |
49 |
0.99 |
4.78 |
3.01 |
1.00 |
2.00 |
4.00 |
7.00 |
10.00 |
▇▅▅▅▅ |
missing values Addressline_2, Addressline_1, DOMUS_Subject_Matter,
DOMUS_Identifier, Notes factors or numeric variables Zero Variance
variables Character variables Unbalanced target variables id variable
museum_id
museums %>% count(Accreditation)
## # A tibble: 2 × 2
## Accreditation n
## <chr> <int>
## 1 Accredited 1720
## 2 Unaccredited 2471
museums %>%
ggplot(aes(Accreditation)) +
geom_bar()

data <- museums %>%
select(-Address_line_1, -Address_line_2, -DOMUS_Subject_Matter,-DOMUS_identifier, -Notes, -Identifier_used_in_primary_data_source) %>%
na.omit()
skimr::skim(data)
Data summary
Name |
data |
Number of rows |
3966 |
Number of columns |
29 |
_______________________ |
|
Column type frequency: |
|
character |
19 |
numeric |
10 |
________________________ |
|
Group variables |
None |
Variable type: character
museum_id |
0 |
1 |
10 |
15 |
0 |
3966 |
0 |
Name_of_museum |
0 |
1 |
3 |
76 |
0 |
3965 |
0 |
Village,_Town_or_City |
0 |
1 |
3 |
24 |
0 |
1639 |
0 |
Postcode |
0 |
1 |
6 |
9 |
0 |
3725 |
0 |
Admin_area |
0 |
1 |
16 |
137 |
0 |
392 |
0 |
Accreditation |
0 |
1 |
10 |
12 |
0 |
2 |
0 |
Governance |
0 |
1 |
7 |
41 |
0 |
13 |
0 |
Size |
0 |
1 |
4 |
7 |
0 |
5 |
0 |
Size_provenance |
0 |
1 |
2 |
29 |
0 |
16 |
0 |
Subject_Matter |
0 |
1 |
5 |
45 |
0 |
112 |
0 |
Year_opened |
0 |
1 |
9 |
9 |
0 |
334 |
0 |
Year_closed |
0 |
1 |
9 |
9 |
0 |
159 |
0 |
Primary_provenance_of_data |
0 |
1 |
3 |
8 |
0 |
17 |
0 |
Area_Geodemographic_group |
0 |
1 |
11 |
40 |
0 |
17 |
0 |
Area_Geodemographic_group_code |
0 |
1 |
3 |
3 |
0 |
16 |
0 |
Area_Geodemographic_subgroup |
0 |
1 |
12 |
39 |
0 |
25 |
0 |
Area_Geodemographic_subgroup_code |
0 |
1 |
4 |
4 |
0 |
24 |
0 |
Area_Geodemographic_supergroup |
0 |
1 |
16 |
39 |
0 |
8 |
0 |
Area_Geodemographic_supergroup_code |
0 |
1 |
2 |
2 |
0 |
8 |
0 |
Variable type: numeric
Latitude |
0 |
1 |
52.93 |
1.95 |
49.20 |
51.48 |
52.46 |
53.94 |
60.79 |
▅▇▃▁▁ |
Longitude |
0 |
1 |
-1.94 |
1.83 |
-8.09 |
-3.09 |
-1.86 |
-0.47 |
1.76 |
▁▂▇▇▅ |
Area_Deprivation_index |
0 |
1 |
5.46 |
2.48 |
1.00 |
4.00 |
5.00 |
7.00 |
10.00 |
▃▆▇▆▃ |
Area_Deprivation_index_crime |
0 |
1 |
5.43 |
3.07 |
1.00 |
3.00 |
6.00 |
8.00 |
10.00 |
▇▆▅▆▇ |
Area_Deprivation_index_education |
0 |
1 |
6.05 |
2.61 |
1.00 |
4.00 |
6.00 |
8.00 |
10.00 |
▃▅▇▇▆ |
Area_Deprivation_index_employment |
0 |
1 |
6.08 |
2.77 |
1.00 |
4.00 |
6.00 |
8.00 |
10.00 |
▅▆▇▇▇ |
Area_Deprivation_index_health |
0 |
1 |
6.02 |
2.82 |
1.00 |
4.00 |
6.00 |
8.00 |
10.00 |
▅▆▆▇▇ |
Area_Deprivation_index_housing |
0 |
1 |
3.99 |
2.76 |
1.00 |
1.00 |
3.00 |
6.00 |
10.00 |
▇▅▃▃▂ |
Area_Deprivation_index_income |
0 |
1 |
6.00 |
2.63 |
1.00 |
4.00 |
6.00 |
8.00 |
10.00 |
▃▆▇▇▆ |
Area_Deprivation_index_services |
0 |
1 |
4.79 |
3.01 |
1.00 |
2.00 |
4.00 |
8.00 |
10.00 |
▇▅▅▅▅ |
data %>%
ggplot(aes(Accreditation, Area_Deprivation_index_employment)) +
geom_boxplot()

data %>%
ggplot(aes(Accreditation, Area_Deprivation_index_crime)) +
geom_boxplot()

data %>%
ggplot(aes(Accreditation, Area_Deprivation_index_health)) +
geom_boxplot()

data_binarized <- data %>%
select(-museum_id) %>%
binarize()
data_binarized %>% glimpse()
## Rows: 3,966
## Columns: 246
## $ `Name_of_museum__Public_Library_&_Museum_(Camborne)` <dbl> …
## $ `Name_of_museum__-OTHER` <dbl> …
## $ `Village,_Town_or_City__Edinburgh` <dbl> …
## $ `Village,_Town_or_City__London` <dbl> …
## $ `Village,_Town_or_City__-OTHER` <dbl> …
## $ Postcode__SO23_8TS <dbl> …
## $ `Postcode__-OTHER` <dbl> …
## $ `Latitude__-Inf_51.48120725` <dbl> …
## $ Latitude__51.48120725_52.4554475 <dbl> …
## $ Latitude__52.4554475_53.9431025 <dbl> …
## $ Latitude__53.9431025_Inf <dbl> …
## $ `Longitude__-Inf_-3.0854455` <dbl> …
## $ `Longitude__-3.0854455_-1.8564615` <dbl> …
## $ `Longitude__-1.8564615_-0.469075` <dbl> …
## $ `Longitude__-0.469075_Inf` <dbl> …
## $ `Admin_area__/England/London_(English_Region)/Westminster_(London_Borough)` <dbl> …
## $ `Admin_area__/England/South_West_(English_Region)/Cornwall_(English_UA)` <dbl> …
## $ `Admin_area__/England/South_West_(English_Region)/Wiltshire_(English_UA)` <dbl> …
## $ `Admin_area__/Scotland/City_of_Edinburgh_(Scottish_Council_Area)` <dbl> …
## $ `Admin_area__/Scotland/Dumfries_and_Galloway_(Scottish_Council_Area)` <dbl> …
## $ `Admin_area__/Scotland/Highland_(Scottish_Council_Area)` <dbl> …
## $ `Admin_area__-OTHER` <dbl> …
## $ Accreditation__Accredited <dbl> …
## $ Accreditation__Unaccredited <dbl> …
## $ `Governance__Government-Local_Authority` <dbl> …
## $ `Governance__Government-National` <dbl> …
## $ `Governance__Independent-English_Heritage` <dbl> …
## $ `Governance__Independent-National_Trust` <dbl> …
## $ `Governance__Independent-Not_for_profit` <dbl> …
## $ `Governance__Independent-Private` <dbl> …
## $ `Governance__Independent-Unknown` <dbl> …
## $ Governance__University <dbl> …
## $ Governance__Unknown <dbl> …
## $ `Governance__-OTHER` <dbl> …
## $ Size__large <dbl> …
## $ Size__medium <dbl> …
## $ Size__small <dbl> …
## $ Size__unknown <dbl> …
## $ `Size__-OTHER` <dbl> …
## $ Size_provenance__ace_size_designation <dbl> …
## $ Size_provenance__aim_size_designation <dbl> …
## $ Size_provenance__domus <dbl> …
## $ `Size_provenance__ma(fam)` <dbl> …
## $ Size_provenance__mm_manual_estimate_2018 <dbl> …
## $ Size_provenance__mm_prediction_random_forest <dbl> …
## $ Size_provenance__scottish_national_audit <dbl> …
## $ Size_provenance__unknown <dbl> …
## $ Size_provenance__visitbritain <dbl> …
## $ `Size_provenance__-OTHER` <dbl> …
## $ `Subject_Matter__Archaeology-Roman` <dbl> …
## $ `Subject_Matter__Arts-Fine_and_decorative_arts` <dbl> …
## $ `Subject_Matter__Buildings-Houses-Large_houses` <dbl> …
## $ `Subject_Matter__Buildings-Houses-Medium_houses` <dbl> …
## $ `Subject_Matter__Industry_and_manufacture-Mining_and_quarrying` <dbl> …
## $ `Subject_Matter__Leisure_and_sport-Toys_and_models` <dbl> …
## $ Subject_Matter__Local_Histories <dbl> …
## $ `Subject_Matter__Mixed-Encyclopaedic` <dbl> …
## $ `Subject_Matter__Mixed-Other` <dbl> …
## $ Subject_Matter__Other <dbl> …
## $ `Subject_Matter__Personality-Literary` <dbl> …
## $ `Subject_Matter__Rural_Industry-Farming` <dbl> …
## $ `Subject_Matter__Sea_and_seafaring-Boats_and_ships` <dbl> …
## $ `Subject_Matter__Sea_and_seafaring-Mixed` <dbl> …
## $ `Subject_Matter__Transport-Cars_and_motorbikes` <dbl> …
## $ `Subject_Matter__Transport-Trains_and_railways` <dbl> …
## $ `Subject_Matter__War_and_conflict-Airforce` <dbl> …
## $ `Subject_Matter__War_and_conflict-Castles_and_forts` <dbl> …
## $ `Subject_Matter__War_and_conflict-Military` <dbl> …
## $ `Subject_Matter__War_and_conflict-Regiment` <dbl> …
## $ `Subject_Matter__-OTHER` <dbl> …
## $ `Year_opened__1945:1960` <dbl> …
## $ `Year_opened__1960:2017` <dbl> …
## $ `Year_opened__1972:1972` <dbl> …
## $ `Year_opened__1973:1973` <dbl> …
## $ `Year_opened__1974:1974` <dbl> …
## $ `Year_opened__1975:1975` <dbl> …
## $ `Year_opened__1976:1976` <dbl> …
## $ `Year_opened__1977:1977` <dbl> …
## $ `Year_opened__1978:1978` <dbl> …
## $ `Year_opened__1979:1979` <dbl> …
## $ `Year_opened__1980:1980` <dbl> …
## $ `Year_opened__1981:1981` <dbl> …
## $ `Year_opened__1982:1982` <dbl> …
## $ `Year_opened__1983:1983` <dbl> …
## $ `Year_opened__1984:1984` <dbl> …
## $ `Year_opened__1985:1985` <dbl> …
## $ `Year_opened__1986:1986` <dbl> …
## $ `Year_opened__1987:1987` <dbl> …
## $ `Year_opened__1988:1988` <dbl> …
## $ `Year_opened__1989:1989` <dbl> …
## $ `Year_opened__1990:1990` <dbl> …
## $ `Year_opened__1991:1991` <dbl> …
## $ `Year_opened__1992:1992` <dbl> …
## $ `Year_opened__1993:1993` <dbl> …
## $ `Year_opened__1994:1994` <dbl> …
## $ `Year_opened__1995:1995` <dbl> …
## $ `Year_opened__1996:1996` <dbl> …
## $ `Year_opened__1997:1997` <dbl> …
## $ `Year_opened__1999:1999` <dbl> …
## $ `Year_opened__2000:2000` <dbl> …
## $ `Year_opened__2001:2001` <dbl> …
## $ `Year_opened__2005:2005` <dbl> …
## $ `Year_opened__-OTHER` <dbl> …
## $ `Year_closed__9999:9999` <dbl> …
## $ `Year_closed__-OTHER` <dbl> …
## $ Primary_provenance_of_data__ace <dbl> …
## $ Primary_provenance_of_data__aim <dbl> …
## $ Primary_provenance_of_data__aim82M <dbl> …
## $ Primary_provenance_of_data__aim82NM <dbl> …
## $ Primary_provenance_of_data__domus <dbl> …
## $ Primary_provenance_of_data__fcm <dbl> …
## $ Primary_provenance_of_data__hha <dbl> …
## $ Primary_provenance_of_data__mald <dbl> …
## $ Primary_provenance_of_data__mgs <dbl> …
## $ Primary_provenance_of_data__misc <dbl> …
## $ Primary_provenance_of_data__musassoc <dbl> …
## $ Primary_provenance_of_data__wiki <dbl> …
## $ `Primary_provenance_of_data__-OTHER` <dbl> …
## $ `Area_Deprivation_index__-Inf_4` <dbl> …
## $ Area_Deprivation_index__4_5 <dbl> …
## $ Area_Deprivation_index__5_7 <dbl> …
## $ Area_Deprivation_index__7_Inf <dbl> …
## $ `Area_Deprivation_index_crime__-Inf_3` <dbl> …
## $ Area_Deprivation_index_crime__3_6 <dbl> …
## $ Area_Deprivation_index_crime__6_8 <dbl> …
## $ Area_Deprivation_index_crime__8_Inf <dbl> …
## $ `Area_Deprivation_index_education__-Inf_4` <dbl> …
## $ Area_Deprivation_index_education__4_6 <dbl> …
## $ Area_Deprivation_index_education__6_8 <dbl> …
## $ Area_Deprivation_index_education__8_Inf <dbl> …
## $ `Area_Deprivation_index_employment__-Inf_4` <dbl> …
## $ Area_Deprivation_index_employment__4_6 <dbl> …
## $ Area_Deprivation_index_employment__6_8 <dbl> …
## $ Area_Deprivation_index_employment__8_Inf <dbl> …
## $ `Area_Deprivation_index_health__-Inf_4` <dbl> …
## $ Area_Deprivation_index_health__4_6 <dbl> …
## $ Area_Deprivation_index_health__6_8 <dbl> …
## $ Area_Deprivation_index_health__8_Inf <dbl> …
## $ `Area_Deprivation_index_housing__-Inf_3` <dbl> …
## $ Area_Deprivation_index_housing__3_6 <dbl> …
## $ Area_Deprivation_index_housing__6_Inf <dbl> …
## $ `Area_Deprivation_index_income__-Inf_4` <dbl> …
## $ Area_Deprivation_index_income__4_6 <dbl> …
## $ Area_Deprivation_index_income__6_8 <dbl> …
## $ Area_Deprivation_index_income__8_Inf <dbl> …
## $ `Area_Deprivation_index_services__-Inf_2` <dbl> …
## $ Area_Deprivation_index_services__2_4 <dbl> …
## $ Area_Deprivation_index_services__4_8 <dbl> …
## $ Area_Deprivation_index_services__8_Inf <dbl> …
## $ Area_Geodemographic_group__Country_Living <dbl> …
## $ Area_Geodemographic_group__English_and_Welsh_Countryside <dbl> …
## $ Area_Geodemographic_group__Ethnically_Diverse_Metropolitan_Living <dbl> …
## $ Area_Geodemographic_group__Larger_Towns_and_Cities <dbl> …
## $ Area_Geodemographic_group__London_Cosmopolitan <dbl> …
## $ Area_Geodemographic_group__Manufacturing_Traits <dbl> …
## $ Area_Geodemographic_group__Northern_Ireland_Countryside <dbl> …
## $ Area_Geodemographic_group__Remoter_Coastal_Living <dbl> …
## $ `Area_Geodemographic_group__Rural-Urban_Fringe` <dbl> …
## $ Area_Geodemographic_group__Scottish_Countryside <dbl> …
## $ Area_Geodemographic_group__Scottish_Industrial_Heritage <dbl> …
## $ Area_Geodemographic_group__Services_Manufacturing_and_Mining_Legacy <dbl> …
## $ Area_Geodemographic_group__Suburban_Traits <dbl> …
## $ Area_Geodemographic_group__Thriving_Rural <dbl> …
## $ Area_Geodemographic_group__Town_Living <dbl> …
## $ Area_Geodemographic_group__University_Towns_and_Cities <dbl> …
## $ `Area_Geodemographic_group__-OTHER` <dbl> …
## $ Area_Geodemographic_group_code__1ar <dbl> …
## $ Area_Geodemographic_group_code__1br <dbl> …
## $ Area_Geodemographic_group_code__2ar <dbl> …
## $ Area_Geodemographic_group_code__2br <dbl> …
## $ Area_Geodemographic_group_code__3ar <dbl> …
## $ Area_Geodemographic_group_code__3br <dbl> …
## $ Area_Geodemographic_group_code__3cr <dbl> …
## $ Area_Geodemographic_group_code__4ar <dbl> …
## $ Area_Geodemographic_group_code__5ar <dbl> …
## $ Area_Geodemographic_group_code__6ar <dbl> …
## $ Area_Geodemographic_group_code__6br <dbl> …
## $ Area_Geodemographic_group_code__7ar <dbl> …
## $ Area_Geodemographic_group_code__7br <dbl> …
## $ Area_Geodemographic_group_code__7cr <dbl> …
## $ Area_Geodemographic_group_code__8ar <dbl> …
## $ Area_Geodemographic_group_code__8br <dbl> …
## $ Area_Geodemographic_subgroup__Affluent_rural <dbl> …
## $ Area_Geodemographic_subgroup__Ageing_Coastal_Living <dbl> …
## $ Area_Geodemographic_subgroup__City_Periphery <dbl> …
## $ Area_Geodemographic_subgroup__Country_Living <dbl> …
## $ Area_Geodemographic_subgroup__Ethnically_Diverse_Metropolitan_Living <dbl> …
## $ Area_Geodemographic_subgroup__Expanding_Areas <dbl> …
## $ `Area_Geodemographic_subgroup__Industrial_and_Multi-ethnic` <dbl> …
## $ Area_Geodemographic_subgroup__Larger_Towns_and_Cities <dbl> …
## $ Area_Geodemographic_subgroup__London_Cosmopolitan <dbl> …
## $ Area_Geodemographic_subgroup__Manufacturing_Legacy <dbl> …
## $ Area_Geodemographic_subgroup__Mining_Legacy <dbl> …
## $ Area_Geodemographic_subgroup__Northern_Ireland_Countryside <dbl> …
## $ Area_Geodemographic_subgroup__Older_Farming_Communities <dbl> …
## $ Area_Geodemographic_subgroup__Prosperous_Towns <dbl> …
## $ Area_Geodemographic_subgroup__Rural_Growth_Areas <dbl> …
## $ `Area_Geodemographic_subgroup__Rural-Urban_Fringe` <dbl> …
## $ Area_Geodemographic_subgroup__Scottish_Countryside <dbl> …
## $ Area_Geodemographic_subgroup__Scottish_Industrial_Legacy <dbl> …
## $ Area_Geodemographic_subgroup__Seaside_Living <dbl> …
## $ Area_Geodemographic_subgroup__Service_Economy <dbl> …
## $ Area_Geodemographic_subgroup__Sparse_English_and_Welsh_Countryside <dbl> …
## $ Area_Geodemographic_subgroup__University_Towns_and_Cities <dbl> …
## $ Area_Geodemographic_subgroup__Urban_Living <dbl> …
## $ `Area_Geodemographic_subgroup__-OTHER` <dbl> …
## $ Area_Geodemographic_subgroup_code__1a1r <dbl> …
## $ Area_Geodemographic_subgroup_code__1b1r <dbl> …
## $ Area_Geodemographic_subgroup_code__1b2r <dbl> …
## $ Area_Geodemographic_subgroup_code__2a1r <dbl> …
## $ Area_Geodemographic_subgroup_code__2b1r <dbl> …
## $ Area_Geodemographic_subgroup_code__3a1r <dbl> …
## $ Area_Geodemographic_subgroup_code__3a2r <dbl> …
## $ Area_Geodemographic_subgroup_code__3b1r <dbl> …
## $ Area_Geodemographic_subgroup_code__3b2r <dbl> …
## $ Area_Geodemographic_subgroup_code__3c1r <dbl> …
## $ Area_Geodemographic_subgroup_code__4a1r <dbl> …
## $ Area_Geodemographic_subgroup_code__5a1r <dbl> …
## $ Area_Geodemographic_subgroup_code__6a1r <dbl> …
## $ Area_Geodemographic_subgroup_code__6a2r <dbl> …
## $ Area_Geodemographic_subgroup_code__6a3r <dbl> …
## $ Area_Geodemographic_subgroup_code__6b1r <dbl> …
## $ Area_Geodemographic_subgroup_code__7a1r <dbl> …
## $ Area_Geodemographic_subgroup_code__7b1r <dbl> …
## $ Area_Geodemographic_subgroup_code__7c2r <dbl> …
## $ Area_Geodemographic_subgroup_code__8a1r <dbl> …
## $ Area_Geodemographic_subgroup_code__8a2r <dbl> …
## $ Area_Geodemographic_subgroup_code__8b1r <dbl> …
## $ Area_Geodemographic_subgroup_code__8b2r <dbl> …
## $ `Area_Geodemographic_subgroup_code__-OTHER` <dbl> …
## $ Area_Geodemographic_supergroup__Affluent_England <dbl> …
## $ Area_Geodemographic_supergroup__Business_Education_and_Heritage_Centres <dbl> …
## $ Area_Geodemographic_supergroup__Countryside_Living <dbl> …
## $ Area_Geodemographic_supergroup__Ethnically_Diverse_Metropolitan_Living <dbl> …
## $ Area_Geodemographic_supergroup__London_Cosmopolitan <dbl> …
## $ Area_Geodemographic_supergroup__Services_and_Industrial_Legacy <dbl> …
## $ Area_Geodemographic_supergroup__Town_and_Country_Living <dbl> …
## $ Area_Geodemographic_supergroup__Urban_Settlements <dbl> …
## $ Area_Geodemographic_supergroup_code__1r <dbl> …
## $ Area_Geodemographic_supergroup_code__2r <dbl> …
## $ Area_Geodemographic_supergroup_code__3r <dbl> …
## $ Area_Geodemographic_supergroup_code__4r <dbl> …
## $ Area_Geodemographic_supergroup_code__5r <dbl> …
## $ Area_Geodemographic_supergroup_code__6r <dbl> …
## $ Area_Geodemographic_supergroup_code__7r <dbl> …
## $ Area_Geodemographic_supergroup_code__8r <dbl> …
data_correlate <- data_binarized %>%
correlate(Accreditation__Accredited)
data_correlate %>%
correlationfunnel::plot_correlation_funnel()
## Warning: ggrepel: 236 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
