library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(correlationfunnel)
## ══ correlationfunnel Tip #3 ════════════════════════════════════════════════════
## Using `binarize()` with data containing many columns or many rows can increase dimensionality substantially.
## Try subsetting your data column-wise or row-wise to avoid creating too many columns.
## You can always make a big problem smaller by sampling. :)
# Import Data
museums <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-11-22/museums.csv')
## Rows: 4191 Columns: 35
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (24): museum_id, Name_of_museum, Address_line_1, Address_line_2, Village...
## dbl (11): Latitude, Longitude, DOMUS_identifier, Area_Deprivation_index, Are...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
skimr::skim(museums)
Data summary
Name museums
Number of rows 4191
Number of columns 35
_______________________
Column type frequency:
character 24
numeric 11
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
museum_id 0 1.00 8 15 0 4191 0
Name_of_museum 0 1.00 3 76 0 4190 0
Address_line_1 441 0.89 3 61 0 3212 0
Address_line_2 2816 0.33 3 39 0 1167 0
Village,_Town_or_City 4 1.00 3 24 0 1696 0
Postcode 0 1.00 6 9 0 3918 0
Admin_area 0 1.00 12 137 0 393 0
Accreditation 0 1.00 10 12 0 2 0
Governance 0 1.00 7 41 0 13 0
Size 0 1.00 4 7 0 5 0
Size_provenance 179 0.96 2 29 0 16 0
Subject_Matter 0 1.00 5 45 0 114 0
Year_opened 0 1.00 9 9 0 351 0
Year_closed 0 1.00 9 9 0 170 0
DOMUS_Subject_Matter 2788 0.33 5 27 0 21 0
Primary_provenance_of_data 0 1.00 3 8 0 18 0
Identifier_used_in_primary_data_source 2056 0.51 2 8 0 2134 0
Area_Geodemographic_group 49 0.99 11 40 0 17 0
Area_Geodemographic_group_code 49 0.99 3 3 0 16 0
Area_Geodemographic_subgroup 49 0.99 12 39 0 25 0
Area_Geodemographic_subgroup_code 49 0.99 4 4 0 24 0
Area_Geodemographic_supergroup 49 0.99 16 39 0 8 0
Area_Geodemographic_supergroup_code 49 0.99 2 2 0 8 0
Notes 2980 0.29 12 751 0 956 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Latitude 0 1.00 52.93 2.09 49.18 51.48 52.47 53.96 100.00 ▇▁▁▁▁
Longitude 0 1.00 -1.96 1.84 -8.09 -3.10 -1.87 -0.48 1.76 ▁▂▇▇▅
DOMUS_identifier 2347 0.44 1303.45 1597.19 1.00 486.50 991.50 1470.25 7746.00 ▇▂▁▁▁
Area_Deprivation_index 49 0.99 5.44 2.48 1.00 4.00 5.00 7.00 10.00 ▃▆▇▆▃
Area_Deprivation_index_crime 49 0.99 5.43 3.07 1.00 3.00 6.00 8.00 10.00 ▇▆▅▇▇
Area_Deprivation_index_education 49 0.99 6.04 2.61 1.00 4.00 6.00 8.00 10.00 ▃▅▇▇▆
Area_Deprivation_index_employment 49 0.99 6.08 2.76 1.00 4.00 6.00 8.00 10.00 ▅▆▇▇▇
Area_Deprivation_index_health 49 0.99 6.02 2.82 1.00 4.00 6.00 8.00 10.00 ▅▆▆▇▇
Area_Deprivation_index_housing 49 0.99 3.97 2.75 1.00 1.00 3.00 6.00 10.00 ▇▅▃▂▂
Area_Deprivation_index_income 49 0.99 5.99 2.62 1.00 4.00 6.00 8.00 10.00 ▃▆▇▇▆
Area_Deprivation_index_services 49 0.99 4.78 3.01 1.00 2.00 4.00 7.00 10.00 ▇▅▅▅▅

missing values Addressline_2, Addressline_1, DOMUS_Subject_Matter, DOMUS_Identifier, Notes factors or numeric variables Zero Variance variables Character variables Unbalanced target variables id variable museum_id

museums %>% count(Accreditation)
## # A tibble: 2 × 2
##   Accreditation     n
##   <chr>         <int>
## 1 Accredited     1720
## 2 Unaccredited   2471
museums %>%
    ggplot(aes(Accreditation)) +
    geom_bar()

data <- museums %>%
    select(-Address_line_1, -Address_line_2, -DOMUS_Subject_Matter,-DOMUS_identifier, -Notes, -Identifier_used_in_primary_data_source) %>%
    na.omit()

skimr::skim(data)
Data summary
Name data
Number of rows 3966
Number of columns 29
_______________________
Column type frequency:
character 19
numeric 10
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
museum_id 0 1 10 15 0 3966 0
Name_of_museum 0 1 3 76 0 3965 0
Village,_Town_or_City 0 1 3 24 0 1639 0
Postcode 0 1 6 9 0 3725 0
Admin_area 0 1 16 137 0 392 0
Accreditation 0 1 10 12 0 2 0
Governance 0 1 7 41 0 13 0
Size 0 1 4 7 0 5 0
Size_provenance 0 1 2 29 0 16 0
Subject_Matter 0 1 5 45 0 112 0
Year_opened 0 1 9 9 0 334 0
Year_closed 0 1 9 9 0 159 0
Primary_provenance_of_data 0 1 3 8 0 17 0
Area_Geodemographic_group 0 1 11 40 0 17 0
Area_Geodemographic_group_code 0 1 3 3 0 16 0
Area_Geodemographic_subgroup 0 1 12 39 0 25 0
Area_Geodemographic_subgroup_code 0 1 4 4 0 24 0
Area_Geodemographic_supergroup 0 1 16 39 0 8 0
Area_Geodemographic_supergroup_code 0 1 2 2 0 8 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Latitude 0 1 52.93 1.95 49.20 51.48 52.46 53.94 60.79 ▅▇▃▁▁
Longitude 0 1 -1.94 1.83 -8.09 -3.09 -1.86 -0.47 1.76 ▁▂▇▇▅
Area_Deprivation_index 0 1 5.46 2.48 1.00 4.00 5.00 7.00 10.00 ▃▆▇▆▃
Area_Deprivation_index_crime 0 1 5.43 3.07 1.00 3.00 6.00 8.00 10.00 ▇▆▅▆▇
Area_Deprivation_index_education 0 1 6.05 2.61 1.00 4.00 6.00 8.00 10.00 ▃▅▇▇▆
Area_Deprivation_index_employment 0 1 6.08 2.77 1.00 4.00 6.00 8.00 10.00 ▅▆▇▇▇
Area_Deprivation_index_health 0 1 6.02 2.82 1.00 4.00 6.00 8.00 10.00 ▅▆▆▇▇
Area_Deprivation_index_housing 0 1 3.99 2.76 1.00 1.00 3.00 6.00 10.00 ▇▅▃▃▂
Area_Deprivation_index_income 0 1 6.00 2.63 1.00 4.00 6.00 8.00 10.00 ▃▆▇▇▆
Area_Deprivation_index_services 0 1 4.79 3.01 1.00 2.00 4.00 8.00 10.00 ▇▅▅▅▅
data %>% 
    ggplot(aes(Accreditation, Area_Deprivation_index_employment)) +
    geom_boxplot()

data %>% 
    ggplot(aes(Accreditation, Area_Deprivation_index_crime)) +
    geom_boxplot()

data %>% 
    ggplot(aes(Accreditation, Area_Deprivation_index_health)) +
    geom_boxplot()

data_binarized <- data %>%
    select(-museum_id) %>%
    binarize()

data_binarized %>% glimpse()
## Rows: 3,966
## Columns: 246
## $ `Name_of_museum__Public_Library_&_Museum_(Camborne)`                        <dbl> …
## $ `Name_of_museum__-OTHER`                                                    <dbl> …
## $ `Village,_Town_or_City__Edinburgh`                                          <dbl> …
## $ `Village,_Town_or_City__London`                                             <dbl> …
## $ `Village,_Town_or_City__-OTHER`                                             <dbl> …
## $ Postcode__SO23_8TS                                                          <dbl> …
## $ `Postcode__-OTHER`                                                          <dbl> …
## $ `Latitude__-Inf_51.48120725`                                                <dbl> …
## $ Latitude__51.48120725_52.4554475                                            <dbl> …
## $ Latitude__52.4554475_53.9431025                                             <dbl> …
## $ Latitude__53.9431025_Inf                                                    <dbl> …
## $ `Longitude__-Inf_-3.0854455`                                                <dbl> …
## $ `Longitude__-3.0854455_-1.8564615`                                          <dbl> …
## $ `Longitude__-1.8564615_-0.469075`                                           <dbl> …
## $ `Longitude__-0.469075_Inf`                                                  <dbl> …
## $ `Admin_area__/England/London_(English_Region)/Westminster_(London_Borough)` <dbl> …
## $ `Admin_area__/England/South_West_(English_Region)/Cornwall_(English_UA)`    <dbl> …
## $ `Admin_area__/England/South_West_(English_Region)/Wiltshire_(English_UA)`   <dbl> …
## $ `Admin_area__/Scotland/City_of_Edinburgh_(Scottish_Council_Area)`           <dbl> …
## $ `Admin_area__/Scotland/Dumfries_and_Galloway_(Scottish_Council_Area)`       <dbl> …
## $ `Admin_area__/Scotland/Highland_(Scottish_Council_Area)`                    <dbl> …
## $ `Admin_area__-OTHER`                                                        <dbl> …
## $ Accreditation__Accredited                                                   <dbl> …
## $ Accreditation__Unaccredited                                                 <dbl> …
## $ `Governance__Government-Local_Authority`                                    <dbl> …
## $ `Governance__Government-National`                                           <dbl> …
## $ `Governance__Independent-English_Heritage`                                  <dbl> …
## $ `Governance__Independent-National_Trust`                                    <dbl> …
## $ `Governance__Independent-Not_for_profit`                                    <dbl> …
## $ `Governance__Independent-Private`                                           <dbl> …
## $ `Governance__Independent-Unknown`                                           <dbl> …
## $ Governance__University                                                      <dbl> …
## $ Governance__Unknown                                                         <dbl> …
## $ `Governance__-OTHER`                                                        <dbl> …
## $ Size__large                                                                 <dbl> …
## $ Size__medium                                                                <dbl> …
## $ Size__small                                                                 <dbl> …
## $ Size__unknown                                                               <dbl> …
## $ `Size__-OTHER`                                                              <dbl> …
## $ Size_provenance__ace_size_designation                                       <dbl> …
## $ Size_provenance__aim_size_designation                                       <dbl> …
## $ Size_provenance__domus                                                      <dbl> …
## $ `Size_provenance__ma(fam)`                                                  <dbl> …
## $ Size_provenance__mm_manual_estimate_2018                                    <dbl> …
## $ Size_provenance__mm_prediction_random_forest                                <dbl> …
## $ Size_provenance__scottish_national_audit                                    <dbl> …
## $ Size_provenance__unknown                                                    <dbl> …
## $ Size_provenance__visitbritain                                               <dbl> …
## $ `Size_provenance__-OTHER`                                                   <dbl> …
## $ `Subject_Matter__Archaeology-Roman`                                         <dbl> …
## $ `Subject_Matter__Arts-Fine_and_decorative_arts`                             <dbl> …
## $ `Subject_Matter__Buildings-Houses-Large_houses`                             <dbl> …
## $ `Subject_Matter__Buildings-Houses-Medium_houses`                            <dbl> …
## $ `Subject_Matter__Industry_and_manufacture-Mining_and_quarrying`             <dbl> …
## $ `Subject_Matter__Leisure_and_sport-Toys_and_models`                         <dbl> …
## $ Subject_Matter__Local_Histories                                             <dbl> …
## $ `Subject_Matter__Mixed-Encyclopaedic`                                       <dbl> …
## $ `Subject_Matter__Mixed-Other`                                               <dbl> …
## $ Subject_Matter__Other                                                       <dbl> …
## $ `Subject_Matter__Personality-Literary`                                      <dbl> …
## $ `Subject_Matter__Rural_Industry-Farming`                                    <dbl> …
## $ `Subject_Matter__Sea_and_seafaring-Boats_and_ships`                         <dbl> …
## $ `Subject_Matter__Sea_and_seafaring-Mixed`                                   <dbl> …
## $ `Subject_Matter__Transport-Cars_and_motorbikes`                             <dbl> …
## $ `Subject_Matter__Transport-Trains_and_railways`                             <dbl> …
## $ `Subject_Matter__War_and_conflict-Airforce`                                 <dbl> …
## $ `Subject_Matter__War_and_conflict-Castles_and_forts`                        <dbl> …
## $ `Subject_Matter__War_and_conflict-Military`                                 <dbl> …
## $ `Subject_Matter__War_and_conflict-Regiment`                                 <dbl> …
## $ `Subject_Matter__-OTHER`                                                    <dbl> …
## $ `Year_opened__1945:1960`                                                    <dbl> …
## $ `Year_opened__1960:2017`                                                    <dbl> …
## $ `Year_opened__1972:1972`                                                    <dbl> …
## $ `Year_opened__1973:1973`                                                    <dbl> …
## $ `Year_opened__1974:1974`                                                    <dbl> …
## $ `Year_opened__1975:1975`                                                    <dbl> …
## $ `Year_opened__1976:1976`                                                    <dbl> …
## $ `Year_opened__1977:1977`                                                    <dbl> …
## $ `Year_opened__1978:1978`                                                    <dbl> …
## $ `Year_opened__1979:1979`                                                    <dbl> …
## $ `Year_opened__1980:1980`                                                    <dbl> …
## $ `Year_opened__1981:1981`                                                    <dbl> …
## $ `Year_opened__1982:1982`                                                    <dbl> …
## $ `Year_opened__1983:1983`                                                    <dbl> …
## $ `Year_opened__1984:1984`                                                    <dbl> …
## $ `Year_opened__1985:1985`                                                    <dbl> …
## $ `Year_opened__1986:1986`                                                    <dbl> …
## $ `Year_opened__1987:1987`                                                    <dbl> …
## $ `Year_opened__1988:1988`                                                    <dbl> …
## $ `Year_opened__1989:1989`                                                    <dbl> …
## $ `Year_opened__1990:1990`                                                    <dbl> …
## $ `Year_opened__1991:1991`                                                    <dbl> …
## $ `Year_opened__1992:1992`                                                    <dbl> …
## $ `Year_opened__1993:1993`                                                    <dbl> …
## $ `Year_opened__1994:1994`                                                    <dbl> …
## $ `Year_opened__1995:1995`                                                    <dbl> …
## $ `Year_opened__1996:1996`                                                    <dbl> …
## $ `Year_opened__1997:1997`                                                    <dbl> …
## $ `Year_opened__1999:1999`                                                    <dbl> …
## $ `Year_opened__2000:2000`                                                    <dbl> …
## $ `Year_opened__2001:2001`                                                    <dbl> …
## $ `Year_opened__2005:2005`                                                    <dbl> …
## $ `Year_opened__-OTHER`                                                       <dbl> …
## $ `Year_closed__9999:9999`                                                    <dbl> …
## $ `Year_closed__-OTHER`                                                       <dbl> …
## $ Primary_provenance_of_data__ace                                             <dbl> …
## $ Primary_provenance_of_data__aim                                             <dbl> …
## $ Primary_provenance_of_data__aim82M                                          <dbl> …
## $ Primary_provenance_of_data__aim82NM                                         <dbl> …
## $ Primary_provenance_of_data__domus                                           <dbl> …
## $ Primary_provenance_of_data__fcm                                             <dbl> …
## $ Primary_provenance_of_data__hha                                             <dbl> …
## $ Primary_provenance_of_data__mald                                            <dbl> …
## $ Primary_provenance_of_data__mgs                                             <dbl> …
## $ Primary_provenance_of_data__misc                                            <dbl> …
## $ Primary_provenance_of_data__musassoc                                        <dbl> …
## $ Primary_provenance_of_data__wiki                                            <dbl> …
## $ `Primary_provenance_of_data__-OTHER`                                        <dbl> …
## $ `Area_Deprivation_index__-Inf_4`                                            <dbl> …
## $ Area_Deprivation_index__4_5                                                 <dbl> …
## $ Area_Deprivation_index__5_7                                                 <dbl> …
## $ Area_Deprivation_index__7_Inf                                               <dbl> …
## $ `Area_Deprivation_index_crime__-Inf_3`                                      <dbl> …
## $ Area_Deprivation_index_crime__3_6                                           <dbl> …
## $ Area_Deprivation_index_crime__6_8                                           <dbl> …
## $ Area_Deprivation_index_crime__8_Inf                                         <dbl> …
## $ `Area_Deprivation_index_education__-Inf_4`                                  <dbl> …
## $ Area_Deprivation_index_education__4_6                                       <dbl> …
## $ Area_Deprivation_index_education__6_8                                       <dbl> …
## $ Area_Deprivation_index_education__8_Inf                                     <dbl> …
## $ `Area_Deprivation_index_employment__-Inf_4`                                 <dbl> …
## $ Area_Deprivation_index_employment__4_6                                      <dbl> …
## $ Area_Deprivation_index_employment__6_8                                      <dbl> …
## $ Area_Deprivation_index_employment__8_Inf                                    <dbl> …
## $ `Area_Deprivation_index_health__-Inf_4`                                     <dbl> …
## $ Area_Deprivation_index_health__4_6                                          <dbl> …
## $ Area_Deprivation_index_health__6_8                                          <dbl> …
## $ Area_Deprivation_index_health__8_Inf                                        <dbl> …
## $ `Area_Deprivation_index_housing__-Inf_3`                                    <dbl> …
## $ Area_Deprivation_index_housing__3_6                                         <dbl> …
## $ Area_Deprivation_index_housing__6_Inf                                       <dbl> …
## $ `Area_Deprivation_index_income__-Inf_4`                                     <dbl> …
## $ Area_Deprivation_index_income__4_6                                          <dbl> …
## $ Area_Deprivation_index_income__6_8                                          <dbl> …
## $ Area_Deprivation_index_income__8_Inf                                        <dbl> …
## $ `Area_Deprivation_index_services__-Inf_2`                                   <dbl> …
## $ Area_Deprivation_index_services__2_4                                        <dbl> …
## $ Area_Deprivation_index_services__4_8                                        <dbl> …
## $ Area_Deprivation_index_services__8_Inf                                      <dbl> …
## $ Area_Geodemographic_group__Country_Living                                   <dbl> …
## $ Area_Geodemographic_group__English_and_Welsh_Countryside                    <dbl> …
## $ Area_Geodemographic_group__Ethnically_Diverse_Metropolitan_Living           <dbl> …
## $ Area_Geodemographic_group__Larger_Towns_and_Cities                          <dbl> …
## $ Area_Geodemographic_group__London_Cosmopolitan                              <dbl> …
## $ Area_Geodemographic_group__Manufacturing_Traits                             <dbl> …
## $ Area_Geodemographic_group__Northern_Ireland_Countryside                     <dbl> …
## $ Area_Geodemographic_group__Remoter_Coastal_Living                           <dbl> …
## $ `Area_Geodemographic_group__Rural-Urban_Fringe`                             <dbl> …
## $ Area_Geodemographic_group__Scottish_Countryside                             <dbl> …
## $ Area_Geodemographic_group__Scottish_Industrial_Heritage                     <dbl> …
## $ Area_Geodemographic_group__Services_Manufacturing_and_Mining_Legacy         <dbl> …
## $ Area_Geodemographic_group__Suburban_Traits                                  <dbl> …
## $ Area_Geodemographic_group__Thriving_Rural                                   <dbl> …
## $ Area_Geodemographic_group__Town_Living                                      <dbl> …
## $ Area_Geodemographic_group__University_Towns_and_Cities                      <dbl> …
## $ `Area_Geodemographic_group__-OTHER`                                         <dbl> …
## $ Area_Geodemographic_group_code__1ar                                         <dbl> …
## $ Area_Geodemographic_group_code__1br                                         <dbl> …
## $ Area_Geodemographic_group_code__2ar                                         <dbl> …
## $ Area_Geodemographic_group_code__2br                                         <dbl> …
## $ Area_Geodemographic_group_code__3ar                                         <dbl> …
## $ Area_Geodemographic_group_code__3br                                         <dbl> …
## $ Area_Geodemographic_group_code__3cr                                         <dbl> …
## $ Area_Geodemographic_group_code__4ar                                         <dbl> …
## $ Area_Geodemographic_group_code__5ar                                         <dbl> …
## $ Area_Geodemographic_group_code__6ar                                         <dbl> …
## $ Area_Geodemographic_group_code__6br                                         <dbl> …
## $ Area_Geodemographic_group_code__7ar                                         <dbl> …
## $ Area_Geodemographic_group_code__7br                                         <dbl> …
## $ Area_Geodemographic_group_code__7cr                                         <dbl> …
## $ Area_Geodemographic_group_code__8ar                                         <dbl> …
## $ Area_Geodemographic_group_code__8br                                         <dbl> …
## $ Area_Geodemographic_subgroup__Affluent_rural                                <dbl> …
## $ Area_Geodemographic_subgroup__Ageing_Coastal_Living                         <dbl> …
## $ Area_Geodemographic_subgroup__City_Periphery                                <dbl> …
## $ Area_Geodemographic_subgroup__Country_Living                                <dbl> …
## $ Area_Geodemographic_subgroup__Ethnically_Diverse_Metropolitan_Living        <dbl> …
## $ Area_Geodemographic_subgroup__Expanding_Areas                               <dbl> …
## $ `Area_Geodemographic_subgroup__Industrial_and_Multi-ethnic`                 <dbl> …
## $ Area_Geodemographic_subgroup__Larger_Towns_and_Cities                       <dbl> …
## $ Area_Geodemographic_subgroup__London_Cosmopolitan                           <dbl> …
## $ Area_Geodemographic_subgroup__Manufacturing_Legacy                          <dbl> …
## $ Area_Geodemographic_subgroup__Mining_Legacy                                 <dbl> …
## $ Area_Geodemographic_subgroup__Northern_Ireland_Countryside                  <dbl> …
## $ Area_Geodemographic_subgroup__Older_Farming_Communities                     <dbl> …
## $ Area_Geodemographic_subgroup__Prosperous_Towns                              <dbl> …
## $ Area_Geodemographic_subgroup__Rural_Growth_Areas                            <dbl> …
## $ `Area_Geodemographic_subgroup__Rural-Urban_Fringe`                          <dbl> …
## $ Area_Geodemographic_subgroup__Scottish_Countryside                          <dbl> …
## $ Area_Geodemographic_subgroup__Scottish_Industrial_Legacy                    <dbl> …
## $ Area_Geodemographic_subgroup__Seaside_Living                                <dbl> …
## $ Area_Geodemographic_subgroup__Service_Economy                               <dbl> …
## $ Area_Geodemographic_subgroup__Sparse_English_and_Welsh_Countryside          <dbl> …
## $ Area_Geodemographic_subgroup__University_Towns_and_Cities                   <dbl> …
## $ Area_Geodemographic_subgroup__Urban_Living                                  <dbl> …
## $ `Area_Geodemographic_subgroup__-OTHER`                                      <dbl> …
## $ Area_Geodemographic_subgroup_code__1a1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__1b1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__1b2r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__2a1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__2b1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__3a1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__3a2r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__3b1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__3b2r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__3c1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__4a1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__5a1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__6a1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__6a2r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__6a3r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__6b1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__7a1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__7b1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__7c2r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__8a1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__8a2r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__8b1r                                     <dbl> …
## $ Area_Geodemographic_subgroup_code__8b2r                                     <dbl> …
## $ `Area_Geodemographic_subgroup_code__-OTHER`                                 <dbl> …
## $ Area_Geodemographic_supergroup__Affluent_England                            <dbl> …
## $ Area_Geodemographic_supergroup__Business_Education_and_Heritage_Centres     <dbl> …
## $ Area_Geodemographic_supergroup__Countryside_Living                          <dbl> …
## $ Area_Geodemographic_supergroup__Ethnically_Diverse_Metropolitan_Living      <dbl> …
## $ Area_Geodemographic_supergroup__London_Cosmopolitan                         <dbl> …
## $ Area_Geodemographic_supergroup__Services_and_Industrial_Legacy              <dbl> …
## $ Area_Geodemographic_supergroup__Town_and_Country_Living                     <dbl> …
## $ Area_Geodemographic_supergroup__Urban_Settlements                           <dbl> …
## $ Area_Geodemographic_supergroup_code__1r                                     <dbl> …
## $ Area_Geodemographic_supergroup_code__2r                                     <dbl> …
## $ Area_Geodemographic_supergroup_code__3r                                     <dbl> …
## $ Area_Geodemographic_supergroup_code__4r                                     <dbl> …
## $ Area_Geodemographic_supergroup_code__5r                                     <dbl> …
## $ Area_Geodemographic_supergroup_code__6r                                     <dbl> …
## $ Area_Geodemographic_supergroup_code__7r                                     <dbl> …
## $ Area_Geodemographic_supergroup_code__8r                                     <dbl> …
data_correlate <- data_binarized %>%
    correlate(Accreditation__Accredited)

data_correlate %>%
    correlationfunnel::plot_correlation_funnel()
## Warning: ggrepel: 236 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps