1. Yes, this is a valid Latin Square since each letter occur on ly once in each column and row.

  2. \(y_{ijk}=\mu+\tau_i+\beta_j+\alpha_k+\epsilon_{ijk}\)

  3. batch <- c(rep(1,5),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
    day <- c(seq(1,5),seq(1,5),seq(1,5),seq(1,5),seq(1,5))
    value <- c(8,7,1,7,3,11,2,7,3,8,4,9,10,1,5,6,8,6,6,10,4,2,3,8,8)
    ingre <- c('A','B','D','C','E','C','E','A','D','B','B','A','C','E','D','D','C','E','B','A','E','D','B','A','C')
    dat <- data.frame(batch,day,value,ingre)
    dat$batch <- as.factor(dat$batch)
    dat$day <- as.factor(dat$day)
    dat$ingre <- as.factor(dat$ingre)
    aov.model <- aov(value~batch+day+ingre, data = dat)
    summary(aov.model)
    ##             Df Sum Sq Mean Sq F value   Pr(>F)    
    ## batch        4  15.44    3.86   1.235 0.347618    
    ## day          4  12.24    3.06   0.979 0.455014    
    ## ingre        4 141.44   35.36  11.309 0.000488 ***
    ## Residuals   12  37.52    3.13                     
    ## ---
    ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ingredients appears to significantly affect the reaction time of the chemical process, since the p value is smaller than 0.001.