My data consists of various albums and how they have placed on the billboard top 500. the data includes variables such as weeks on the bilboard, peak position, artist gender, member count, ## Questions
ggplot(data = data) +
geom_bar(mapping = aes(x = type))
data %>% count(weeks_on_billboard)
## # A tibble: 169 × 2
## weeks_on_billboard n
## <chr> <int>
## 1 1 12
## 2 10 2
## 3 100 4
## 4 101 2
## 5 102 2
## 6 103 4
## 7 104 4
## 8 105 2
## 9 106 2
## 10 107 2
## # ℹ 159 more rows
ggplot(data = data) +
geom_histogram(mapping = aes(x = release_year))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(data = data, mapping = aes(x = release_year, colour = type)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
data %>%
# Filter out albums > number 5 position on billboard
filter(peak_billboard_position < 5) %>%
# plot
ggplot(aes(x = peak_billboard_position)) +
geom_histogram(binwidth = 0.5)
data %>%
ggplot(aes(x = type, y = artist_member_count)) +
geom_boxplot()
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
data %>%
count(type, genre) %>%
ggplot(aes(x = type, y = genre, fill = n)) +
geom_tile()
data %>%
ggplot(aes(x = release_year, y = peak_billboard_position)) +
geom_hex()
data %>%
filter(release_year < 1980) %>%
ggplot(aes(x = release_year, y = peak_billboard_position)) +
geom_boxplot(aes(group = cut_width(release_year, 0.1)))
## Patterns and models