#1 Um modelo de múltiplo decremento com duas causas de decremento é especificado pelas seguintes forças de decremento: # ux1(t) = 1/(100-(x+t)) # ux2(t) = 2/(100-(x+t)); t < 100-x

#a) Fdp da distribuição conjunta

#Cálculo dos decrementos 1, 2 e total:

x <- 50
t <- seq(0, 50, 1)

ux1 <- 1/(100-x+t)
ux1
##  [1] 0.02000000 0.01960784 0.01923077 0.01886792 0.01851852 0.01818182
##  [7] 0.01785714 0.01754386 0.01724138 0.01694915 0.01666667 0.01639344
## [13] 0.01612903 0.01587302 0.01562500 0.01538462 0.01515152 0.01492537
## [19] 0.01470588 0.01449275 0.01428571 0.01408451 0.01388889 0.01369863
## [25] 0.01351351 0.01333333 0.01315789 0.01298701 0.01282051 0.01265823
## [31] 0.01250000 0.01234568 0.01219512 0.01204819 0.01190476 0.01176471
## [37] 0.01162791 0.01149425 0.01136364 0.01123596 0.01111111 0.01098901
## [43] 0.01086957 0.01075269 0.01063830 0.01052632 0.01041667 0.01030928
## [49] 0.01020408 0.01010101 0.01000000
ux2 <- 2/(100-x+t)
ux2
##  [1] 0.04000000 0.03921569 0.03846154 0.03773585 0.03703704 0.03636364
##  [7] 0.03571429 0.03508772 0.03448276 0.03389831 0.03333333 0.03278689
## [13] 0.03225806 0.03174603 0.03125000 0.03076923 0.03030303 0.02985075
## [19] 0.02941176 0.02898551 0.02857143 0.02816901 0.02777778 0.02739726
## [25] 0.02702703 0.02666667 0.02631579 0.02597403 0.02564103 0.02531646
## [31] 0.02500000 0.02469136 0.02439024 0.02409639 0.02380952 0.02352941
## [37] 0.02325581 0.02298851 0.02272727 0.02247191 0.02222222 0.02197802
## [43] 0.02173913 0.02150538 0.02127660 0.02105263 0.02083333 0.02061856
## [49] 0.02040816 0.02020202 0.02000000
uxt <- ux1 + ux2
uxt
##  [1] 0.06000000 0.05882353 0.05769231 0.05660377 0.05555556 0.05454545
##  [7] 0.05357143 0.05263158 0.05172414 0.05084746 0.05000000 0.04918033
## [13] 0.04838710 0.04761905 0.04687500 0.04615385 0.04545455 0.04477612
## [19] 0.04411765 0.04347826 0.04285714 0.04225352 0.04166667 0.04109589
## [25] 0.04054054 0.04000000 0.03947368 0.03896104 0.03846154 0.03797468
## [31] 0.03750000 0.03703704 0.03658537 0.03614458 0.03571429 0.03529412
## [37] 0.03488372 0.03448276 0.03409091 0.03370787 0.03333333 0.03296703
## [43] 0.03260870 0.03225806 0.03191489 0.03157895 0.03125000 0.03092784
## [49] 0.03061224 0.03030303 0.03000000

#Cálculo do tpx

tpx <- ((50-t)/50)^3
tpx
##  [1] 1.000000 0.941192 0.884736 0.830584 0.778688 0.729000 0.681472 0.636056
##  [9] 0.592704 0.551368 0.512000 0.474552 0.438976 0.405224 0.373248 0.343000
## [17] 0.314432 0.287496 0.262144 0.238328 0.216000 0.195112 0.175616 0.157464
## [25] 0.140608 0.125000 0.110592 0.097336 0.085184 0.074088 0.064000 0.054872
## [33] 0.046656 0.039304 0.032768 0.027000 0.021952 0.017576 0.013824 0.010648
## [41] 0.008000 0.005832 0.004096 0.002744 0.001728 0.001000 0.000512 0.000216
## [49] 0.000064 0.000008 0.000000

#Cálculo da distribuição conjunta de T e J

fTJ1 <- ((50-t)^2)/(50^3)
fTJ1
##  [1] 0.020000 0.019208 0.018432 0.017672 0.016928 0.016200 0.015488 0.014792
##  [9] 0.014112 0.013448 0.012800 0.012168 0.011552 0.010952 0.010368 0.009800
## [17] 0.009248 0.008712 0.008192 0.007688 0.007200 0.006728 0.006272 0.005832
## [25] 0.005408 0.005000 0.004608 0.004232 0.003872 0.003528 0.003200 0.002888
## [33] 0.002592 0.002312 0.002048 0.001800 0.001568 0.001352 0.001152 0.000968
## [41] 0.000800 0.000648 0.000512 0.000392 0.000288 0.000200 0.000128 0.000072
## [49] 0.000032 0.000008 0.000000
fTJ2 <- (2*((50-t)^2))/(50^3)
fTJ2
##  [1] 0.040000 0.038416 0.036864 0.035344 0.033856 0.032400 0.030976 0.029584
##  [9] 0.028224 0.026896 0.025600 0.024336 0.023104 0.021904 0.020736 0.019600
## [17] 0.018496 0.017424 0.016384 0.015376 0.014400 0.013456 0.012544 0.011664
## [25] 0.010816 0.010000 0.009216 0.008464 0.007744 0.007056 0.006400 0.005776
## [33] 0.005184 0.004624 0.004096 0.003600 0.003136 0.002704 0.002304 0.001936
## [41] 0.001600 0.001296 0.001024 0.000784 0.000576 0.000400 0.000256 0.000144
## [49] 0.000064 0.000016 0.000000

b) Fdp da distribuição marginal

#Cálculo da distribuição marginal

fT <- tpx * uxt
fT
##  [1] 6.000000e-02 5.536424e-02 5.104246e-02 4.701419e-02 4.326044e-02
##  [6] 3.976364e-02 3.650743e-02 3.347663e-02 3.065710e-02 2.803566e-02
## [11] 2.560000e-02 2.333862e-02 2.124077e-02 1.929638e-02 1.749600e-02
## [16] 1.583077e-02 1.429236e-02 1.287296e-02 1.156518e-02 1.036209e-02
## [21] 9.257143e-03 8.244169e-03 7.317333e-03 6.471123e-03 5.700324e-03
## [26] 5.000000e-03 4.365474e-03 3.792312e-03 3.276308e-03 2.813468e-03
## [31] 2.400000e-03 2.032296e-03 1.706927e-03 1.420627e-03 1.170286e-03
## [36] 9.529412e-04 7.657674e-04 6.060690e-04 4.712727e-04 3.589213e-04
## [41] 2.666667e-04 1.922637e-04 1.335652e-04 8.851613e-05 5.514894e-05
## [46] 3.157895e-05 1.600000e-05 6.680412e-06 1.959184e-06 2.424242e-07
## [51] 0.000000e+00

c) fdp da distribuição marginal

#Cáculo da probabilidade em que o decremento por todas as causas ocorra até o tempo t:

fq1 <- function(t)((50-t)^2)/(50^3)
fq2 <- function(t)(2*((50-t)^2))/(50^3)

q1 <- integrate(fq1, lower = 0, upper = 50)$value;
q1
## [1] 0.3333333
q2 <- integrate(fq2, lower = 0, upper = 50)$value;
q2
## [1] 0.6666667

#d) Fdp da distribuição condicional de J, dado um decremento no tempo

#Calculando a distribuição com a condicional de J dado um decremento no tempo t

fJT1 <- ux1/uxt
fJT1
##  [1] 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333
##  [8] 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333
## [15] 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333
## [22] 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333
## [29] 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333
## [36] 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333
## [43] 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333
## [50] 0.3333333 0.3333333
fJT2 <- ux2/uxt
fJT2
##  [1] 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667
##  [8] 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667
## [15] 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667
## [22] 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667
## [29] 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667
## [36] 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667
## [43] 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667
## [50] 0.6666667 0.6666667

e) Prepare uma tabela e desenhe o gráfico de tpx(T) para t = 1, 2, …, 10 e para x = 50

#Tabela tpx

tab.1 <- seq(1, 10,1)
idade <- x+tab.1
idade
##  [1] 51 52 53 54 55 56 57 58 59 60
tpx.1 <- tpx[2:11]
tpx.1
##  [1] 0.941192 0.884736 0.830584 0.778688 0.729000 0.681472 0.636056 0.592704
##  [9] 0.551368 0.512000
df <- data.frame(Idade = idade, tpx = tpx.1)
kable(df, caption = "Tabela tPx", align = "cc")
Tabela tPx
Idade tpx
51 0.941192
52 0.884736
53 0.830584
54 0.778688
55 0.729000
56 0.681472
57 0.636056
58 0.592704
59 0.551368
60 0.512000

#Produção do Gráfico

plot(idade, tpx.1, "o", pch = 20, cex=1.0, main ="Gráfico tPx", xlab = "Idade", ylab = "tpx", col = "green")

f) Prepare uma tabela e desenhe o gráfico de tqx(1) e tqx(2) para t = 1, 2, …, 10 e para x = 50

Preparo da Tabela

t <- c(1:10)
fq1.1 <- function(t)((50-t)^2)/(50^3)
fq2.1 <- function(t)(2*((50-t)^2))/(50^3)

for (i in t) {
  q1[i] <- integrate(fq1.1, lower = 0, upper = i)$value
  q2[i] <- integrate(fq2.1, lower = 0, upper = i)$value
}

q1
##  [1] 0.01960267 0.03842133 0.05647200 0.07377067 0.09033333 0.10617600
##  [7] 0.12131467 0.13576533 0.14954400 0.16266667
q2
##  [1] 0.03920533 0.07684267 0.11294400 0.14754133 0.18066667 0.21235200
##  [7] 0.24262933 0.27153067 0.29908800 0.32533333
df.1 <- data.frame( Idade = idade, tqx1 = q1, tqx2 = q2)

kable(df.1, caption = "Tabela tqx1 e tqx2", align = "ccc")
Tabela tqx1 e tqx2
Idade tqx1 tqx2
51 0.0196027 0.0392053
52 0.0384213 0.0768427
53 0.0564720 0.1129440
54 0.0737707 0.1475413
55 0.0903333 0.1806667
56 0.1061760 0.2123520
57 0.1213147 0.2426293
58 0.1357653 0.2715307
59 0.1495440 0.2990880
60 0.1626667 0.3253333

#Preparo do Gráfico tqx1

plot(idade, q1, "o", pch = 20, cex = 1.0, main = "Grafico tqx1", xlab = "Idade", ylab = "tqx1", col = "red")

##Preparo do Gráfico tqx2

plot(idade, q2, "o", pch = 20, cex = 1.0, main = "Grafico tqx2", xlab = "Idade", ylab = "tqx2", col = "red")

# g) Encontre a distribuição de J(x) para x = 50.

df.2 <- round(data.frame(Idade = x, J1 = fJT1[1], J2 = fJT2[1]), 3)

kable(df.2, caption = "Tabela de J", align = "ccc")
Tabela de J
Idade J1 J2
50 0.333 0.667

h) Encontre a distribuição condicional de J(x) dado T(x) = 10 para x = 50

x.h <- 60
df.3 <- round(data.frame(Idade = x.h, J1 = fJT1[10], J2 = fJT2[10]), 3)
kable(df.3, caption = "Tabela de J", align = "ccc")
Tabela de J
Idade J1 J2
60 0.333 0.667

#2) Elabore uma tábua de serviço para um grupo de 100 funcionários da empresa X, que participam do seu fundo de pensão. Considere que todos tenham a idade de 30 anos, o plano tenha taxa de juros de 6% a.a. e as seguintes taxas decrementais como hipóteses demográficas do plano:

site = "https://raw.githubusercontent.com/hvsfg0/BdT/main/Bdtset2022.csv"
banco_de_tabuas = read.csv(site,row.names=NULL)

#I. Mortalidade a tabela: AT-2000 Male:

at2000 <- banco_de_tabuas$AT.2000.MALE
at2000 <- at2000[is.na(at2000)==FALSE]
tabua <- probs2lifetable(at2000, type = "qx", name = "AT-2000")

#II. Entrada em invalidez: ALVARO VINDAS:

invalidez <- banco_de_tabuas$ALVARO.VINDAS
invalidez <- invalidez[is.na(invalidez)==FALSE]
alvaroVindas <- c(invalidez,rep(0,length(tabua@x)-length(invalidez)
))
alvaroVindas
##   [1] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
##   [9] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000575
##  [17] 0.000573 0.000572 0.000570 0.000569 0.000569 0.000569 0.000569 0.000570
##  [25] 0.000572 0.000575 0.000579 0.000583 0.000589 0.000596 0.000605 0.000615
##  [33] 0.000628 0.000643 0.000660 0.000681 0.000704 0.000732 0.000764 0.000801
##  [41] 0.000844 0.000893 0.000949 0.001014 0.001088 0.001174 0.001271 0.001383
##  [49] 0.001511 0.001657 0.001823 0.002014 0.002231 0.002479 0.002762 0.003089
##  [57] 0.003452 0.003872 0.004350 0.004895 0.005516 0.006223 0.007029 0.007947
##  [65] 0.008993 0.010183 0.011542 0.013087 0.014847 0.016852 0.019135 0.021734
##  [73] 0.024695 0.028066 0.031904 0.036275 0.041252 0.046919 0.055371 0.060718
##  [81] 0.069084 0.078608 0.089453 0.101800 0.115859 0.131805 0.150090 0.170840
##  [89] 0.194465 0.221363 0.251988 0.000000 0.000000 0.000000 0.000000 0.000000
##  [97] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## [105] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## [113] 0.000000 0.000000 0.000000 0.000000

#III. Rotatividade:

rotatividade <- c(rep(0.02,51),rep(0,116-51))
rotatividade
##   [1] 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
##  [16] 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
##  [31] 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
##  [46] 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
##  [61] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
##  [76] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
##  [91] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [106] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

#IV. Aposentadoria

aposentados <- c(rep(0,55),0.1,0.03,0.03,0.03,0.03,1, rep(1,116-61))
i <- 0.06
v <- 1/(1+i)

Construção dos decrementos e da tábua

tabua <- data.frame("Mortalidade"=at2000,"Invalidez"=alvaroVindas,
"Rotatividade"=rotatividade,"Aposentadoria"=aposentados)[31:116,]
tabua <- data.frame("x" = 30:115,tabua)
tabua

#Mortalidade de decremento principal

Mortalidade_decremento <- tabua$Mortalidade *
(1 - (1/2) * (tabua$Invalidez + tabua$Rotatividade + tabua$Aposentadoria)
+
(1/3) * (tabua$Invalidez * tabua$Rotatividade +
tabua$Invalidez * tabua$Aposentadoria +
tabua$Rotatividade * tabua$Aposentadoria) -
(1/4) * (tabua$Invalidez * tabua$Rotatividade * tabua$Aposentadoria))

Mortalidade_decremento
##  [1] 0.0007759260 0.0007808706 0.0007808656 0.0007818494 0.0007828325
##  [6] 0.0007838139 0.0007857842 0.0008144728 0.0008629513 0.0009351766
## [11] 0.0010321357 0.0011558054 0.0013081611 0.0014891971 0.0016969295
## [16] 0.0019273918 0.0021746418 0.0024366895 0.0027105575 0.0029952448
## [21] 0.0032937052 0.0036433275 0.0039755603 0.0043256317 0.0046915121
## [26] 0.0048158313 0.0053737811 0.0057619650 0.0061576712 0.0065775341
## [31] 0.0035784084 0.0038489993 0.0041642203 0.0045344563 0.0049690596
## [36] 0.0054778430 0.0060705544 0.0067563972 0.0075424866 0.0084254043
## [41] 0.0093996610 0.0104591738 0.0115977389 0.0128144841 0.0141241795
## [46] 0.0155481953 0.0171045222 0.0188135869 0.0206771848 0.0227436742
## [51] 0.0249753122 0.0273880500 0.0299829999 0.0327622189 0.0357258546
## [56] 0.0388764711 0.0422085921 0.0457182825 0.0493919113 0.0531914481
## [61] 0.0570725452 0.0674305000 0.0727875000 0.0783635000 0.0841450000
## [66] 0.0901225000 0.0962825000 0.1026145000 0.1093415000 0.1166855000
## [71] 0.1248705000 0.1341185000 0.1446525000 0.1566955000 0.1704700000
## [76] 0.1861990000 0.2041050000 0.2244115000 0.2473405000 0.2731155000
## [81] 0.3019585000 0.3340930000 0.3697415000 0.4091270000 0.4524725000
## [86] 0.5000000000

#Invalidez como decremento principal

Invalidez_decremento <- tabua$Invalidez *(1 - (1/2) * (tabua$Aposentadoria + tabua$Rotatividade + tabua$Mortalidade) + (1/3) * (tabua$Aposentadoria * tabua$Rotatividade + tabua$Aposentadoria * tabua$Mortalidade + tabua$Rotatividade * tabua$Mortalidade) - (1/4) * (tabua$Aposentadoria * tabua$Rotatividade * tabua$Mortalidade))

Invalidez_decremento
##  [1] 0.0005987160 0.0006086106 0.0006214756 0.0006363194 0.0006531425
##  [6] 0.0006739239 0.0006966842 0.0007243828 0.0007560313 0.0007926166
## [11] 0.0008351257 0.0008835554 0.0009388911 0.0010031071 0.0010761995
## [16] 0.0011611318 0.0012569118 0.0013674895 0.0014938475 0.0016379548
## [21] 0.0018017752 0.0020103275 0.0022265603 0.0024736317 0.0027555121
## [26] 0.0029272313 0.0033909761 0.0038028000 0.0042713962 0.0048055191
## [31] 0.0027514084 0.0031034993 0.0035047203 0.0039614563 0.0044815596
## [36] 0.0050728430 0.0057475544 0.0065138972 0.0073859866 0.0083784043
## [41] 0.0095071610 0.0107906738 0.0122512389 0.0139119841 0.0158001795
## [46] 0.0179471953 0.0203875222 0.0231605869 0.0272966848 0.0298891742
## [51] 0.0339533122 0.0385670500 0.0438049999 0.0497492189 0.0564943546
## [56] 0.0641159711 0.0728220921 0.0826592825 0.0938089113 0.1064439481
## [61] 0.1207605452 0.0000000000 0.0000000000 0.0000000000 0.0000000000
## [66] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
## [71] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
## [76] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
## [81] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
## [86] 0.0000000000

#Aposentadoria de decremento Principal

Aposentadoria_decremento <- tabua$Aposentadoria *
(1 - (1/2) * (tabua$Invalidez + tabua$Rotatividade + tabua$Mortalidade) +
(1/3) * (tabua$Invalidez * tabua$Rotatividade +
tabua$Invalidez * tabua$Mortalidade +
tabua$Rotatividade * tabua$Mortalidade) -
(1/4) * (tabua$Invalidez * tabua$Rotatividade * tabua$Mortalidade))

Aposentadoria_decremento
##  [1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
##  [7] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [13] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [19] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [25] 0.00000000 0.09959222 0.02986643 0.02985423 0.02984105 0.02982649
## [31] 0.99367018 0.99304750 0.99233106 0.99150409 0.99054938 0.98944931
## [37] 0.98818189 0.98672971 0.98507153 0.98319619 0.98109318 0.97875015
## [43] 0.97615102 0.97327353 0.97007564 0.96650461 0.96250796 0.95802583
## [49] 0.95202613 0.94736715 0.94107138 0.93404490 0.92621200 0.91748856
## [55] 0.90777979 0.89700756 0.88496932 0.87162243 0.85679918 0.84036460
## [61] 0.82216691 0.93256950 0.92721250 0.92163650 0.91585500 0.90987750
## [67] 0.90371750 0.89738550 0.89065850 0.88331450 0.87512950 0.86588150
## [73] 0.85534750 0.84330450 0.82953000 0.81380100 0.79589500 0.77558850
## [79] 0.75265950 0.72688450 0.69804150 0.66590700 0.63025850 0.59087300
## [85] 0.54752750 0.50000000

#Rotatividade como decremento principal

Rotatividade_decremento <- tabua$Rotatividade *
(1 - (1/2) * (tabua$Aposentadoria + tabua$Invalidez + tabua$Mortalidade)
+ (1/3) * (tabua$Aposentadoria * tabua$Invalidez + tabua$Aposentadoria * tabua$Mortalidade + tabua$Invalidez * tabua$Mortalidade) - (1/4) * (tabua$Aposentadoria * tabua$Invalidez * tabua$Mortalidade))

Rotatividade_decremento
##  [1] 0.01998611 0.01998596 0.01998583 0.01998567 0.01998549 0.01998527
##  [7] 0.01998502 0.01998445 0.01998364 0.01998255 0.01998114 0.01997940
## [13] 0.01997730 0.01997482 0.01997198 0.01996880 0.01996533 0.01996156
## [19] 0.01995752 0.01995318 0.01994851 0.00000000 0.00000000 0.00000000
## [25] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [31] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [37] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [43] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [49] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [55] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [61] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [67] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [73] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [79] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [85] 0.00000000 0.00000000

#q com todas as causas

tabua$qxt <- Mortalidade_decremento+Invalidez_decremento+Aposentadoria_decremento+Invalidez_decremento

tabua$qxt
##  [1] 0.001973358 0.001998092 0.002023817 0.002054488 0.002089117 0.002131662
##  [7] 0.002179153 0.002263238 0.002375014 0.002520410 0.002702387 0.002922916
## [13] 0.003185943 0.003495411 0.003849328 0.004249655 0.004688465 0.005171669
## [19] 0.005698253 0.006271154 0.006897256 0.007663982 0.008428681 0.009272895
## [25] 0.010202536 0.110262517 0.042022167 0.043221797 0.044541511 0.046015065
## [31] 1.002751408 1.003103499 1.003504720 1.003961456 1.004481560 1.005072843
## [37] 1.005747554 1.006513897 1.007385987 1.008378404 1.009507161 1.010790674
## [43] 1.012251239 1.013911984 1.015800179 1.017947195 1.020387522 1.023160587
## [49] 1.027296685 1.029889174 1.033953312 1.038567050 1.043805000 1.049749219
## [55] 1.056494355 1.064115971 1.072822092 1.082659283 1.093808911 1.106443948
## [61] 1.120760545 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## [67] 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## [73] 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## [79] 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## [85] 1.000000000 1.000000000

#p com todas as causas

tabua$pxt <- 1-tabua$qxt

tabua$pxt
##  [1]  0.998026642  0.998001908  0.997976183  0.997945512  0.997910883
##  [6]  0.997868338  0.997820847  0.997736762  0.997624986  0.997479590
## [11]  0.997297613  0.997077084  0.996814057  0.996504589  0.996150672
## [16]  0.995750345  0.995311535  0.994828331  0.994301747  0.993728846
## [21]  0.993102744  0.992336018  0.991571319  0.990727105  0.989797464
## [26]  0.889737483  0.957977833  0.956778203  0.955458489  0.953984935
## [31] -0.002751408 -0.003103499 -0.003504720 -0.003961456 -0.004481560
## [36] -0.005072843 -0.005747554 -0.006513897 -0.007385987 -0.008378404
## [41] -0.009507161 -0.010790674 -0.012251239 -0.013911984 -0.015800179
## [46] -0.017947195 -0.020387522 -0.023160587 -0.027296685 -0.029889174
## [51] -0.033953312 -0.038567050 -0.043805000 -0.049749219 -0.056494355
## [56] -0.064115971 -0.072822092 -0.082659283 -0.093808911 -0.106443948
## [61] -0.120760545  0.000000000  0.000000000  0.000000000  0.000000000
## [66]  0.000000000  0.000000000  0.000000000  0.000000000  0.000000000
## [71]  0.000000000  0.000000000  0.000000000  0.000000000  0.000000000
## [76]  0.000000000  0.000000000  0.000000000  0.000000000  0.000000000
## [81]  0.000000000  0.000000000  0.000000000  0.000000000  0.000000000
## [86]  0.000000000

#lx e dx para todas as causas

for (i in 1:nrow(tabua)) {
if(i==1){
tabua$lx[i] = 100
} else{
tabua$lx[i] = tabua$lx[i-1] - tabua$dx[i-1]
}
tabua$dx[i] = tabua$lx[i] * tabua$qxt[i]
}

#Dx

tabua$Dx = tabua$lx * (v^(tabua$x))

#Cx

tabua$Cx = tabua$dx * (v^(tabua$x + 1))

#Mx

for (i in 1:nrow(tabua))
{
tabua$Mx[i] = sum(tabua$Cx[i:nrow(tabua)])
}

#a) Calcule a taxa de entrada em invalidez para a idade de 45 anos.

tabua$Invalidez[tabua$x == 45]
## [1] 0.001174

#b) O número de ativos que provavelmente entraram em invalidez aos 45 anos e iram sobreviver

tabua$Invalidez[tabua$x == 45] * tabua$lx[tabua$x == 45] 
## [1] 0.1130435

#c) Para um indivíduo de idade x=48 anos, calcule o prêmio único de um seguro temporário de 10 anos (B=1) que cobre a sua saída do fundo de pensão por todas as causas.

(tabua$Mx[tabua$x == 48] - tabua$Mx[tabua$x == 58]) / tabua$Dx[tabua$x ==
48]
## [1] 0.14747