# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("MCD", "ISRG", "KHC", "FIS", "GOOG")
prices<- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# rename
set_names(c("asset", "date", "returns"))
# period_returns = c("yearly", "quarterly", "monthly", "weekly")
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.30,
0.30,
0.10,
0.15,
0.15)
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_quarterly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "quarters")
portfolio_returns_rebalanced_quarterly_tbl
## # A tibble: 20 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.0950
## 2 2013-06-28 0.0590
## 3 2013-09-30 -0.00860
## 4 2013-12-31 0.123
## 5 2014-03-31 0.0145
## 6 2014-06-30 0.0173
## 7 2014-09-30 0.0144
## 8 2014-12-31 0.0165
## 9 2015-03-31 0.0428
## 10 2015-06-30 -0.0489
## 11 2015-09-30 0.0739
## 12 2015-12-31 0.0897
## 13 2016-03-31 0.0414
## 14 2016-06-30 0.0475
## 15 2016-09-30 0.0559
## 16 2016-12-30 -0.0133
## 17 2017-03-31 0.0744
## 18 2017-06-30 0.0875
## 19 2017-09-29 0.0456
## 20 2017-12-29 0.0505
# write_rds(portfolio_returns_rebalanced_monthly_tbl,
# "00_data/Ch03_portfolio_returns_rebalanced_monthly_tbl.rds")
portfolio_returns_rebalanced_quarterly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.01) +
geom_density(aes(returns)) +
labs(title = "Portfolio Histogram and Density",
y = "distribution",
x = "quarterly returns")
The majority of quarterly returns cluster between 0% and 7.5%, with the highest concentration of quarters having returns in the range of 4% to 6%, highlighted by the density line peaking at 5%. Given this distribution, a typical quarter’s return is expected to be positive, falling between 2.5% and 7.5%. While there are some outliers on both the negative and higher positive sides, this range captures where most returns occur, based on the histogram and density curve.