# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NOK", "MSFT", "GOOGL", "L", "SOXL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GOOGL" "L" "MSFT" "NOK" "SOXL"
# weights
weights <- c(0.35, 0.15, 0.25, 0.15, 0.1)
weights
## [1] 0.35 0.15 0.25 0.15 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 GOOGL 0.35
## 2 L 0.15
## 3 MSFT 0.25
## 4 NOK 0.15
## 5 SOXL 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0593
## 2 2013-02-28 0.0258
## 3 2013-03-28 -0.00449
## 4 2013-04-30 0.0604
## 5 2013-05-31 0.0576
## 6 2013-06-28 0.00686
## 7 2013-07-31 -0.000162
## 8 2013-08-30 -0.0206
## 9 2013-09-30 0.116
## 10 2013-10-31 0.110
## # ℹ 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.046 0.046
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.01830456
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 GOOGL 0.0182 0.0539
## 2 L 0.0039 0.034
## 3 MSFT 0.0216 0.0589
## 4 NOK 0.0056 0.105
## 5 SOXL 0.0511 0.144
## 6 Portfolio 0.0183 0.046
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 37 × 2
## date rolling_sd
## <date> <dbl>
## 1 2014-12-31 0.0393
## 2 2015-01-30 0.0425
## 3 2015-02-27 0.0445
## 4 2015-03-31 0.0461
## 5 2015-04-30 0.0453
## 6 2015-05-29 0.0446
## 7 2015-06-30 0.0473
## 8 2015-07-31 0.0485
## 9 2015-08-31 0.0508
## 10 2015-09-30 0.0460
## # ℹ 27 more rows
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "blue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = "24-Month Rolling Volatility") +
theme(plot.title = element_text(hjust = 0.5))
This portfolio is quite interesting. With MSFT and GOOGL they are right around where the portfolio lays which means they are generally a safe option to invest in because they are safe, and will have alright returns. With NOK it is the worst option on the board, this is because it is NOT safe, and does not have forseen good returns (Still a chance but doesn’t look good). Then there is L which is by far the safest option, but will not come with nearly any returns because of how still it is. Finally there is SOXL, which is the riskiest on the board, but also has the potential to have the highest return out of all of them.