# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("XOM", "QQQ", "SPY", "TSLA","CGC")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log" ) %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "CGC" "QQQ" "SPY" "TSLA" "XOM"
# weights
weights <- c(0.25,0.25,0.2,0.2,0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 CGC 0.25
## 2 QQQ 0.25
## 3 SPY 0.2
## 4 TSLA 0.2
## 5 XOM 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters" )
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0620
## 2 2013-06-28 0.224
## 3 2013-09-30 0.150
## 4 2013-12-31 0.0147
## 5 2014-03-31 0.0666
## 6 2014-06-30 0.0599
## 7 2014-09-30 -0.0626
## 8 2014-12-31 -0.0338
## 9 2015-03-31 -0.0487
## 10 2015-06-30 0.0595
## 11 2015-09-30 -0.114
## 12 2015-12-31 0.181
## 13 2016-03-31 -0.0218
## 14 2016-06-30 0.0114
## 15 2016-09-30 0.112
## 16 2016-12-30 0.221
## 17 2017-03-31 0.124
## 18 2017-06-30 0.00157
## 19 2017-09-29 0.0985
## 20 2017-12-29 0.268
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "turquoise", binwitdth = 0.01) +
geom_density() +
# Formating
scale_x_continuous(labels = scales::percent_format())+
labs(x ="returns",
y = "distribution",
title = "Histogram and Density")
What return should you expect from the portfolio in a typical quarter? In a typical quarter you should expect returns -5% all the way to 15% with the highest frequency at 7%.