# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("XOM", "MSFT", "ABT", "NVDA", "JPM")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "ABT" "JPM" "MSFT" "NVDA" "XOM"
# weights
weights <- c(0.35, 0.15, 0.25, 0.15, 0.1)
weights
## [1] 0.35 0.15 0.25 0.15 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 ABT 0.35
## 2 JPM 0.15
## 3 MSFT 0.25
## 4 NVDA 0.15
## 5 XOM 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0496
## 2 2013-02-28 0.0160
## 3 2013-03-28 0.0208
## 4 2013-04-30 0.0684
## 5 2013-05-31 0.0393
## 6 2013-06-28 -0.0298
## 7 2013-07-31 0.0153
## 8 2013-08-30 -0.0367
## 9 2013-09-30 0.00776
## 10 2013-10-31 0.0519
## # ℹ 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0405 0.0405
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.01934292
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 ABT 0.0117 0.0558
## 2 JPM 0.017 0.0556
## 3 MSFT 0.0216 0.0589
## 4 NVDA 0.0471 0.0881
## 5 XOM 0.0021 0.0405
## 6 Portfolio 0.0193 0.0405
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 37 × 2
## date rolling_sd
## <date> <dbl>
## 1 2014-12-31 0.0292
## 2 2015-01-30 0.0332
## 3 2015-02-27 0.0362
## 4 2015-03-31 0.0379
## 5 2015-04-30 0.0378
## 6 2015-05-29 0.0374
## 7 2015-06-30 0.0371
## 8 2015-07-31 0.0372
## 9 2015-08-31 0.0382
## 10 2015-09-30 0.0392
## # ℹ 27 more rows
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "blue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = "24-Month Rolling Volatility") +
theme(plot.title = element_text(hjust = 0.5))
Based on the chart I expect high volatility with a moderate to high gains on my NVDIA stock, based on my portfolio it is low risk and medium reward. MSFT and JPM are medium reward medium risk. On the other hand XOM is low risk low reward which displaces the risk within my portfolio.