Introduction
Questions
Variation
Visualizing distributions
diamonds %>%
ggplot(aes(x = cut)) +
geom_bar()

diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
filter(carat < 3)%>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Typical values
diamonds %>%
# Filter out diamonds > 3 carat
filter(carat < 3) %>%
# Plot
ggplot(aes(carat)) +
geom_histogram(binwidth = 0.01)

faithful %>%
ggplot(aes(eruptions)) +
geom_histogram(binwidth = 0.25)

Unusual values
diamonds %>%
ggplot(aes(y)) +
geom_histogram()+
coord_cartesian(ylim = c(0, 50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Missing Values
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
# plot
ggplot(aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
