# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NOC", "WMT", "UNH", "SPY", "LOC")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "LOC" "NOC" "SPY" "UNH" "WMT"
# weights
weights <- c(0.35, 0.15, 0.25, 0.15, 0.1)
weights
## [1] 0.35 0.15 0.25 0.15 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 LOC 0.35
## 2 NOC 0.15
## 3 SPY 0.25
## 4 UNH 0.15
## 5 WMT 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 74 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0119
## 2 2013-02-28 0.00221
## 3 2013-03-28 0.0362
## 4 2013-04-30 0.0270
## 5 2013-05-31 0.0230
## 6 2013-06-28 0.00425
## 7 2013-07-08 0
## 8 2013-07-31 0.0490
## 9 2013-08-30 -0.0146
## 10 2013-09-30 0.0142
## # ℹ 64 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0243 0.0243
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.01363274
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 LOC 0.0324 0.0869
## 2 NOC 0.0269 0.0413
## 3 SPY 0.0121 0.0272
## 4 UNH 0.0247 0.0446
## 5 WMT 0.0083 0.0471
## 6 Portfolio 0.0136 0.0243
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 51 × 2
## date rolling_sd
## <date> <dbl>
## 1 2014-11-28 0.0195
## 2 2014-12-31 0.0197
## 3 2015-01-30 0.0204
## 4 2015-02-27 0.0217
## 5 2015-03-24 0.0220
## 6 2015-03-31 0.0223
## 7 2015-04-17 0.0223
## 8 2015-04-30 0.0232
## 9 2015-05-06 0.0235
## 10 2015-05-29 0.0228
## # ℹ 41 more rows
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "aquamarine4") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = "24-Month Rolling Volatility") +
theme(plot.title = element_text(hjust = 0.5))
Based on the chart I could expect low volatility with a low to moderate gains, there a singular High yield high risk stock in LOC, I have two high yield lower risk stocks seen in NOC and UNH, performing better than the whole portfolio with a slight gain in risk, then there was SPY which yielded less than the portfolio and overall had more risk, the same could be said for WMT. I would instead of investing in this created portfolio, invest my money into NOC and UNH, as their high yield outweighs the slight increase in risk but none of the other stocks in the portfolio would be worth investing in on their own