# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
Stocks : “MSFT”, “AAPL”, “F”, “JPM”, “SBUX”
from 2012-12-31 to 2017-12-31
symbols <- c("MSFT", "AAPL", "F", "JPM", "SBUX")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period. = "quarters",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "F" "JPM" "MSFT" "SBUX"
# weights
weights <- c(0.3, 0.2, 0.2, 0.15, 0.15)
weights
## [1] 0.30 0.20 0.20 0.15 0.15
w_tbl <- tibble(symbols, weights)
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weigts = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 -0.000198
## 2 2013-02-28 -0.00101
## 3 2013-03-28 0.0157
## 4 2013-04-30 0.0584
## 5 2013-05-31 0.0743
## 6 2013-06-28 -0.0273
## 7 2013-07-31 0.0580
## 8 2013-08-30 -0.00318
## 9 2013-09-30 0.0245
## 10 2013-10-31 0.0460
## # ℹ 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0368 0.0368
# Mean of Portfolio Returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.0141496
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AAPL 0.015 0.0695
## 2 F 0.0031 0.0545
## 3 JPM 0.017 0.0556
## 4 MSFT 0.0216 0.0589
## 5 SBUX 0.0139 0.0458
## 6 Portfolio 0.0141 0.0368
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = "24 Month Rolling Volitility") +
theme(plot.title = element_text(hjust = 0.5))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
The portfolio offers higher expected returns than any individual stock but comes with more risk (standard deviation). However, it’s still a better choice since it diversifies risk across assets. Investing all your money in one stock could expose you to more volatility and lower returns. In short, the portfolio provides a better balance of risk and return.