Email 2

Scale information

FSR

Burden

Status

Spotlighting vs. no

Main effects

Graphs

my_graph_function(
  d = email2_clean,
  i_v = "cond",
  y = c("fsr", "burden", "stat", "workwit", "timewit", "leaddei", "engagement"),
  variable_labels = c("FSR", "Burden", "Status", "Work", "Time", "Lead DEI", "Engage"),
  variable_levels = c("Direct Input", "No Input"),
  legend_title = "Legend"
)
## `summarise()` has grouped output by 'variable'. You can override using the `.groups` argument.

Transgression vs. no

Main effects

Graphs

Interactions

Fear of social retaliation

ANOVA

##                     Df Sum Sq Mean Sq F value Pr(>F)  
## transgression        1     16   15.58    6.08  0.014 *
## cond                 1     12   11.98    4.68  0.031 *
## transgression:cond   1      0    0.11    0.04  0.836  
## Residuals          347    889    2.56                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANCOVA

##                Df Sum Sq Mean Sq F value Pr(>F)  
## transgression   1     16   15.58    6.10  0.014 *
## cond            1     12   11.98    4.69  0.031 *
## Residuals     348    889    2.56                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grouped by seeking condition

Grouped by transgression

Graphs

Burden

ANOVA

##                     Df Sum Sq Mean Sq F value Pr(>F)  
## transgression        1     14   13.97    3.31  0.070 .
## cond                 1      6    5.93    1.40  0.237  
## transgression:cond   1     14   13.57    3.22  0.074 .
## Residuals          347   1465    4.22                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANCOVA

##                Df Sum Sq Mean Sq F value Pr(>F)  
## transgression   1     14   13.97    3.29  0.071 .
## cond            1      6    5.93    1.40  0.238  
## Residuals     348   1478    4.25                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grouped by seeking condition

Grouped by transgression

Graphs

Status

ANOVA

##                     Df Sum Sq Mean Sq F value    Pr(>F)    
## transgression        1     56    56.4   22.72 0.0000028 ***
## cond                 1      0     0.0    0.00     0.990    
## transgression:cond   1     15    14.9    5.99     0.015 *  
## Residuals          347    862     2.5                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANCOVA

##                Df Sum Sq Mean Sq F value    Pr(>F)    
## transgression   1     56    56.4    22.4 0.0000032 ***
## cond            1      0     0.0     0.0      0.99    
## Residuals     348    876     2.5                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grouped by seeking condition

Grouped by transgression

Graphs

Work with

ANOVA

##                     Df Sum Sq Mean Sq F value          Pr(>F)    
## transgression        1    101   100.6   52.45 0.0000000000029 ***
## cond                 1      3     2.6    1.36            0.24    
## transgression:cond   1      1     0.9    0.45            0.50    
## Residuals          347    665     1.9                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANCOVA

##                Df Sum Sq Mean Sq F value          Pr(>F)    
## transgression   1    101   100.6   52.53 0.0000000000028 ***
## cond            1      3     2.6    1.36            0.24    
## Residuals     348    666     1.9                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grouped by seeking condition

Grouped by transgression

Graphs

Time with

ANOVA

##                     Df Sum Sq Mean Sq F value Pr(>F)
## transgression        1      1    0.59    0.13   0.72
## cond                 1      3    3.41    0.76   0.38
## transgression:cond   1      4    4.34    0.97   0.33
## Residuals          347   1554    4.48

ANCOVA

##                Df Sum Sq Mean Sq F value Pr(>F)
## transgression   1      1    0.59    0.13   0.72
## cond            1      3    3.41    0.76   0.38
## Residuals     348   1559    4.48

Grouped by seeking condition

Grouped by transgression

Graphs

Lead DEI

ANOVA

##                     Df Sum Sq Mean Sq F value        Pr(>F)    
## transgression        1    125   124.6   42.54 0.00000000024 ***
## cond                 1      4     3.9    1.32          0.25    
## transgression:cond   1      2     1.6    0.53          0.47    
## Residuals          347   1016     2.9                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANCOVA

##                Df Sum Sq Mean Sq F value        Pr(>F)    
## transgression   1    125   124.6   42.60 0.00000000024 ***
## cond            1      4     3.9    1.33          0.25    
## Residuals     348   1018     2.9                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grouped by seeking condition

Grouped by transgression

Graphs

Engage

Regression

## 
## Call:
## glm(formula = engagement ~ transgression * cond, family = "binomial", 
##     data = email2_clean)
## 
## Coefficients:
##                                        Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                               0.437      0.230    1.90   0.0578 . 
## transgressionsexist                       0.632      0.334    1.89   0.0584 . 
## condNoInputSeeking                       -0.928      0.327   -2.84   0.0045 **
## transgressionsexist:condNoInputSeeking    0.354      0.454    0.78   0.4360   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 473.72  on 350  degrees of freedom
## Residual deviance: 449.70  on 347  degrees of freedom
## AIC: 457.7
## 
## Number of Fisher Scoring iterations: 4

Graph (Logit)

Graphs (Percentages)

Are the proportions significantly different from 50%?

# None, Sexism
prop.test(64, 103)
## 
##  1-sample proportions test with continuity correction
## 
## data:  64 out of 103, null probability 0.5
## X-squared = 5.6, df = 1, p-value = 0.02
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
##  0.5200 0.7135
## sample estimates:
##      p 
## 0.6214
# Direct, Sexism
prop.test(67, 90)
## 
##  1-sample proportions test with continuity correction
## 
## data:  67 out of 90, null probability 0.5
## X-squared = 21, df = 1, p-value = 0.000006
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
##  0.6397 0.8280
## sample estimates:
##      p 
## 0.7444
# None, rude
prop.test(30, 79)
## 
##  1-sample proportions test with continuity correction
## 
## data:  30 out of 79, null probability 0.5
## X-squared = 4.1, df = 1, p-value = 0.04
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
##  0.2750 0.4963
## sample estimates:
##      p 
## 0.3797
# Direct, rude
prop.test(48, 79)
## 
##  1-sample proportions test with continuity correction
## 
## data:  48 out of 79, null probability 0.5
## X-squared = 3.2, df = 1, p-value = 0.07
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
##  0.4910 0.7136
## sample estimates:
##      p 
## 0.6076

Yes, all proportions are significantly different from 50%…except for the “direct, sexism” condition.