Encabezado 1

Tras instalar los paquetes MASS y Survival con los siguientes comandos: install.packages(“MASS”) install.packages(“Survival”) El resultado de lanzar library() mediante la consola es:

Para buscad información sobre el paquete Rcmdr desde la consola en primer lugar se intenta utilizar la función help(Rcmdr), lo que lleva a la sugerencia de usar ??Rcmdr

Ejercicio 2

Fichero TXT:

library(knitr)
library("datasets")
datosTxt <- read.table("C:/Users/mario/Desktop/UOC/Software para el análisis de datos/RStudio/Lab1/altura_peso.txt", sep = ",", header = TRUE)
kable(head(datosTxt))
Individuo Altura Peso Edad Sexo
1 170 65 25 M
2 160 70 30 F
3 180 75 22 M
4 175 80 28 F
5 165 60 26 M
summary(datosTxt)
##    Individuo     Altura         Peso         Edad          Sexo          
##  Min.   :1   Min.   :160   Min.   :60   Min.   :22.0   Length:5          
##  1st Qu.:2   1st Qu.:165   1st Qu.:65   1st Qu.:25.0   Class :character  
##  Median :3   Median :170   Median :70   Median :26.0   Mode  :character  
##  Mean   :3   Mean   :170   Mean   :70   Mean   :26.2                     
##  3rd Qu.:4   3rd Qu.:175   3rd Qu.:75   3rd Qu.:28.0                     
##  Max.   :5   Max.   :180   Max.   :80   Max.   :30.0

Fichero csv:

library(knitr)
library("datasets")
datosCsv <- read.csv("C:/Users/mario/Desktop/UOC/Software para el análisis de datos/RStudio/Lab1/vacunas_paises.csv", sep = ";", header = TRUE)
kable(head(datosCsv))
Pais Vacunas_Administradas Vacunas_Completas Poblacion_Vacunada Dosis_Refuerzo Fecha_Actualizacion Efectividad Fabricante
Espana 8.0e+07 3.5e+07 75 1.5e+07 2024-10-01 95 Pfizer
Francia 7.0e+07 3.2e+07 70 1.4e+07 2024-10-01 94 Moderna
Alemania 9.0e+07 4.0e+07 80 1.6e+07 2024-10-01 93 AstraZeneca
Italia 6.0e+07 2.8e+07 65 1.2e+07 2024-10-01 92 Johnson&Johnson
Reino Unido 7.5e+07 3.3e+07 72 1.3e+07 2024-10-01 91 Pfizer
Estados Unidos 2.5e+08 1.2e+08 60 5.0e+07 2024-10-01 90 Moderna
summary(datosCsv)
##      Pais           Vacunas_Administradas Vacunas_Completas  
##  Length:16          Min.   :1.500e+07     Min.   :  7000000  
##  Class :character   1st Qu.:4.750e+07     1st Qu.: 23750000  
##  Mode  :character   Median :7.750e+07     Median : 34000000  
##                     Mean   :1.487e+08     Mean   : 72187500  
##                     3rd Qu.:1.050e+08     3rd Qu.: 48750000  
##                     Max.   :1.000e+09     Max.   :500000000  
##  Poblacion_Vacunada Dosis_Refuerzo      Fecha_Actualizacion  Efectividad   
##  Min.   :30.00      Min.   :  3000000   Length:16           Min.   :80.00  
##  1st Qu.:48.75      1st Qu.:  9500000   Class :character    1st Qu.:83.75  
##  Median :57.50      Median : 14500000   Mode  :character    Median :87.50  
##  Mean   :56.69      Mean   : 29312500                       Mean   :87.50  
##  3rd Qu.:70.00      3rd Qu.: 21000000                       3rd Qu.:91.25  
##  Max.   :80.00      Max.   :200000000                       Max.   :95.00  
##   Fabricante       
##  Length:16         
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
fivenum(datosCsv$Efectividad)
## [1] 80.0 83.5 87.5 91.5 95.0
fivenum(datosCsv$Poblacion_Vacunada)
## [1] 30.0 47.5 57.5 70.0 80.0

Ejercicio 3

library("MASS")
data("anorexia")
#Datos que contiene:
kable(head(anorexia))
Treat Prewt Postwt
Cont 80.7 80.2
Cont 89.4 80.1
Cont 91.8 86.4
Cont 74.0 86.3
Cont 78.1 76.1
Cont 88.3 78.1
#numero de datos:
dimensiones <- dim(anorexia)
print(dimensiones)
## [1] 72  3
#comprobamos si existen valores na
any(is.na(anorexia))
## [1] FALSE
#comprobamos si existen valores null
any(is.null(anorexia))
## [1] FALSE
#cambiamos valores añadiendo los nuevos valores como factores
levels(anorexia$Treat) <- c(levels(anorexia$Treat), "Cogn Beh Tr")
levels(anorexia$Treat) <- c(levels(anorexia$Treat), "Contr")
levels(anorexia$Treat) <- c(levels(anorexia$Treat), "Fam Tr")
anorexia$Treat[anorexia$Treat == "CBT"] <- "Cogn Beh Tr"
anorexia$Treat[anorexia$Treat == "Cont"] <- "Contr"
anorexia$Treat[anorexia$Treat == "FT"] <- "Fam Tr"
#comprobamos que se hayan cambiado
anorexia
##          Treat Prewt Postwt
## 1        Contr  80.7   80.2
## 2        Contr  89.4   80.1
## 3        Contr  91.8   86.4
## 4        Contr  74.0   86.3
## 5        Contr  78.1   76.1
## 6        Contr  88.3   78.1
## 7        Contr  87.3   75.1
## 8        Contr  75.1   86.7
## 9        Contr  80.6   73.5
## 10       Contr  78.4   84.6
## 11       Contr  77.6   77.4
## 12       Contr  88.7   79.5
## 13       Contr  81.3   89.6
## 14       Contr  78.1   81.4
## 15       Contr  70.5   81.8
## 16       Contr  77.3   77.3
## 17       Contr  85.2   84.2
## 18       Contr  86.0   75.4
## 19       Contr  84.1   79.5
## 20       Contr  79.7   73.0
## 21       Contr  85.5   88.3
## 22       Contr  84.4   84.7
## 23       Contr  79.6   81.4
## 24       Contr  77.5   81.2
## 25       Contr  72.3   88.2
## 26       Contr  89.0   78.8
## 27 Cogn Beh Tr  80.5   82.2
## 28 Cogn Beh Tr  84.9   85.6
## 29 Cogn Beh Tr  81.5   81.4
## 30 Cogn Beh Tr  82.6   81.9
## 31 Cogn Beh Tr  79.9   76.4
## 32 Cogn Beh Tr  88.7  103.6
## 33 Cogn Beh Tr  94.9   98.4
## 34 Cogn Beh Tr  76.3   93.4
## 35 Cogn Beh Tr  81.0   73.4
## 36 Cogn Beh Tr  80.5   82.1
## 37 Cogn Beh Tr  85.0   96.7
## 38 Cogn Beh Tr  89.2   95.3
## 39 Cogn Beh Tr  81.3   82.4
## 40 Cogn Beh Tr  76.5   72.5
## 41 Cogn Beh Tr  70.0   90.9
## 42 Cogn Beh Tr  80.4   71.3
## 43 Cogn Beh Tr  83.3   85.4
## 44 Cogn Beh Tr  83.0   81.6
## 45 Cogn Beh Tr  87.7   89.1
## 46 Cogn Beh Tr  84.2   83.9
## 47 Cogn Beh Tr  86.4   82.7
## 48 Cogn Beh Tr  76.5   75.7
## 49 Cogn Beh Tr  80.2   82.6
## 50 Cogn Beh Tr  87.8  100.4
## 51 Cogn Beh Tr  83.3   85.2
## 52 Cogn Beh Tr  79.7   83.6
## 53 Cogn Beh Tr  84.5   84.6
## 54 Cogn Beh Tr  80.8   96.2
## 55 Cogn Beh Tr  87.4   86.7
## 56      Fam Tr  83.8   95.2
## 57      Fam Tr  83.3   94.3
## 58      Fam Tr  86.0   91.5
## 59      Fam Tr  82.5   91.9
## 60      Fam Tr  86.7  100.3
## 61      Fam Tr  79.6   76.7
## 62      Fam Tr  76.9   76.8
## 63      Fam Tr  94.2  101.6
## 64      Fam Tr  73.4   94.9
## 65      Fam Tr  80.5   75.2
## 66      Fam Tr  81.6   77.8
## 67      Fam Tr  82.1   95.5
## 68      Fam Tr  77.6   90.7
## 69      Fam Tr  83.5   92.5
## 70      Fam Tr  89.9   93.8
## 71      Fam Tr  86.0   91.7
## 72      Fam Tr  87.3   98.0

Ejercicio 4

library("MASS")
data("biopsy")
#Datos que contiene:
kable(head(biopsy))
ID V1 V2 V3 V4 V5 V6 V7 V8 V9 class
1000025 5 1 1 1 2 1 3 1 1 benign
1002945 5 4 4 5 7 10 3 2 1 benign
1015425 3 1 1 1 2 2 3 1 1 benign
1016277 6 8 8 1 3 4 3 7 1 benign
1017023 4 1 1 3 2 1 3 1 1 benign
1017122 8 10 10 8 7 10 9 7 1 malignant
#Exportamos
write.csv(biopsy, file="C:/Users/mario/Desktop/UOC/Software para el análisis de datos/RStudio/Lab1/Ejercicio4/biopsy.csv")
#Exportamos los datos melanoma en tres ficheros distintos
data(Melanoma, package="MASS")
kable(head(Melanoma))
time status sex age year thickness ulcer
10 3 1 76 1972 6.76 1
30 3 1 56 1968 0.65 0
35 2 1 41 1977 1.34 0
99 3 0 71 1968 2.90 0
185 1 1 52 1965 12.08 1
204 1 1 28 1971 4.84 1
write.csv(Melanoma, file="C:/Users/mario/Desktop/UOC/Software para el análisis de datos/RStudio/Lab1/Ejercicio4/melanoma.csv")
write.table(Melanoma,"C:/Users/mario/Desktop/UOC/Software para el análisis de datos/RStudio/Lab1/Ejercicio4/melanoma.txt")
library(xlsx)
write.xlsx(Melanoma,"C:/Users/mario/Desktop/UOC/Software para el análisis de datos/RStudio/Lab1/Ejercicio4/melanoma.xlsx")

resumenAge = summary(Melanoma$age)
capture.output(resumenAge, file="C:/Users/mario/Desktop/UOC/Software para el análisis de datos/RStudio/Lab1/Ejercicio4/resumenAge.doc")

#https://hbiostat.org/data/ -> Diabetes data    
dataSetDiabetes = read.csv("C:/Users/mario/Desktop/UOC/Software para el análisis de datos/RStudio/Lab1/Ejercicio4/diabetes.csv")
kable(head(dataSetDiabetes))
id chol stab.glu hdl ratio glyhb location age gender height weight frame bp.1s bp.1d bp.2s bp.2d waist hip time.ppn
1000 203 82 56 3.6 4.31 Buckingham 46 female 62 121 medium 118 59 NA NA 29 38 720
1001 165 97 24 6.9 4.44 Buckingham 29 female 64 218 large 112 68 NA NA 46 48 360
1002 228 92 37 6.2 4.64 Buckingham 58 female 61 256 large 190 92 185 92 49 57 180
1003 78 93 12 6.5 4.63 Buckingham 67 male 67 119 large 110 50 NA NA 33 38 480
1005 249 90 28 8.9 7.72 Buckingham 64 male 68 183 medium 138 80 NA NA 44 41 300
1008 248 94 69 3.6 4.81 Buckingham 34 male 71 190 large 132 86 NA NA 36 42 195

Ejercicio 5

library("MASS")
data("birthwt")
#Datos que contiene:
kable(head(birthwt))
low age lwt race smoke ptl ht ui ftv bwt
85 0 19 182 2 0 0 0 1 0 2523
86 0 33 155 3 0 0 0 0 3 2551
87 0 20 105 1 1 0 0 0 1 2557
88 0 21 108 1 1 0 0 1 2 2594
89 0 18 107 1 1 0 0 1 0 2600
91 0 21 124 3 0 0 0 0 0 2622
#a) ¿Cuál   es  la  edad    máxima  de  las madres  del conjunto    de  datos?
max(birthwt$age)
## [1] 45
#b) ¿Cuál   es  la  edad    mínima  de  las madres  del conjunto    de  datos?
min(birthwt$age)
## [1] 14
#c) ¿Cuál   es  el  rango   de  edad    de  las madres?
max(birthwt$age)-min(birthwt$age)
## [1] 31
#d) ¿Fumaba la  madre   cuyo    recién  nacido  era el  de  menor   peso?
birthwt$smoke[birthwt$bwt==min(birthwt$bwt)] 
## [1] 1
#e) ¿Cuánto pesó    el  recién  nacido  cuya    madre   tenía   la  edad    máxima?
birthwt$bwt[birthwt$age==max(birthwt$age)] 
## [1] 4990
#f) Listad  los pesos   de  los recién  nacidos,    cuyas   madres  visitarán   menos   de  dos veces   al médico   durante el  primer  trimestre.
birthwt$bwt[birthwt$ftv<=2] 
##   [1] 2523 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750 2769 2769
##  [16] 2778 2807 2821 2835 2836 2863 2877 2877 2906 2920 2920 2920 2920 2948 2948
##  [31] 2977 2977 2977 2977 2922 3005 3033 3042 3062 3062 3062 3062 3062 3090 3090
##  [46] 3090 3100 3104 3132 3147 3175 3175 3203 3203 3203 3225 3225 3232 3232 3234
##  [61] 3260 3274 3274 3317 3317 3317 3321 3331 3374 3374 3402 3416 3444 3459 3460
##  [76] 3473 3544 3487 3544 3572 3572 3586 3600 3614 3614 3629 3629 3637 3643 3651
##  [91] 3651 3651 3651 3699 3728 3756 3770 3770 3770 3790 3799 3827 3856 3860 3884
## [106] 3884 3912 3940 3941 3941 3969 3983 3997 3997 4054 4054 4111 4153 4167 4174
## [121] 4238 4593 4990  709 1021 1135 1330 1474 1588 1588 1701 1729 1790 1818 1885
## [136] 1893 1899 1928 1928 1928 1936 1970 2055 2055 2082 2084 2084 2100 2125 2187
## [151] 2187 2211 2225 2240 2240 2282 2296 2296 2325 2353 2353 2367 2381 2381 2381
## [166] 2410 2410 2410 2424 2438 2442 2466 2466 2466 2495 2495 2495

Ejercicio 6

#Datos que contiene:
kable(head(anorexia))
Treat Prewt Postwt
Contr 80.7 80.2
Contr 89.4 80.1
Contr 91.8 86.4
Contr 74.0 86.3
Contr 78.1 76.1
Contr 88.3 78.1
summary(anorexia)
##          Treat        Prewt           Postwt      
##  CBT        : 0   Min.   :70.00   Min.   : 71.30  
##  Cont       : 0   1st Qu.:79.60   1st Qu.: 79.33  
##  FT         : 0   Median :82.30   Median : 84.05  
##  Cogn Beh Tr:29   Mean   :82.41   Mean   : 85.17  
##  Contr      :26   3rd Qu.:86.00   3rd Qu.: 91.55  
##  Fam Tr     :17   Max.   :94.90   Max.   :103.60
length(anorexia$Prewt)
## [1] 72
length(anorexia$Postwt)
## [1] 72
matrix(c(anorexia$Prewt, anorexia$Postwt), ncol = 2)
##       [,1]  [,2]
##  [1,] 80.7  80.2
##  [2,] 89.4  80.1
##  [3,] 91.8  86.4
##  [4,] 74.0  86.3
##  [5,] 78.1  76.1
##  [6,] 88.3  78.1
##  [7,] 87.3  75.1
##  [8,] 75.1  86.7
##  [9,] 80.6  73.5
## [10,] 78.4  84.6
## [11,] 77.6  77.4
## [12,] 88.7  79.5
## [13,] 81.3  89.6
## [14,] 78.1  81.4
## [15,] 70.5  81.8
## [16,] 77.3  77.3
## [17,] 85.2  84.2
## [18,] 86.0  75.4
## [19,] 84.1  79.5
## [20,] 79.7  73.0
## [21,] 85.5  88.3
## [22,] 84.4  84.7
## [23,] 79.6  81.4
## [24,] 77.5  81.2
## [25,] 72.3  88.2
## [26,] 89.0  78.8
## [27,] 80.5  82.2
## [28,] 84.9  85.6
## [29,] 81.5  81.4
## [30,] 82.6  81.9
## [31,] 79.9  76.4
## [32,] 88.7 103.6
## [33,] 94.9  98.4
## [34,] 76.3  93.4
## [35,] 81.0  73.4
## [36,] 80.5  82.1
## [37,] 85.0  96.7
## [38,] 89.2  95.3
## [39,] 81.3  82.4
## [40,] 76.5  72.5
## [41,] 70.0  90.9
## [42,] 80.4  71.3
## [43,] 83.3  85.4
## [44,] 83.0  81.6
## [45,] 87.7  89.1
## [46,] 84.2  83.9
## [47,] 86.4  82.7
## [48,] 76.5  75.7
## [49,] 80.2  82.6
## [50,] 87.8 100.4
## [51,] 83.3  85.2
## [52,] 79.7  83.6
## [53,] 84.5  84.6
## [54,] 80.8  96.2
## [55,] 87.4  86.7
## [56,] 83.8  95.2
## [57,] 83.3  94.3
## [58,] 86.0  91.5
## [59,] 82.5  91.9
## [60,] 86.7 100.3
## [61,] 79.6  76.7
## [62,] 76.9  76.8
## [63,] 94.2 101.6
## [64,] 73.4  94.9
## [65,] 80.5  75.2
## [66,] 81.6  77.8
## [67,] 82.1  95.5
## [68,] 77.6  90.7
## [69,] 83.5  92.5
## [70,] 89.9  93.8
## [71,] 86.0  91.7
## [72,] 87.3  98.0

Ejercicio 7

Identificador <-c("I1","I2","I3","I4","I5","I6","I7","I8","I9","I10","I11","I12","I13","I14","I15","I16","I17","I18","I19","I20","I21","I22","I23","I24","I25")
Edad <-c(23,24,21,22,23,25,26,24,21,22,23,25,26,24,22,21,25,26,24,21,25,27,26,22,29)
Sexo <-c(1,2,1,1,1,2,2,2,1,2,1,2,2,2,1,1,1,2,2,2,1,2,1,1,2) 
Peso <-c(76.5,81.2,79.3,59.5,67.3,78.6,67.9,100.2,97.8,56.4,65.4,67.5,87.4,99.7,87.6,93.4,65.4,73.7,85.1,61.2,54.8,103.4,65.8,71.7,85.0)
Alt <-c(165,154,178,165,164,175,182,165,178,165,158,183,184,164,189,167,182,179,165,158,183,184,189,166,175) #altura en cm
Fuma <-c("SÍ","NO","SÍ","SÍ","NO","NO","NO","SÍ","SÍ","SÍ","NO","NO","SÍ","SÍ","SÍ","SÍ","NO","NO","SÍ","SÍ","SÍ","NO","SÍ","NO","SÍ")
Trat_Pulmon <- data.frame(Identificador,Edad,Sexo,Peso,Alt,Fuma)
Trat_Pulmon
##    Identificador Edad Sexo  Peso Alt Fuma
## 1             I1   23    1  76.5 165   SÍ
## 2             I2   24    2  81.2 154   NO
## 3             I3   21    1  79.3 178   SÍ
## 4             I4   22    1  59.5 165   SÍ
## 5             I5   23    1  67.3 164   NO
## 6             I6   25    2  78.6 175   NO
## 7             I7   26    2  67.9 182   NO
## 8             I8   24    2 100.2 165   SÍ
## 9             I9   21    1  97.8 178   SÍ
## 10           I10   22    2  56.4 165   SÍ
## 11           I11   23    1  65.4 158   NO
## 12           I12   25    2  67.5 183   NO
## 13           I13   26    2  87.4 184   SÍ
## 14           I14   24    2  99.7 164   SÍ
## 15           I15   22    1  87.6 189   SÍ
## 16           I16   21    1  93.4 167   SÍ
## 17           I17   25    1  65.4 182   NO
## 18           I18   26    2  73.7 179   NO
## 19           I19   24    2  85.1 165   SÍ
## 20           I20   21    2  61.2 158   SÍ
## 21           I21   25    1  54.8 183   SÍ
## 22           I22   27    2 103.4 184   NO
## 23           I23   26    1  65.8 189   SÍ
## 24           I24   22    1  71.7 166   NO
## 25           I25   29    2  85.0 175   SÍ
#a) Seleccionad los registros   con edad    > 22.
subset(Trat_Pulmon, Edad > 22)
##    Identificador Edad Sexo  Peso Alt Fuma
## 1             I1   23    1  76.5 165   SÍ
## 2             I2   24    2  81.2 154   NO
## 5             I5   23    1  67.3 164   NO
## 6             I6   25    2  78.6 175   NO
## 7             I7   26    2  67.9 182   NO
## 8             I8   24    2 100.2 165   SÍ
## 11           I11   23    1  65.4 158   NO
## 12           I12   25    2  67.5 183   NO
## 13           I13   26    2  87.4 184   SÍ
## 14           I14   24    2  99.7 164   SÍ
## 17           I17   25    1  65.4 182   NO
## 18           I18   26    2  73.7 179   NO
## 19           I19   24    2  85.1 165   SÍ
## 21           I21   25    1  54.8 183   SÍ
## 22           I22   27    2 103.4 184   NO
## 23           I23   26    1  65.8 189   SÍ
## 25           I25   29    2  85.0 175   SÍ
#b) Seleccionad  el  elemento    3   de  la  columna     4   del     conjunto    de  datos   (contando   elidentificador).
Trat_Pulmon[3, 4]
## [1] 79.3
#c) Usad    el  comando subset()    para    seleccionar todas   las  filas  que tienen  una edad    menor que   27  años    y   sin incluir la  columna Alt.
subset(Trat_Pulmon,Edad<27, select = c(Identificador,Edad,Sexo,Peso,Fuma)) 
##    Identificador Edad Sexo  Peso Fuma
## 1             I1   23    1  76.5   SÍ
## 2             I2   24    2  81.2   NO
## 3             I3   21    1  79.3   SÍ
## 4             I4   22    1  59.5   SÍ
## 5             I5   23    1  67.3   NO
## 6             I6   25    2  78.6   NO
## 7             I7   26    2  67.9   NO
## 8             I8   24    2 100.2   SÍ
## 9             I9   21    1  97.8   SÍ
## 10           I10   22    2  56.4   SÍ
## 11           I11   23    1  65.4   NO
## 12           I12   25    2  67.5   NO
## 13           I13   26    2  87.4   SÍ
## 14           I14   24    2  99.7   SÍ
## 15           I15   22    1  87.6   SÍ
## 16           I16   21    1  93.4   SÍ
## 17           I17   25    1  65.4   NO
## 18           I18   26    2  73.7   NO
## 19           I19   24    2  85.1   SÍ
## 20           I20   21    2  61.2   SÍ
## 21           I21   25    1  54.8   SÍ
## 23           I23   26    1  65.8   SÍ
## 24           I24   22    1  71.7   NO

Ejercicio 8

#Datos que contiene:
data("ChickWeight")
kable(head(ChickWeight))
weight Time Chick Diet
42 0 1 1
51 2 1 1
59 4 1 1
64 6 1 1
76 8 1 1
93 10 1 1
summary(ChickWeight)
##      weight           Time           Chick     Diet   
##  Min.   : 35.0   Min.   : 0.00   13     : 12   1:220  
##  1st Qu.: 63.0   1st Qu.: 4.00   9      : 12   2:120  
##  Median :103.0   Median :10.00   20     : 12   3:120  
##  Mean   :121.8   Mean   :10.72   10     : 12   4:118  
##  3rd Qu.:163.8   3rd Qu.:16.00   17     : 12          
##  Max.   :373.0   Max.   :21.00   19     : 12          
##                                  (Other):506
plot(ChickWeight$weight)

boxplot(ChickWeight$Time)

Ejercicio 9

data("anorexia")
anorexia_treat_df<-data.frame(anorexia$Treat,c(anorexia$Postwt-anorexia$Prewt))
colnames(anorexia_treat_df) <- c("Treat", "WeightChange")
anorexia_treat_df
##    Treat WeightChange
## 1   Cont         -0.5
## 2   Cont         -9.3
## 3   Cont         -5.4
## 4   Cont         12.3
## 5   Cont         -2.0
## 6   Cont        -10.2
## 7   Cont        -12.2
## 8   Cont         11.6
## 9   Cont         -7.1
## 10  Cont          6.2
## 11  Cont         -0.2
## 12  Cont         -9.2
## 13  Cont          8.3
## 14  Cont          3.3
## 15  Cont         11.3
## 16  Cont          0.0
## 17  Cont         -1.0
## 18  Cont        -10.6
## 19  Cont         -4.6
## 20  Cont         -6.7
## 21  Cont          2.8
## 22  Cont          0.3
## 23  Cont          1.8
## 24  Cont          3.7
## 25  Cont         15.9
## 26  Cont        -10.2
## 27   CBT          1.7
## 28   CBT          0.7
## 29   CBT         -0.1
## 30   CBT         -0.7
## 31   CBT         -3.5
## 32   CBT         14.9
## 33   CBT          3.5
## 34   CBT         17.1
## 35   CBT         -7.6
## 36   CBT          1.6
## 37   CBT         11.7
## 38   CBT          6.1
## 39   CBT          1.1
## 40   CBT         -4.0
## 41   CBT         20.9
## 42   CBT         -9.1
## 43   CBT          2.1
## 44   CBT         -1.4
## 45   CBT          1.4
## 46   CBT         -0.3
## 47   CBT         -3.7
## 48   CBT         -0.8
## 49   CBT          2.4
## 50   CBT         12.6
## 51   CBT          1.9
## 52   CBT          3.9
## 53   CBT          0.1
## 54   CBT         15.4
## 55   CBT         -0.7
## 56    FT         11.4
## 57    FT         11.0
## 58    FT          5.5
## 59    FT          9.4
## 60    FT         13.6
## 61    FT         -2.9
## 62    FT         -0.1
## 63    FT          7.4
## 64    FT         21.5
## 65    FT         -5.3
## 66    FT         -3.8
## 67    FT         13.4
## 68    FT         13.1
## 69    FT          9.0
## 70    FT          3.9
## 71    FT          5.7
## 72    FT         10.7
anorexia_treat_C_df<-subset(anorexia_treat_df,Treat == "Cont" & WeightChange > 0 )
anorexia_treat_C_df
##    Treat WeightChange
## 4   Cont         12.3
## 8   Cont         11.6
## 10  Cont          6.2
## 13  Cont          8.3
## 14  Cont          3.3
## 15  Cont         11.3
## 21  Cont          2.8
## 22  Cont          0.3
## 23  Cont          1.8
## 24  Cont          3.7
## 25  Cont         15.9

Caso práctico

caso_practico <- data.frame(Id = c("ID01", "ID02", "ID03", "ID04", "ID05", "ID06", "ID07", "ID08", "ID09", "ID10","ID11", "ID12", "ID13", "ID14", "ID15", "ID16", "ID17", "ID18", "ID19", "ID20","ID21", "ID22", "ID23", "ID24", "ID25", "ID26", "ID27", "ID28", "ID29", "ID30"),
Edad = c(56, 46, 32, 60, 25, 38, 56, 36, 40, 28, 28, 41, 53, 57, 41, 20, 39, 19, 41, 61,47, 55, 19, 38, 50, 29, 39, 61, 42, 44),
Gene = c(1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2),
Trat = c("B", "B", "A", "B", "A", "B", "C", "C", "A", "C", "C", "B", "A", "B", "B", "B", "B", "B", "B", "B","A", "C", "B", "B", "B", "B", "B", "B", "C", "C"),
Peso = c(54.4, 59.8, 52.3, 66.3, 69.4, 63.6, 91.4, 67.8, 64.0, 77.1, 57.0, 90.1, 53.7, 99.3, 88.6, 59.9, 50.3, 90.8, 85.3, 86.5,88.6, 53.7, 67.9, 55.8, 93.2, 81.2, 66.5, 53.2, 65.5, 66.3),
Alt = c(186.5, 181.9, 194.4, 173.6, 156.0, 185.7, 188.0, 178.1, 188.5, 174.7, 176.1, 171.4, 151.3, 155.4, 151.6, 181.8, 165.7, 175.4, 195.4, 162.5,170.5, 187.8, 161.4, 153.8, 164.5, 158.1, 196.5, 190.4, 181.7, 193.6))
caso_practico
##      Id Edad Gene Trat Peso   Alt
## 1  ID01   56    1    B 54.4 186.5
## 2  ID02   46    1    B 59.8 181.9
## 3  ID03   32    2    A 52.3 194.4
## 4  ID04   60    2    B 66.3 173.6
## 5  ID05   25    2    A 69.4 156.0
## 6  ID06   38    2    B 63.6 185.7
## 7  ID07   56    2    C 91.4 188.0
## 8  ID08   36    1    C 67.8 178.1
## 9  ID09   40    2    A 64.0 188.5
## 10 ID10   28    2    C 77.1 174.7
## 11 ID11   28    1    C 57.0 176.1
## 12 ID12   41    2    B 90.1 171.4
## 13 ID13   53    1    A 53.7 151.3
## 14 ID14   57    2    B 99.3 155.4
## 15 ID15   41    1    B 88.6 151.6
## 16 ID16   20    2    B 59.9 181.8
## 17 ID17   39    2    B 50.3 165.7
## 18 ID18   19    1    B 90.8 175.4
## 19 ID19   41    1    B 85.3 195.4
## 20 ID20   61    1    B 86.5 162.5
## 21 ID21   47    1    A 88.6 170.5
## 22 ID22   55    1    C 53.7 187.8
## 23 ID23   19    1    B 67.9 161.4
## 24 ID24   38    1    B 55.8 153.8
## 25 ID25   50    1    B 93.2 164.5
## 26 ID26   29    2    B 81.2 158.1
## 27 ID27   39    2    B 66.5 196.5
## 28 ID28   61    1    B 53.2 190.4
## 29 ID29   42    2    C 65.5 181.7
## 30 ID30   44    2    C 66.3 193.6
summary(caso_practico)
##       Id                 Edad            Gene         Trat          
##  Length:30          Min.   :19.00   Min.   :1.0   Length:30         
##  Class :character   1st Qu.:33.00   1st Qu.:1.0   Class :character  
##  Mode  :character   Median :41.00   Median :1.5   Mode  :character  
##                     Mean   :41.37   Mean   :1.5                     
##                     3rd Qu.:52.25   3rd Qu.:2.0                     
##                     Max.   :61.00   Max.   :2.0                     
##       Peso            Alt       
##  Min.   :50.30   Min.   :151.3  
##  1st Qu.:57.70   1st Qu.:163.0  
##  Median :66.40   Median :175.8  
##  Mean   :70.65   Mean   :175.1  
##  3rd Qu.:86.20   3rd Qu.:187.5  
##  Max.   :99.30   Max.   :196.5
caso_practico$IMC <- caso_practico$Peso/(caso_practico$Alt/100)^2
caso_practico
##      Id Edad Gene Trat Peso   Alt      IMC
## 1  ID01   56    1    B 54.4 186.5 15.64016
## 2  ID02   46    1    B 59.8 181.9 18.07323
## 3  ID03   32    2    A 52.3 194.4 13.83914
## 4  ID04   60    2    B 66.3 173.6 21.99956
## 5  ID05   25    2    A 69.4 156.0 28.51742
## 6  ID06   38    2    B 63.6 185.7 18.44307
## 7  ID07   56    2    C 91.4 188.0 25.86012
## 8  ID08   36    1    C 67.8 178.1 21.37479
## 9  ID09   40    2    A 64.0 188.5 18.01181
## 10 ID10   28    2    C 77.1 174.7 25.26205
## 11 ID11   28    1    C 57.0 176.1 18.38045
## 12 ID12   41    2    B 90.1 171.4 30.66925
## 13 ID13   53    1    A 53.7 151.3 23.45829
## 14 ID14   57    2    B 99.3 155.4 41.11944
## 15 ID15   41    1    B 88.6 151.6 38.55097
## 16 ID16   20    2    B 59.9 181.8 18.12337
## 17 ID17   39    2    B 50.3 165.7 18.31989
## 18 ID18   19    1    B 90.8 175.4 29.51390
## 19 ID19   41    1    B 85.3 195.4 22.34086
## 20 ID20   61    1    B 86.5 162.5 32.75740
## 21 ID21   47    1    A 88.6 170.5 30.47789
## 22 ID22   55    1    C 53.7 187.8 15.22590
## 23 ID23   19    1    B 67.9 161.4 26.06530
## 24 ID24   38    1    B 55.8 153.8 23.58965
## 25 ID25   50    1    B 93.2 164.5 34.44166
## 26 ID26   29    2    B 81.2 158.1 32.48570
## 27 ID27   39    2    B 66.5 196.5 17.22251
## 28 ID28   61    1    B 53.2 190.4 14.67499
## 29 ID29   42    2    C 65.5 181.7 19.83953
## 30 ID30   44    2    C 66.3 193.6 17.68898
Df_Hombres <- subset(caso_practico, Gene == 2)
Df_Hombres
##      Id Edad Gene Trat Peso   Alt      IMC
## 3  ID03   32    2    A 52.3 194.4 13.83914
## 4  ID04   60    2    B 66.3 173.6 21.99956
## 5  ID05   25    2    A 69.4 156.0 28.51742
## 6  ID06   38    2    B 63.6 185.7 18.44307
## 7  ID07   56    2    C 91.4 188.0 25.86012
## 9  ID09   40    2    A 64.0 188.5 18.01181
## 10 ID10   28    2    C 77.1 174.7 25.26205
## 12 ID12   41    2    B 90.1 171.4 30.66925
## 14 ID14   57    2    B 99.3 155.4 41.11944
## 16 ID16   20    2    B 59.9 181.8 18.12337
## 17 ID17   39    2    B 50.3 165.7 18.31989
## 26 ID26   29    2    B 81.2 158.1 32.48570
## 27 ID27   39    2    B 66.5 196.5 17.22251
## 29 ID29   42    2    C 65.5 181.7 19.83953
## 30 ID30   44    2    C 66.3 193.6 17.68898
Df_Mujeres <- subset(caso_practico, Gene == 1)
Df_Mujeres
##      Id Edad Gene Trat Peso   Alt      IMC
## 1  ID01   56    1    B 54.4 186.5 15.64016
## 2  ID02   46    1    B 59.8 181.9 18.07323
## 8  ID08   36    1    C 67.8 178.1 21.37479
## 11 ID11   28    1    C 57.0 176.1 18.38045
## 13 ID13   53    1    A 53.7 151.3 23.45829
## 15 ID15   41    1    B 88.6 151.6 38.55097
## 18 ID18   19    1    B 90.8 175.4 29.51390
## 19 ID19   41    1    B 85.3 195.4 22.34086
## 20 ID20   61    1    B 86.5 162.5 32.75740
## 21 ID21   47    1    A 88.6 170.5 30.47789
## 22 ID22   55    1    C 53.7 187.8 15.22590
## 23 ID23   19    1    B 67.9 161.4 26.06530
## 24 ID24   38    1    B 55.8 153.8 23.58965
## 25 ID25   50    1    B 93.2 164.5 34.44166
## 28 ID28   61    1    B 53.2 190.4 14.67499
mix<-rbind(Df_Hombres, Df_Mujeres)
mix
##      Id Edad Gene Trat Peso   Alt      IMC
## 3  ID03   32    2    A 52.3 194.4 13.83914
## 4  ID04   60    2    B 66.3 173.6 21.99956
## 5  ID05   25    2    A 69.4 156.0 28.51742
## 6  ID06   38    2    B 63.6 185.7 18.44307
## 7  ID07   56    2    C 91.4 188.0 25.86012
## 9  ID09   40    2    A 64.0 188.5 18.01181
## 10 ID10   28    2    C 77.1 174.7 25.26205
## 12 ID12   41    2    B 90.1 171.4 30.66925
## 14 ID14   57    2    B 99.3 155.4 41.11944
## 16 ID16   20    2    B 59.9 181.8 18.12337
## 17 ID17   39    2    B 50.3 165.7 18.31989
## 26 ID26   29    2    B 81.2 158.1 32.48570
## 27 ID27   39    2    B 66.5 196.5 17.22251
## 29 ID29   42    2    C 65.5 181.7 19.83953
## 30 ID30   44    2    C 66.3 193.6 17.68898
## 1  ID01   56    1    B 54.4 186.5 15.64016
## 2  ID02   46    1    B 59.8 181.9 18.07323
## 8  ID08   36    1    C 67.8 178.1 21.37479
## 11 ID11   28    1    C 57.0 176.1 18.38045
## 13 ID13   53    1    A 53.7 151.3 23.45829
## 15 ID15   41    1    B 88.6 151.6 38.55097
## 18 ID18   19    1    B 90.8 175.4 29.51390
## 19 ID19   41    1    B 85.3 195.4 22.34086
## 20 ID20   61    1    B 86.5 162.5 32.75740
## 21 ID21   47    1    A 88.6 170.5 30.47789
## 22 ID22   55    1    C 53.7 187.8 15.22590
## 23 ID23   19    1    B 67.9 161.4 26.06530
## 24 ID24   38    1    B 55.8 153.8 23.58965
## 25 ID25   50    1    B 93.2 164.5 34.44166
## 28 ID28   61    1    B 53.2 190.4 14.67499

)