library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Dataset 1: Customers
customers <- tibble(
customer_id = c(1, 2, 3, 4, 5),
name = c("Alice", "Bob", "Charlie", "David", "Eve"),
city = c("New York", "Los Angeles", "Chicago", "Houston", "Phoenix")
)
# Dataset 2: Orders
orders <- tibble(
order_id = c(101, 102, 103, 104, 105, 106),
customer_id = c(1, 2, 3, 2, 6, 7),
product = c("Laptop", "Phone", "Tablet", "Desktop", "Camera", "Printer"),
amount = c(1200, 800, 300, 1500, 600, 150)
)
inner_join_result <- customers %>%
inner_join(orders, by = "customer_id")
inner_join_result
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
nrow(inner_join_result)
## [1] 4
How many rows are in the result?
The result will have 4 rows.
#Why are some customers or orders not included in the result?
#Customers 4 and 5 are not included because they don't have any orders in the orders table. Orders with customer_id 6 and 7 are not included because these customers do not exist in the customers table.
# Task 2 - Perform left join
left_join_result <- customers %>%
left_join(orders, by = "customer_id")
left_join_result
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
nrow(left_join_result)
## [1] 6
#How many rows are in the result?
#The result will have 5 rows (all customers are included).
#Why does this number differ from the inner join result?
#Left join includes all rows from the customers table, while the inner join only includes rows with matching customer_id values in both tables.
# Task 3 - Perform right join
right_join_result <- customers %>%
right_join(orders, by = "customer_id")
right_join_result
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 6 <NA> <NA> 105 Camera 600
## 6 7 <NA> <NA> 106 Printer 150
nrow(right_join_result)
## [1] 6
#How many rows are in the result?
#The result will have 6 rows (all orders are included).
#Which customer_ids in the result have NULL for customer name and city?
#customer_ids 6 and 7 have NULL values because these customers do not exist in the customers table.
# Task 4 - Perform full join
full_join_result <- customers %>%
full_join(orders, by = "customer_id")
full_join_result
## # A tibble: 8 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
## 7 6 <NA> <NA> 105 Camera 600
## 8 7 <NA> <NA> 106 Printer 150
nrow(full_join_result)
## [1] 8
#How many rows are in the result?
#The result will have 7 rows (all customers and all orders are included).
#Identify any rows where there’s information from only one table.
#Rows with customer_id 4 and 5 contain information only from the customers table (no matching orders).
#Rows with customer_id 6 and 7 contain information only from the orders table (no matching customers).
# Task 5 - Perform semi join
semi_join_result <- customers %>%
semi_join(orders, by = "customer_id")
semi_join_result
## # A tibble: 3 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 1 Alice New York
## 2 2 Bob Los Angeles
## 3 3 Charlie Chicago
nrow(semi_join_result)
## [1] 3
#How many rows are in the result?
#The result will have 3 rows.
#How does this result differ from the inner join result?
#The semi join only returns the matching rows from the customers table, while the inner join returns columns from both tables.
# Task 6 -Perform anti join
anti_join_result <- customers %>%
anti_join(orders, by = "customer_id")
anti_join_result
## # A tibble: 2 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 4 David Houston
## 2 5 Eve Phoenix
#Which customers are in the result?
#The customers in the result are David (customer 4) and Eve (customer 5).
#What does this result tell you about these customers?
#These customers have not placed any orders.
# Task 7 -
#Havent placed orders
#Use left join for this scenario
all_customers <- customers %>%
left_join(orders, by = "customer_id")
all_customers
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
#Have placed any orders
# Use inner join for this scenario
customers_with_orders <- customers %>%
inner_join(orders, by = "customer_id")
customers_with_orders
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
# Task 8 - Perform left join and then summarize
customer_summary <- customers %>%
left_join(orders, by = "customer_id") %>%
group_by(name, city) %>%
summarize(
total_orders = n(),
total_amount_spent = sum(amount, na.rm = TRUE)
)
## `summarise()` has grouped output by 'name'. You can override using the
## `.groups` argument.
customer_summary
## # A tibble: 5 × 4
## # Groups: name [5]
## name city total_orders total_amount_spent
## <chr> <chr> <int> <dbl>
## 1 Alice New York 1 1200
## 2 Bob Los Angeles 2 2300
## 3 Charlie Chicago 1 300
## 4 David Houston 1 0
## 5 Eve Phoenix 1 0