# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("TM", "SBUX", "AEO", "BBW")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AEO" "BBW" "SBUX" "TM"
# weights
weights <- c(0.25, 0.25, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AEO 0.25
## 2 BBW 0.25
## 3 SBUX 0.2
## 4 TM 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0866
## 2 2013-06-28 0.0703
## 3 2013-09-30 0.0102
## 4 2013-12-31 0.0285
## 5 2014-03-31 0.00443
## 6 2014-06-30 0.0800
## 7 2014-09-30 0.0562
## 8 2014-12-31 0.123
## 9 2015-03-31 0.0879
## 10 2015-06-30 -0.0266
## 11 2015-09-30 0.0197
## 12 2015-12-31 -0.0902
## 13 2016-03-31 0.0199
## 14 2016-06-30 -0.0155
## 15 2016-09-30 -0.0277
## 16 2016-12-30 0.0406
## 17 2017-03-31 -0.126
## 18 2017-06-30 0.00307
## 19 2017-09-29 0.00925
## 20 2017-12-29 0.0948
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns, performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.062 0.062
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.0223788
Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 5 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AEO 0.0037 0.148
## 2 BBW 0.0439 0.243
## 3 SBUX 0.0418 0.0713
## 4 TM 0.0211 0.0902
## 5 Portfolio 0.0224 0.062
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
12 Months Rolling Volatility
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 12,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 9 × 2
## date rolling_sd
## <date> <dbl>
## 1 2015-12-31 0.0588
## 2 2016-03-31 0.0569
## 3 2016-06-30 0.0570
## 4 2016-09-30 0.0589
## 5 2016-12-30 0.0592
## 6 2017-03-31 0.0732
## 7 2017-06-30 0.0700
## 8 2017-09-29 0.0681
## 9 2017-12-29 0.0640
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = "12-Months Rolling Volatility") +
theme(plot.title = element_text(hjust = 0.5))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
My portfolio has a much lower risk than all of its assets, and it is in the middle in terms of returns. TM and AEO have lower returns than portfolio and SBUX and BBW have higher returns. I would invest in SBUX instead of the portfolio because it has similar risk but a much higher return.