Measurement Analyses

Models (1) without Self-Rated Health

load(file='/Users/meganwilliams/Desktop/Research/HANDLS Data/MeasurementData.rdata')
load(file='/Users/meganwilliams/Desktop/Research/HANDLS Data/MeasurementData1.rdata')

Model (1) with three-ways

Model1.1 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + Race*Sex*Employment01 + Race*Employment01 + Sex*Employment01 + Race*Sex*Educ + Sex*Educ + Race*Educ + Race*Sex*acasiincomx01 + Race*acasiincomx01 + Sex*acasiincomx01 + Race*Sex*Neighborhood02 + Race*Neighborhood02 + Sex*Neighborhood02 + Race*Sex*CES + Race*CES + Sex*CES + Race*Sex, MeasurementData,x=T)

summary(Model1.1)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + Race * Sex * Employment01 + 
##     Race * Employment01 + Sex * Employment01 + Race * Sex * Educ + 
##     Sex * Educ + Race * Educ + Race * Sex * acasiincomx01 + Race * 
##     acasiincomx01 + Sex * acasiincomx01 + Race * Sex * Neighborhood02 + 
##     Race * Neighborhood02 + Sex * Neighborhood02 + Race * Sex * 
##     CES + Race * CES + Sex * CES + Race * Sex, data = MeasurementData, 
##     x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.342 -1.500 -0.078  1.715  6.861 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)                5.09675    0.63370    8.04  1.4e-15
## Age0                       0.00660    0.00446    1.48    0.139
## Race1                     -1.05136    0.84141   -1.25    0.212
## Sex1                      -0.64027    0.86037   -0.74    0.457
## Educ                       0.02075    0.03023    0.69    0.493
## Employment011             -0.14729    0.15734   -0.94    0.349
## acasiincomx01             -0.15154    0.14474   -1.05    0.295
## Neighborhood02            -0.05882    0.07127   -0.83    0.409
## CES                       -0.04213    0.00640   -6.58  6.0e-11
## Race1:Sex1                 0.42472    1.24949    0.34    0.734
## Race1:Employment011        0.28747    0.24331    1.18    0.238
## Sex1:Employment011         0.40830    0.23554    1.73    0.083
## Race1:Educ                 0.07095    0.04105    1.73    0.084
## Sex1:Educ                  0.04197    0.04584    0.92    0.360
## Race1:acasiincomx01        0.05286    0.22879    0.23    0.817
## Sex1:acasiincomx01        -0.12011    0.21677   -0.55    0.580
## Race1:Neighborhood02      -0.14375    0.10364   -1.39    0.166
## Sex1:Neighborhood02       -0.09044    0.10788   -0.84    0.402
## Race1:CES                 -0.00320    0.00962   -0.33    0.740
## Sex1:CES                   0.01339    0.01062    1.26    0.208
## Race1:Sex1:Employment011   0.30743    0.38091    0.81    0.420
## Race1:Sex1:Educ           -0.01619    0.06103   -0.27    0.791
## Race1:Sex1:acasiincomx01  -0.32773    0.35934   -0.91    0.362
## Race1:Sex1:Neighborhood02  0.10932    0.15943    0.69    0.493
## Race1:Sex1:CES            -0.00340    0.01610   -0.21    0.833
## 
## Residual standard error: 1.86 on 2116 degrees of freedom
## Multiple R-squared:  0.147,  Adjusted R-squared:  0.138 
## F-statistic: 15.2 on 24 and 2116 DF,  p-value: <2e-16

Model (1) with two-ways

Model1.2 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + Race * Educ + Race * Employment01 + Race * acasiincomx01 + Race * Neighborhood02 + Race * CES + Sex * Educ + Sex * Employment01 + Sex * acasiincomx01 + Sex * Neighborhood02 + Sex * CES + Race * Sex, MeasurementData, x=T)

summary(Model1.2)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + Race * Educ + Race * 
##     Employment01 + Race * acasiincomx01 + Race * Neighborhood02 + 
##     Race * CES + Sex * Educ + Sex * Employment01 + Sex * acasiincomx01 + 
##     Sex * Neighborhood02 + Sex * CES + Race * Sex, data = MeasurementData, 
##     x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.314 -1.168 -0.137  1.092  6.767 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           5.07193    0.56618    8.96  < 2e-16
## Age0                  0.00656    0.00444    1.48   0.1396
## Race1                -0.95609    0.62850   -1.52   0.1284
## Sex1                 -0.55533    0.62308   -0.89   0.3729
## Educ                  0.02310    0.02619    0.88   0.3779
## Employment011        -0.19770    0.14306   -1.38   0.1671
## acasiincomx01        -0.10277    0.13215   -0.78   0.4368
## Neighborhood02       -0.07828    0.06370   -1.23   0.2193
## CES                  -0.04158    0.00587   -7.09  1.9e-12
## Race1:Educ            0.06357    0.03030    2.10   0.0360
## Race1:Employment011   0.41521    0.18678    2.22   0.0263
## Race1:acasiincomx01  -0.08103    0.17584   -0.46   0.6450
## Race1:Neighborhood02 -0.09896    0.07860   -1.26   0.2081
## Race1:CES            -0.00432    0.00769   -0.56   0.5747
## Sex1:Educ             0.03514    0.02998    1.17   0.2412
## Sex1:Employment011    0.52698    0.18496    2.85   0.0044
## Sex1:acasiincomx01   -0.23762    0.17243   -1.38   0.1683
## Sex1:Neighborhood02  -0.04431    0.07913   -0.56   0.5755
## Sex1:CES              0.01137    0.00796    1.43   0.1531
## Race1:Sex1            0.23443    0.17074    1.37   0.1699
## 
## Residual standard error: 1.86 on 2121 degrees of freedom
## Multiple R-squared:  0.146,  Adjusted R-squared:  0.138 
## F-statistic: 19.1 on 19 and 2121 DF,  p-value: <2e-16

Model (1) with no interactions

Model1.3 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + Race * Educ + Race * Employment01 + Sex * Employment01 , MeasurementData,x=T)

summary(Model1.3)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + Race * Educ + Race * 
##     Employment01 + Sex * Employment01, data = MeasurementData, 
##     x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.305 -1.244 -0.865  1.714  6.761 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)          5.34450    0.43518   12.28  < 2e-16
## Age0                 0.00692    0.00444    1.56  0.11937
## Race1               -1.59908    0.35463   -4.51  6.9e-06
## Sex1                -0.43472    0.12757   -3.41  0.00067
## Educ                 0.03052    0.02216    1.38  0.16850
## Employment011       -0.27346    0.13483   -2.03  0.04266
## acasiincomx01       -0.22577    0.08495   -2.66  0.00793
## Neighborhood02      -0.14547    0.03921   -3.71  0.00021
## CES                 -0.03984    0.00383  -10.40  < 2e-16
## Race1:Educ           0.07865    0.02844    2.77  0.00574
## Race1:Employment011  0.49394    0.17320    2.85  0.00439
## Sex1:Employment011   0.66202    0.16635    3.98  7.1e-05
## 
## Residual standard error: 1.86 on 2129 degrees of freedom
## Multiple R-squared:  0.141,  Adjusted R-squared:  0.137 
## F-statistic: 31.8 on 11 and 2129 DF,  p-value: <2e-16

Model 1 Plots

library(effects)
## Loading required package: colorspace
## 
## Attaching package: 'effects'
## 
## The following object is masked from 'package:car':
## 
##     Prestige
plot(effect("Sex:Employment01", Model1.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-4

plot(effect("Race:Employment01", Model1.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-4

plot(effect("Race:Educ", Model1.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-4

Models (2) with Self-Rated Health (5 categories)

load(file='/Users/meganwilliams/Desktop/Research/HANDLS Data/MeasurementData.rdata')
load(file='/Users/meganwilliams/Desktop/Research/HANDLS Data/MeasurementData1.rdata')

Model (2) with three-ways

Model2.1 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + SF01 + Race*Sex*Employment01 + Race*Employment01 + Sex*Employment01 + Race*Sex*Educ + Race*Educ + Sex*Educ + Race*Sex*acasiincomx01 + Race*acasiincomx01 + Sex*acasiincomx01 + Race*Sex*Neighborhood02 + Race*Neighborhood02 + Sex*Neighborhood02 + Race*Sex*CES + Race*CES + Sex*CES + Race*Sex + Race*Sex*SF01 + Race*SF01 + Sex*SF01, MeasurementData1,x=T)

summary(Model2.1)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + SF01 + Race * Sex * 
##     Employment01 + Race * Employment01 + Sex * Employment01 + 
##     Race * Sex * Educ + Race * Educ + Sex * Educ + Race * Sex * 
##     acasiincomx01 + Race * acasiincomx01 + Sex * acasiincomx01 + 
##     Race * Sex * Neighborhood02 + Race * Neighborhood02 + Sex * 
##     Neighborhood02 + Race * Sex * CES + Race * CES + Sex * CES + 
##     Race * Sex + Race * Sex * SF01 + Race * SF01 + Sex * SF01, 
##     data = MeasurementData1, x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.402 -1.226 -0.638  1.123  6.729 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)                5.73131    0.68217    8.40  < 2e-16
## Age0                       0.00610    0.00452    1.35    0.178
## Race1                     -0.61210    0.94698   -0.65    0.518
## Sex1                      -0.08560    0.95670   -0.09    0.929
## Educ                       0.01835    0.03062    0.60    0.549
## Employment011             -0.23924    0.16178   -1.48    0.139
## acasiincomx01             -0.31666    0.16503   -1.92    0.055
## Neighborhood02            -0.01404    0.07278   -0.19    0.847
## CES                       -0.04076    0.00657   -6.20  6.7e-10
## SF01Fair                  -0.53060    0.31406   -1.69    0.091
## SF01Good                  -0.64267    0.29099   -2.21    0.027
## SF01Poor                  -0.40809    0.46353   -0.88    0.379
## SF01vGood                 -0.20674    0.30304   -0.68    0.495
## Race1:Sex1                -0.91795    1.40513   -0.65    0.514
## Race1:Employment011        0.21425    0.25133    0.85    0.394
## Sex1:Employment011         0.40239    0.24336    1.65    0.098
## Race1:Educ                 0.05174    0.04181    1.24    0.216
## Sex1:Educ                  0.03702    0.04625    0.80    0.424
## Race1:acasiincomx01       -0.00623    0.25782   -0.02    0.981
## Sex1:acasiincomx01        -0.03934    0.24749   -0.16    0.874
## Race1:Neighborhood02      -0.16073    0.10553   -1.52    0.128
## Sex1:Neighborhood02       -0.12472    0.10950   -1.14    0.255
## Race1:CES                  0.00315    0.01000    0.32    0.752
## Sex1:CES                   0.01737    0.01086    1.60    0.110
## Race1:SF01Fair            -0.29352    0.49339   -0.59    0.552
## Race1:SF01Good             0.03207    0.43684    0.07    0.941
## Race1:SF01Poor            -1.13728    0.66071   -1.72    0.085
## Race1:SF01vGood           -0.23212    0.44948   -0.52    0.606
## Sex1:SF01Fair             -0.68542    0.46660   -1.47    0.142
## Sex1:SF01Good             -0.52118    0.42037   -1.24    0.215
## Sex1:SF01Poor             -1.18668    0.73709   -1.61    0.108
## Sex1:SF01vGood            -0.64824    0.44151   -1.47    0.142
## Race1:Sex1:Employment011   0.47201    0.39457    1.20    0.232
## Race1:Sex1:Educ            0.00614    0.06173    0.10    0.921
## Race1:Sex1:acasiincomx01  -0.13476    0.40116   -0.34    0.737
## Race1:Sex1:Neighborhood02  0.12326    0.16245    0.76    0.448
## Race1:Sex1:CES            -0.01437    0.01667   -0.86    0.389
## Race1:Sex1:SF01Fair        1.25868    0.72282    1.74    0.082
## Race1:Sex1:SF01Good        0.74826    0.64043    1.17    0.243
## Race1:Sex1:SF01Poor        2.23094    1.06659    2.09    0.037
## Race1:Sex1:SF01vGood       0.81245    0.65895    1.23    0.218
## 
## Residual standard error: 1.84 on 2036 degrees of freedom
## Multiple R-squared:  0.168,  Adjusted R-squared:  0.152 
## F-statistic: 10.3 on 40 and 2036 DF,  p-value: <2e-16

Model (2) with two-ways and significant three-ways

Model2.2 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + Race * Educ + Race * Employment01 + Race * acasiincomx01 + Race * Neighborhood02 + Race * CES + Race*SF01 + Sex * Educ + Sex * Employment01 + Sex * acasiincomx01 + Sex * Neighborhood02 + Sex * CES + Sex*SF01 + Race * Sex + Race*Sex*SF01, MeasurementData1, x=T)

summary(Model2.2)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + Race * Educ + Race * 
##     Employment01 + Race * acasiincomx01 + Race * Neighborhood02 + 
##     Race * CES + Race * SF01 + Sex * Educ + Sex * Employment01 + 
##     Sex * acasiincomx01 + Sex * Neighborhood02 + Sex * CES + 
##     Sex * SF01 + Race * Sex + Race * Sex * SF01, data = MeasurementData1, 
##     x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.367 -1.429 -0.076  1.204  6.620 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           5.85840    0.62020    9.45  < 2e-16
## Age0                  0.00591    0.00451    1.31   0.1898
## Race1                -0.84637    0.74739   -1.13   0.2576
## Sex1                 -0.29614    0.73599   -0.40   0.6875
## Educ                  0.01464    0.02655    0.55   0.5814
## Employment011        -0.31226    0.14730   -2.12   0.0341
## acasiincomx01        -0.29971    0.15019   -2.00   0.0461
## Neighborhood02       -0.03805    0.06504   -0.58   0.5586
## CES                  -0.03876    0.00603   -6.43  1.6e-10
## SF01Fair             -0.55846    0.31235   -1.79   0.0739
## SF01Good             -0.64491    0.29033   -2.22   0.0264
## SF01Poor             -0.46229    0.46116   -1.00   0.3162
## SF01vGood            -0.21078    0.30266   -0.70   0.4862
## Race1:Educ            0.05668    0.03070    1.85   0.0650
## Race1:Employment011   0.40123    0.19335    2.08   0.0381
## Race1:acasiincomx01  -0.06521    0.19686   -0.33   0.7405
## Race1:Neighborhood02 -0.10842    0.08004   -1.35   0.1757
## Race1:CES            -0.00204    0.00798   -0.26   0.7982
## Race1:SF01Fair       -0.15910    0.48151   -0.33   0.7411
## Race1:SF01Good        0.07497    0.43413    0.17   0.8629
## Race1:SF01Poor       -0.95109    0.64714   -1.47   0.1418
## Race1:SF01vGood      -0.19595    0.44845   -0.44   0.6622
## Sex1:Educ             0.04082    0.03045    1.34   0.1802
## Sex1:Employment011    0.58051    0.19143    3.03   0.0025
## Sex1:acasiincomx01   -0.08421    0.19439   -0.43   0.6649
## Sex1:Neighborhood02  -0.07311    0.08068   -0.91   0.3649
## Sex1:CES              0.01132    0.00822    1.38   0.1690
## Sex1:SF01Fair        -0.57413    0.45985   -1.25   0.2120
## Sex1:SF01Good        -0.48413    0.41854   -1.16   0.2475
## Sex1:SF01Poor        -1.03863    0.73132   -1.42   0.1557
## Sex1:SF01vGood       -0.61812    0.44069   -1.40   0.1609
## Race1:Sex1           -0.41579    0.57450   -0.72   0.4693
## Race1:Sex1:SF01Fair   0.94190    0.68518    1.37   0.1694
## Race1:Sex1:SF01Good   0.64296    0.63091    1.02   0.3083
## Race1:Sex1:SF01Poor   1.78549    1.02828    1.74   0.0826
## Race1:Sex1:SF01vGood  0.77158    0.65670    1.17   0.2402
## 
## Residual standard error: 1.84 on 2041 degrees of freedom
## Multiple R-squared:  0.167,  Adjusted R-squared:  0.152 
## F-statistic: 11.7 on 35 and 2041 DF,  p-value: <2e-16

Model(2) with only significant interactions

Model2.3 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + Race * Educ + Race * Employment01 + Sex * Employment01 , MeasurementData1,x=T)

summary(Model2.3)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + Race * Educ + Race * 
##     Employment01 + Sex * Employment01, data = MeasurementData1, 
##     x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.331 -1.529 -0.438  1.408  6.786 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)          5.67638    0.44386   12.79  < 2e-16
## Age0                 0.00398    0.00448    0.89  0.37444
## Race1               -1.61200    0.36084   -4.47  8.3e-06
## Sex1                -0.41459    0.12973   -3.20  0.00142
## Educ                 0.02800    0.02246    1.25  0.21268
## Employment011       -0.31011    0.13651   -2.27  0.02320
## acasiincomx01       -0.33941    0.09571   -3.55  0.00040
## Neighborhood02      -0.14314    0.03964   -3.61  0.00031
## CES                 -0.03965    0.00387  -10.25  < 2e-16
## Race1:Educ           0.07804    0.02876    2.71  0.00671
## Race1:Employment011  0.49787    0.17430    2.86  0.00433
## Sex1:Employment011   0.67174    0.16805    4.00  6.6e-05
## 
## Residual standard error: 1.85 on 2065 degrees of freedom
## Multiple R-squared:  0.147,  Adjusted R-squared:  0.142 
## F-statistic: 32.4 on 11 and 2065 DF,  p-value: <2e-16

Model 2 Plots

library(effects)
plot(effect("Sex:Employment01", Model2.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-9

plot(effect("Race:Employment01", Model2.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-9

plot(effect("Race:Educ", Model2.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-9

Models (3) with Self-Rated Health (3 categories)

load(file='/Users/meganwilliams/Desktop/Research/HANDLS Data/MeasurementData.rdata')
load(file='/Users/meganwilliams/Desktop/Research/HANDLS Data/MeasurementData1.rdata')

Model (3) with three-ways

Model3.1 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + sHealth + Race*Sex*Employment01 + Race*Employment01 + Sex*Employment01 + Race*Sex*Educ + Race*Educ + Sex*Educ + Race*Sex*acasiincomx01 + Race*acasiincomx01 + Sex*acasiincomx01 + Race*Sex*Neighborhood02 + Race*Neighborhood02 + Sex*Neighborhood02 + Race*Sex*CES + Race*CES + Sex*CES + Race*Sex + Race*Sex*sHealth + Race*sHealth + Sex*sHealth, MeasurementData1,x=T)

summary(Model3.1)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + sHealth + Race * Sex * 
##     Employment01 + Race * Employment01 + Sex * Employment01 + 
##     Race * Sex * Educ + Race * Educ + Sex * Educ + Race * Sex * 
##     acasiincomx01 + Race * acasiincomx01 + Sex * acasiincomx01 + 
##     Race * Sex * Neighborhood02 + Race * Neighborhood02 + Sex * 
##     Neighborhood02 + Race * Sex * CES + Race * CES + Sex * CES + 
##     Race * Sex + Race * Sex * sHealth + Race * sHealth + Sex * 
##     sHealth, data = MeasurementData1, x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.413 -1.424 -0.649  1.316  6.773 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                5.565137   0.649412    8.57  < 2e-16
## Age0                       0.006380   0.004523    1.41   0.1586
## Race1                     -0.858885   0.873598   -0.98   0.3256
## Sex1                      -0.670226   0.893407   -0.75   0.4532
## Educ                       0.017642   0.030588    0.58   0.5642
## Employment011             -0.233139   0.161373   -1.44   0.1487
## acasiincomx01             -0.314342   0.165193   -1.90   0.0572
## Neighborhood02            -0.016810   0.072750   -0.23   0.8173
## CES                       -0.040562   0.006568   -6.18  7.9e-10
## sHealthLow                -0.352570   0.197977   -1.78   0.0751
## sHealthMiddle             -0.481895   0.169186   -2.85   0.0044
## Race1:Sex1                -0.168538   1.293572   -0.13   0.8964
## Race1:Employment011        0.244699   0.250796    0.98   0.3293
## Sex1:Employment011         0.453590   0.242360    1.87   0.0614
## Race1:Educ                 0.055437   0.041707    1.33   0.1839
## Sex1:Educ                  0.038522   0.046257    0.83   0.4051
## Race1:acasiincomx01        0.020166   0.257829    0.08   0.9377
## Sex1:acasiincomx01        -0.014352   0.247607   -0.06   0.9538
## Race1:Neighborhood02      -0.160644   0.105584   -1.52   0.1283
## Sex1:Neighborhood02       -0.115465   0.109504   -1.05   0.2918
## Race1:CES                  0.000757   0.009947    0.08   0.9393
## Sex1:CES                   0.016829   0.010856    1.55   0.1213
## Race1:sHealthLow          -0.283742   0.322573   -0.88   0.3792
## Race1:sHealthMiddle        0.209928   0.262201    0.80   0.4234
## Sex1:sHealthLow           -0.264385   0.308139   -0.86   0.3910
## Sex1:sHealthMiddle        -0.047221   0.252276   -0.19   0.8515
## Race1:Sex1:Employment011   0.396372   0.393441    1.01   0.3138
## Race1:Sex1:Educ            0.001965   0.061664    0.03   0.9746
## Race1:Sex1:acasiincomx01  -0.170436   0.400744   -0.43   0.6707
## Race1:Sex1:Neighborhood02  0.114077   0.162548    0.70   0.4829
## Race1:Sex1:CES            -0.011883   0.016638   -0.71   0.4752
## Race1:Sex1:sHealthLow      0.823827   0.490850    1.68   0.0934
## Race1:Sex1:sHealthMiddle   0.146064   0.395698    0.37   0.7121
## 
## Residual standard error: 1.84 on 2044 degrees of freedom
## Multiple R-squared:  0.162,  Adjusted R-squared:  0.149 
## F-statistic: 12.4 on 32 and 2044 DF,  p-value: <2e-16

Model (3) with two-ways

Model3.2 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + sHealth + Race * Educ + Race * Employment01 + Race * acasiincomx01 + Race * Neighborhood02 + Race * CES + Race*sHealth + Sex * Educ + Sex * Employment01 + Sex * acasiincomx01 + Sex * Neighborhood02 + Sex * CES + Sex*sHealth + Race * Sex, MeasurementData1, x=T)

summary(Model3.2)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + sHealth + Race * Educ + 
##     Race * Employment01 + Race * acasiincomx01 + Race * Neighborhood02 + 
##     Race * CES + Race * sHealth + Sex * Educ + Sex * Employment01 + 
##     Sex * acasiincomx01 + Sex * Neighborhood02 + Sex * CES + 
##     Sex * sHealth + Race * Sex, data = MeasurementData1, x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.310 -1.138 -0.636  1.170  6.808 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)           5.667816   0.580837    9.76  < 2e-16
## Age0                  0.006125   0.004508    1.36   0.1744
## Race1                -1.060060   0.650633   -1.63   0.1034
## Sex1                 -0.837575   0.647246   -1.29   0.1958
## Educ                  0.016552   0.026438    0.63   0.5313
## Employment011        -0.290292   0.146822   -1.98   0.0482
## acasiincomx01        -0.290572   0.150100   -1.94   0.0530
## Neighborhood02       -0.037581   0.065004   -0.58   0.5632
## CES                  -0.039034   0.006025   -6.48  1.2e-10
## sHealthLow           -0.470297   0.181062   -2.60   0.0095
## sHealthMiddle        -0.497687   0.152459   -3.26   0.0011
## Race1:Educ            0.058689   0.030654    1.91   0.0557
## Race1:Employment011   0.401558   0.192529    2.09   0.0371
## Race1:acasiincomx01  -0.055197   0.196607   -0.28   0.7789
## Race1:Neighborhood02 -0.117662   0.079968   -1.47   0.1413
## Race1:CES            -0.003719   0.007946   -0.47   0.6398
## Race1:sHealthLow      0.057775   0.242453    0.24   0.8117
## Race1:sHealthMiddle   0.267438   0.195653    1.37   0.1718
## Sex1:Educ             0.037076   0.030244    1.23   0.2204
## Sex1:Employment011    0.596623   0.190658    3.13   0.0018
## Sex1:acasiincomx01   -0.077974   0.194046   -0.40   0.6878
## Sex1:Neighborhood02  -0.062600   0.080614   -0.78   0.4375
## Sex1:CES              0.012379   0.008199    1.51   0.1313
## Sex1:sHealthLow       0.047624   0.238837    0.20   0.8420
## Sex1:sHealthMiddle    0.000622   0.193555    0.00   0.9974
## Race1:Sex1            0.314666   0.171512    1.83   0.0667
## 
## Residual standard error: 1.84 on 2051 degrees of freedom
## Multiple R-squared:  0.16,   Adjusted R-squared:  0.15 
## F-statistic: 15.7 on 25 and 2051 DF,  p-value: <2e-16

Model (3) with only significant interactions

Model3.3 = lm(MCLcountry~Age0 + Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + sHealth + Race * Educ + Race * Employment01 + Sex * Employment01 , MeasurementData1,x=T)

summary(Model3.3)
## 
## Call:
## lm(formula = MCLcountry ~ Age0 + Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + sHealth + Race * Educ + 
##     Race * Employment01 + Sex * Employment01, data = MeasurementData1, 
##     x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.192 -1.071  0.358  1.816  6.800 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)          5.72466    0.44257   12.93  < 2e-16
## Age0                 0.00634    0.00450    1.41  0.15916
## Race1               -1.50678    0.36023   -4.18  3.0e-05
## Sex1                -0.39813    0.12929   -3.08  0.00210
## Educ                 0.02681    0.02239    1.20  0.23126
## Employment011       -0.32309    0.13668   -2.36  0.01818
## acasiincomx01       -0.32957    0.09545   -3.45  0.00057
## Neighborhood02      -0.12130    0.03988   -3.04  0.00238
## CES                 -0.03688    0.00395   -9.35  < 2e-16
## sHealthLow          -0.40700    0.11889   -3.42  0.00063
## sHealthMiddle       -0.38487    0.09630   -4.00  6.7e-05
## Race1:Educ           0.06985    0.02871    2.43  0.01506
## Race1:Employment011  0.48126    0.17375    2.77  0.00566
## Sex1:Employment011   0.64193    0.16756    3.83  0.00013
## 
## Residual standard error: 1.84 on 2063 degrees of freedom
## Multiple R-squared:  0.155,  Adjusted R-squared:  0.149 
## F-statistic:   29 on 13 and 2063 DF,  p-value: <2e-16

Model 3 Plots

library(effects)
plot(effect("Sex:Employment01", Model3.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-14

plot(effect("Race:Employment01", Model3.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-14

plot(effect("Race:Educ", Model3.3, list(wt=c(2.2,3.2,4.2))), multiline=TRUE)

plot of chunk unnamed-chunk-14