diamonds %>%
ggplot(aes(x = cut)) +
geom_bar(mapping = aes(x = cut))
diamonds %>%
count(cut)
## # A tibble: 5 × 2
## cut n
## <ord> <int>
## 1 Fair 1610
## 2 Good 4906
## 3 Very Good 12082
## 4 Premium 13791
## 5 Ideal 21551
ggplot(data = diamonds) +
geom_histogram(mapping = aes(x = carat), binwidth = 0.5)
diamonds %>%
count(cut_width(carat, 0.5))
## # A tibble: 11 × 2
## `cut_width(carat, 0.5)` n
## <fct> <int>
## 1 [-0.25,0.25] 785
## 2 (0.25,0.75] 29498
## 3 (0.75,1.25] 15977
## 4 (1.25,1.75] 5313
## 5 (1.75,2.25] 2002
## 6 (2.25,2.75] 322
## 7 (2.75,3.25] 32
## 8 (3.25,3.75] 5
## 9 (3.75,4.25] 4
## 10 (4.25,4.75] 1
## 11 (4.75,5.25] 1
smaller <- diamonds %>%
filter(carat < 3)
ggplot(data = smaller, mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.1)
diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
# Filter out diamonds > 3 carat
filter(carat > 3) %>%
#Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)
faithful %>%
ggplot(data = faithful, mapping = aes(x = eruptions)) +
geom_histogram(binwidth = 0.25)
diamonds %>%
ggplot(aes(y)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
ggplot(aes(y)) +
geom_histogram() +
coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Missing Values
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
# Plot
ggplot(aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()
diamonds %>%
count(color, cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) +
geom_tile()
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y= price)) +
geom_hex()
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x= carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds2 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds2 %>%
ggplot(aes(carat,resid)) +
geom_point()
diamonds2 %>%
ggplot(aes(cut, resid)) +
geom_boxplot()