1. Load up some required libraries
library(tidyverse) 
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate) 
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.26     ✔ xts                  0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary()            masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl) 
library(writexl)
library(dplyr)
  1. Import the data files using read_excel() to import excel files.
bikes_tbl <- read_excel('./bikes.xlsx')
head(bikes_tbl)
## # A tibble: 6 × 4
##   bike.id model                          description                price
##     <dbl> <chr>                          <chr>                      <dbl>
## 1       1 Supersix Evo Black Inc.        Road - Elite Road - Carbon 12790
## 2       2 Supersix Evo Hi-Mod Team       Road - Elite Road - Carbon 10660
## 3       3 Supersix Evo Hi-Mod Dura Ace 1 Road - Elite Road - Carbon  7990
## 4       4 Supersix Evo Hi-Mod Dura Ace 2 Road - Elite Road - Carbon  5330
## 5       5 Supersix Evo Hi-Mod Utegra     Road - Elite Road - Carbon  4260
## 6       6 Supersix Evo Red               Road - Elite Road - Carbon  3940
  1. Based on bikes.xlsx, show “model” and “price” column with “price” in descending order. (Hint: use select(), arrange(), desc())
model_price <- bikes_tbl %>% select(model, price) %>%
               arrange(desc(price))
  1. Based on bikes.xlsx, show “model” and “price” column with “price” greater than mean value of price. (Hint: use select(), filter())
bikes_tbl %>% select(model, price) %>%
              filter(price > mean(price))%>%
              head()
## # A tibble: 6 × 2
##   model                          price
##   <chr>                          <dbl>
## 1 Supersix Evo Black Inc.        12790
## 2 Supersix Evo Hi-Mod Team       10660
## 3 Supersix Evo Hi-Mod Dura Ace 1  7990
## 4 Supersix Evo Hi-Mod Dura Ace 2  5330
## 5 Supersix Evo Hi-Mod Utegra      4260
## 6 CAAD12 Black Inc                5860