diamonds %>%
ggplot(aes(x = cut)) +
geom_bar()
diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
# Filter out diamonds > 3 carat
filter(carat < 3) %>%
# Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)
faithful %>%
ggplot(aes(eruptions)) +
geom_histogram(binwidth = 0.25)
diamonds %>%
ggplot(aes(y)) +
geom_histogram() +
coord_cartesian(ylim = c(0, 50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Missing Values
diamonds %>%
filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
# Plot
ggplot(aes(x = x, y = y)) +
geom_point()
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()
diamonds %>% count(color, cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) +
geom_tile()
### Two continueos variables
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds4 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds4 %>%
ggplot(aes(carat, resid)) +
geom_point()
diamonds4 %>%
ggplot(aes(cut, resid)) +
geom_boxplot()
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.