# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(dplyr)

Goal

Collect individual returns into a portfolio by assigning a weight to each stock

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x   = symbols, 
                 get = "stock.prices",
                 fro = "2012-12-31",
                 to  = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted,
                 mutate_fun = periodReturn,
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# Weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    tq_portfolio(assets_col = asset, 
                 returns_col = returns,
                 weights = w_tbl, 
                 rebalance_on = "months")

5 Calculate Standard Deviation

portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
    
    tq_performance(Ra = portfolio.returns, 
                   performance_fun = table.Stats) %>%
    
    select(Stdev) %>%
    mutate(tq_sd = round(Stdev, 4))

portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
##    Stdev  tq_sd
##    <dbl>  <dbl>
## 1 0.0235 0.0235
# Mean of Portfolio Returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)

portfolio_mean_tidyquant_builtin_percent
## [1] 0.005899133

6 Plot

# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
    
    group_by(asset) %>%
    
    tq_performance(Ra = returns,
                   performance_fun = table.Stats) %>%
    select(Mean = ArithmeticMean, Stdev) %>%
    ungroup() %>%
    
    #Add Portfolio Sd
    add_row(tibble(asset = "Portfolio",
                   Mean  = portfolio_mean_tidyquant_builtin_percent, 
                   Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))

sd_mean_tbl
## # A tibble: 6 × 3
##   asset        Mean  Stdev
##   <chr>       <dbl>  <dbl>
## 1 AGG       0.0017  0.0086
## 2 EEM       0.0028  0.0419
## 3 EFA       0.006   0.0326
## 4 IJS       0.0119  0.0396
## 5 SPY       0.0121  0.0272
## 6 Portfolio 0.00590 0.0235
sd_mean_tbl %>%
    
    ggplot(aes(x = Stdev, y = Mean)) +
    geom_point() +
    ggrepel::geom_text_repel(aes(label = asset))

24 Month Rolling Volatility

rolling_sd_tbl <- portfolio_returns_tbl %>%
    
    tq_mutate(select = portfolio.returns,
              mutate_fun = rollapply,
              width = 24,
              FUN = sd,
              col_rename = "rolling_sd") %>%
    
    na.omit() %>%
    select(date, rolling_sd)
rolling_sd_tbl %>%
    
    ggplot(aes(x = date, y = rolling_sd)) +
    geom_line(color = "cornflowerblue") +

    # Formatting
    scale_y_continuous(labels = scales::percent_format()) +
    
    # Labeling
    labs(x = NULL,
         y = NULL,
         title = "24 Month Rolling Volatility") +
        theme(plot.title = element_text(hjust = 0.5))