library(phyloseq)
library(ggplot2)
library(microbiome)
## 
## microbiome R package (microbiome.github.com)
##     
## 
## 
##  Copyright (C) 2011-2022 Leo Lahti, 
##     Sudarshan Shetty et al. <microbiome.github.io>
## 
## Attaching package: 'microbiome'
## The following object is masked from 'package:ggplot2':
## 
##     alpha
## The following object is masked from 'package:base':
## 
##     transform
library(fantaxtic)
## 
## Attaching package: 'fantaxtic'
## The following object is masked from 'package:microbiome':
## 
##     top_taxa
library(forcats)
library(RColorBrewer)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ✔ readr     2.1.5
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ microbiome::alpha() masks ggplot2::alpha()
## ✖ dplyr::filter()     masks stats::filter()
## ✖ dplyr::lag()        masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
rm(list=ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7"))
pseq@sam_data$DaysPost <- as.factor(pseq@sam_data$DaysPost)

y1 <- tax_glom(pseq, taxrank = 'Family') # agglomerate taxa
y3 <- transform_sample_counts(y1, function(x) x/sum(x)) #get abundance in %
y4 <- psmelt(y3) 
y4$Family <- as.character(y4$Family) #convert to character
y4$Family[y4$Abundance < 0.02] <- "Family < 2% abund." #rename genera with < 1% abundance
my_colors <- c(
  "grey", "red", "#1E90FF", "#FF69B4", "#7CFC00", "#20B2AA", "#00BFFF", 
  "#7B68EE", "#9400D3", "#32CD32", "#FF6347", "#66CDAA", "#8B0000", 
  "#556B2F", "#7FFF00", "#FFD700", "#FF0000", "dodgerblue3", "black", 
  "#800080", "#20B2AA", "#008B8B", "#DC143C", "#00FA9A", "#C71585", 
  "#0000CD", "#32CD32", "darkgoldenrod1", "#D2691E", "#2E8B57", 
  "#5F7FC7", "#800000", "#D1A33D", "#00FFFF", "#00CED1", "#00FF00", 
  "#CCCCFF", "#40E0D0", "#00CED1", "#2E8B57", "#666600", "darkred", 
  "#BA55D3", "#8A2BE2", "#4B0082", "#CD5C5C", "darkorange1", "green", 
  "#00FFFF", "#00FFFF", "#FFA07A", "#FF00FF", "#4B0082", "#B0E0E6", 
  "#8FBC8F", "#7FFFD4", "darkblue", "#ADFF2F", "#FFB6C1", "#6A5ACD", 
  "#00008B", "#B22222", "#FF6347", "#4682B4", "#4169E1", "#D8BFD8", 
  "#DA70D6", "#DB7093", "#FF1493", "#FF4500", "#FFD700", "#FFE4B5", 
  "#8A2BE2", "#5F9EA0", "#7FFF00", "#ADFF2F", "#98FB98", "#66CDAA", 
  "#20B2AA", "#00CED1", "#4682B4", "#B0C4DE", "#5F9EA0", "#6495ED", 
  "#00BFFF", "#1E90FF", "#ADD8E6", "#87CEEB", "#87CEFA", "#4682B4", 
  "#B0E0E6", "#AFEEEE", "#00FFFF", "#E0FFFF", "#00FA9A", "#90EE90", 
  "#98FB98", "#2E8B57", "#228B22"
)

p <- ggplot(y4, aes(x = DaysPost, y = Abundance, fill = fct_reorder(Family, Abundance))) +
    geom_bar(stat = "identity",position="fill") + # to equal 1
    theme_classic()  +scale_fill_manual(values= my_colors)+
    theme(text = element_text(size=12),axis.text.y = element_text(hjust=1))  +theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+
       guides(fill = guide_legend( keywidth = 0.4, keyheight = .7)) +
    ylab("Distribution of ASVs at Family level")  + theme(axis.text = element_text(face="bold"))
p +   theme(panel.grid.major = element_blank()) +  theme(strip.text.x = element_text(size =12), legend.text = element_text(size=14))   +  facet_grid(rows=vars(FacilityOrigin),cols=vars(Tx) )  +guides(fill=guide_legend(ncol=1))

ggsave("FamilyLevelStackPlots.tiff", width=12, height=8, units="in")
rm(list=ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7"))
pseq@sam_data$DaysPost <- as.factor(pseq@sam_data$DaysPost)
y1 <- tax_glom(pseq, taxrank = 'Genus') # agglomerate taxa
y3 <- transform_sample_counts(y1, function(x) x/sum(x)) #get abundance in %
y4 <- psmelt(y3) 
y4$Genus <- as.character(y4$Genus) #convert to character
y4$Genus[y4$Abundance < 0.02] <- "Genus < 2% abund." #rename genera with < 1% abundance
my_colors <- c(
  "grey", "red", "#1E90FF", "#FF69B4", "#7CFC00", "#20B2AA", "#00BFFF", 
  "#7B68EE", "#9400D3", "#32CD32", "#FF6347", "#66CDAA", "#8B0000", 
  "#556B2F", "#7FFF00", "#FFD700", "#FF0000", "dodgerblue3", "black", 
  "#800080", "#20B2AA", "#008B8B", "#DC143C", "#00FA9A", "#C71585", 
  "#0000CD", "#32CD32", "darkgoldenrod1", "#D2691E", "#2E8B57", 
  "#5F7FC7", "#800000", "#D1A33D", "#00FFFF", "#00CED1", "#00FF00", 
  "#CCCCFF", "#40E0D0", "#00CED1", "#2E8B57", "#666600", "darkred", 
  "#BA55D3", "#8A2BE2", "#4B0082", "#CD5C5C", "darkorange1", "green", 
  "#00FFFF", "#00FFFF", "#FFA07A", "#FF00FF", "#4B0082", "#B0E0E6", 
  "#8FBC8F", "#7FFFD4", "darkblue", "#ADFF2F", "#FFB6C1", "#6A5ACD", 
  "#00008B", "#B22222", "#FF6347", "#4682B4", "#4169E1", "#D8BFD8", 
  "#DA70D6", "#DB7093", "#FF1493", "#FF4500", "#FFD700", "#FFE4B5", 
  "#8A2BE2", "#5F9EA0", "#7FFF00", "#ADFF2F", "#98FB98", "#66CDAA", 
  "#20B2AA", "#00CED1", "#4682B4", "#B0C4DE", "#5F9EA0", "#6495ED", 
  "#00BFFF", "#1E90FF", "#ADD8E6", "#87CEEB", "#87CEFA", "#4682B4", 
  "#B0E0E6", "#AFEEEE", "#00FFFF", "#E0FFFF", "#00FA9A", "#90EE90", 
  "#98FB98", "#2E8B57", "#228B22"
)

p <- ggplot(y4, aes(x = DaysPost, y = Abundance, fill = fct_reorder(Genus, Abundance))) +
    geom_bar(stat = "identity",position="fill") + # to equal 1
    theme_classic()  +scale_fill_manual(values= my_colors)+
    theme(text = element_text(size=12),axis.text.y = element_text(hjust=1))  +theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+
       guides(fill = guide_legend( keywidth = 0.4, keyheight = .7)) +
    ylab("Distribution of ASVs at Genus level")  + theme(axis.text = element_text(face="bold"))
p +   theme(panel.grid.major = element_blank()) +  theme(strip.text.x = element_text(size =12), legend.text = element_text(size=14))   +  facet_grid(rows=vars(FacilityOrigin),cols=vars(Tx) )  +guides(fill=guide_legend(ncol=1))

ggsave("GenusLevelStackPlots.tiff", width=14, height=10, units="in")
rm(list=ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7"))
pseq@sam_data$DaysPost <- as.factor(pseq@sam_data$DaysPost)

y1 <- tax_glom(pseq, taxrank = 'Phylum') # agglomerate taxa
y3 <- transform_sample_counts(y1, function(x) x/sum(x)) #get abundance in %
y4 <- psmelt(y3) 
y4$Family <- as.character(y4$Phylum) #convert to character
y4$Family[y4$Abundance < 0.02] <- "Phylum < 2% abund." #rename genera with < 1% abundance
my_colors <- c(
  "grey", "red", "#1E90FF", "#FF69B4", "#7CFC00", "#20B2AA", "#00BFFF", 
  "#7B68EE", "#9400D3", "#32CD32", "#FF6347", "#66CDAA", "#8B0000", 
  "#556B2F", "#7FFF00", "#FFD700", "#FF0000", "dodgerblue3", "black", 
  "#800080", "#20B2AA", "#008B8B", "#DC143C", "#00FA9A", "#C71585", 
  "#0000CD", "#32CD32", "darkgoldenrod1", "#D2691E", "#2E8B57", 
  "#5F7FC7", "#800000", "#D1A33D", "#00FFFF", "#00CED1", "#00FF00", 
  "#CCCCFF", "#40E0D0", "#00CED1", "#2E8B57", "#666600", "darkred", 
  "#BA55D3", "#8A2BE2", "#4B0082", "#CD5C5C", "darkorange1", "green", 
  "#00FFFF", "#00FFFF", "#FFA07A", "#FF00FF", "#4B0082", "#B0E0E6", 
  "#8FBC8F", "#7FFFD4", "darkblue", "#ADFF2F", "#FFB6C1", "#6A5ACD", 
  "#00008B", "#B22222", "#FF6347", "#4682B4", "#4169E1", "#D8BFD8", 
  "#DA70D6", "#DB7093", "#FF1493", "#FF4500", "#FFD700", "#FFE4B5", 
  "#8A2BE2", "#5F9EA0", "#7FFF00", "#ADFF2F", "#98FB98", "#66CDAA", 
  "#20B2AA", "#00CED1", "#4682B4", "#B0C4DE", "#5F9EA0", "#6495ED", 
  "#00BFFF", "#1E90FF", "#ADD8E6", "#87CEEB", "#87CEFA", "#4682B4", 
  "#B0E0E6", "#AFEEEE", "#00FFFF", "#E0FFFF", "#00FA9A", "#90EE90", 
  "#98FB98", "#2E8B57", "#228B22"
)

p <- ggplot(y4, aes(x = DaysPost, y = Abundance, fill = fct_reorder(Phylum, Abundance))) +
    geom_bar(stat = "identity",position="fill") + # to equal 1
    theme_classic()  +scale_fill_manual(values= my_colors)+
    theme(text = element_text(size=12),axis.text.y = element_text(hjust=1)) +
    scale_x_discrete(drop=TRUE) +theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+
       guides(fill = guide_legend( keywidth = 0.4, keyheight = .7)) +
    ylab("Distribution of ASVs at Family level")  + theme(axis.text = element_text(face="bold"))
p +   theme(panel.grid.major = element_blank()) +  theme(strip.text.x = element_text(size =14), legend.text = element_text(size=13))   +  facet_grid(rows=vars(FacilityOrigin),cols=vars(Tx) )  +guides(fill=guide_legend(ncol=1))

ggsave("PhylumLevelStackPlots.tiff", width=12, height=8, units="in")
rm(list = ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7", "-2"))

y1 <- tax_glom(pseq, taxrank = 'Genus')
y3 <- transform_sample_counts(y1, function(x) x / sum(x))
y4 <- psmelt(y3)
y4$Genus <- as.character(y4$Genus)

bacteroides <- subset(y4, Genus == "Bacteroides")
write.csv(bacteroides, "bacteroides.csv")
averages_data <- bacteroides %>%
  group_by(DaysPost, FacilityTx, FacilityOrigin, Tx) %>%
  dplyr::summarize(
    avg_abundance_Bacteroides = mean(Abundance),
    se = sd(Abundance) / sqrt(dplyr::n())
  )
## `summarise()` has grouped output by 'DaysPost', 'FacilityTx', 'FacilityOrigin'.
## You can override using the `.groups` argument.
p <- ggplot(averages_data, aes(x = DaysPost, y = avg_abundance_Bacteroides )) + 
  geom_line(aes(group = FacilityTx, color = Tx), size = 1.5) + 
  geom_point(aes(color = Tx, shape = FacilityOrigin), size = 5) + 
  geom_errorbar(aes(ymin = avg_abundance_Bacteroides - se, ymax = avg_abundance_Bacteroides  + se, color = Tx), width = 0.2) + 
  theme_classic() + 
  theme(text = element_text(size = 12), 
        axis.text.x = element_text(angle = 45, hjust = 1)) + 
  guides(color = guide_legend(keywidth = 0.4, keyheight = 0.7), 
         shape = guide_legend(keywidth = 0.4, keyheight = 0.7)) + facet_grid(rows = vars(FacilityOrigin))
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
p

ggsave("Bacteroides.tiff", width=12, height=8, units="in")

##Bacteroides ASVs

rm(list = ls())

ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")

# Subset samples
pseq <- subset_samples(ps, exp != "skg1" & SKG_Exp == "SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7", "-2"))

# Transform sample counts to relative abundances
pseq_transformed <- transform_sample_counts(pseq, function(x) x / sum(x))

# Melt the phyloseq object into a data frame
pseq_melted <- psmelt(pseq_transformed)

pseq_melted$Genus <- as.character(pseq_melted$Genus)

# Subset data to include only OTUs or ASVs in the Bacteroides genus
bacteroides <- subset(pseq_melted, Genus == "Bacteroides")
unique_otus <- unique(bacteroides$OTU)

for (otu in unique_otus) {
  # Subset data for the current OTU
  otu_data <- subset(bacteroides, OTU == otu)
  
  # Perform an ANOVA to compare abundance by FacilityTx
  anova_result <- aov(Abundance ~ FacilityTx, data = otu_data)
  p_value <- summary(anova_result)[[1]][["Pr(>F)"]][1]
  
  # Check if the p-value is not NA and less than 0.05
  if (!is.na(p_value) && p_value < 0.05) {
    # Calculate average abundance and standard error by group for the OTU
    averages_data <- otu_data %>%
      group_by(DaysPost, FacilityTx, FacilityOrigin, Tx) %>%
      dplyr::summarize(
        avg_abundance_Bacteroides = mean(Abundance),
        se = sd(Abundance) / sqrt(dplyr::n()),
        .groups = "drop"  # Suppress grouping message
      )
    
    # Create the plot for the current OTU
    p <- ggplot(averages_data, aes(x = DaysPost, y = avg_abundance_Bacteroides)) +
      geom_line(aes(group = FacilityTx, color = Tx), size = 1.5) +
      geom_point(aes(color = Tx, shape = FacilityOrigin), size = 5) +
      geom_errorbar(aes(ymin = avg_abundance_Bacteroides - se, ymax = avg_abundance_Bacteroides + se, color = Tx), width = 0.2) +
      theme_classic() +
      theme(text = element_text(size = 12),
            axis.text.x = element_text(angle = 45, hjust = 1)) +
      guides(color = guide_legend(keywidth = 0.4, keyheight = 0.7),
             shape = guide_legend(keywidth = 0.4, keyheight = 0.7)) +
      ggtitle(paste("OTU:", otu))  # Add OTU name as title
    
    # Print the plot to the console
    print(p)
  }
}

rm(list=ls())
data <- read.csv("bacteroides.csv")

data_subset <- data %>%
  select(Abundance, FacilityOrigin, Tx, DaysPost)

MTZ_data_filtered <- data_subset %>%
  filter(FacilityOrigin == "MTZ")

MTZ_results <- MTZ_data_filtered %>%
  group_by(DaysPost) %>%
  summarise(t_test_p_value = t.test(Abundance ~ Tx)$p.value)

print(MTZ_results)
## # A tibble: 10 × 2
##    DaysPost t_test_p_value
##       <int>          <dbl>
##  1        0         0.222 
##  2        3         0.842 
##  3        5         0.913 
##  4        7         0.0765
##  5       10         0.124 
##  6       12         0.0291
##  7       14         0.112 
##  8       17         0.0111
##  9       19         0.0195
## 10       21         0.219
psb_data_filtered <- data_subset %>%
  filter(FacilityOrigin == "PSB")

psb_results <- psb_data_filtered %>%
  group_by(DaysPost) %>%
  summarise(t_test_p_value = t.test(Abundance ~ Tx)$p.value)

print(psb_results)
## # A tibble: 10 × 2
##    DaysPost t_test_p_value
##       <int>          <dbl>
##  1        0         0.0518
##  2        3         0.243 
##  3        5         0.617 
##  4        7         0.993 
##  5       10         0.682 
##  6       12         0.0181
##  7       14         0.0238
##  8       17         0.114 
##  9       19         0.217 
## 10       21         0.760

##Bacteroidaceae

rm(list = ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7", "-2"))

y1 <- tax_glom(pseq, taxrank = 'Family')
y3 <- transform_sample_counts(y1, function(x) x / sum(x))
y4 <- psmelt(y3)
y4$Family <- as.character(y4$Family)

Bacteroidaceae <- subset(y4, Family == "Bacteroidaceae")
averages_data <- Bacteroidaceae %>%
  group_by(DaysPost, FacilityTx, FacilityOrigin, Tx) %>%
  dplyr::summarize(
    avg_abundance_Bacteroidaceae = mean(Abundance),
    se = sd(Abundance) / sqrt(dplyr::n())
  )
## `summarise()` has grouped output by 'DaysPost', 'FacilityTx', 'FacilityOrigin'.
## You can override using the `.groups` argument.
p <- ggplot(averages_data, aes(x = DaysPost, y = avg_abundance_Bacteroidaceae )) + 
  geom_line(aes(group = FacilityTx, color = Tx), size = 1.5) + 
  geom_point(aes(color = Tx, shape = FacilityOrigin), size = 5) + 
  geom_errorbar(aes(ymin = avg_abundance_Bacteroidaceae - se, ymax = avg_abundance_Bacteroidaceae  + se, color = Tx), width = 0.2) + 
  theme_classic() + 
  theme(text = element_text(size = 12), 
        axis.text.x = element_text(angle = 45, hjust = 1)) + 
  guides(color = guide_legend(keywidth = 0.4, keyheight = 0.7), 
         shape = guide_legend(keywidth = 0.4, keyheight = 0.7)) + facet_grid(rows = vars(FacilityOrigin))

p

data_subset <- Bacteroidaceae  %>%
  select(Abundance, FacilityOrigin, Tx, DaysPost)

MTZ_data_filtered <- data_subset %>%
  filter(FacilityOrigin == "MTZ")

MTZ_results <- MTZ_data_filtered %>%
  group_by(DaysPost) %>%
  summarise(t_test_p_value = t.test(Abundance ~ Tx)$p.value)

print(MTZ_results)
## # A tibble: 10 × 2
##    DaysPost t_test_p_value
##       <int>          <dbl>
##  1        0        0.277  
##  2        3        0.666  
##  3        5        0.974  
##  4        7        0.116  
##  5       10        0.107  
##  6       12        0.0551 
##  7       14        0.130  
##  8       17        0.00409
##  9       19        0.00937
## 10       21        0.226
psb_data_filtered <- data_subset %>%
  filter(FacilityOrigin == "PSB")

psb_results <- psb_data_filtered %>%
  group_by(DaysPost) %>%
  summarise(t_test_p_value = t.test(Abundance ~ Tx)$p.value)

print(psb_results)
## # A tibble: 10 × 2
##    DaysPost t_test_p_value
##       <int>          <dbl>
##  1        0         0.0863
##  2        3         0.218 
##  3        5         0.527 
##  4        7         0.814 
##  5       10         0.601 
##  6       12         0.0328
##  7       14         0.0116
##  8       17         0.245 
##  9       19         0.329 
## 10       21         0.851
rm(list = ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7", "-2"))
metadata <- data.frame(sample_data(pseq))

plot_data <- metadata %>% 
  select(DaysPost, FacilityTx, FacilityOrigin, Tx, CAS_Score)

plot_data<- plot_data %>%
  group_by(DaysPost, FacilityOrigin, Tx) %>%
  dplyr::summarize(avg_CAS = mean(CAS_Score),
    se = sd(CAS_Score) / sqrt(dplyr::n()))
## `summarise()` has grouped output by 'DaysPost', 'FacilityOrigin'. You can
## override using the `.groups` argument.
p <- ggplot(plot_data , aes(x = DaysPost, y = avg_CAS)) + 
  geom_line(aes(group = Tx, color = Tx), size = 1.5) + 
  geom_point(aes(color = Tx, shape = FacilityOrigin), size = 5)  + 
  geom_errorbar(aes(ymin = avg_CAS - se, ymax = avg_CAS + se, color = Tx), width = 0.2) + facet_grid(rows = vars(FacilityOrigin))+ theme_classic() + 
  theme(text = element_text(size = 12), 
        axis.text.x = element_text(angle = 45, hjust = 1)) + 
  guides(color = guide_legend(keywidth = 0.4, keyheight = 0.7), 
         shape = guide_legend(keywidth = 0.4, keyheight = 0.7))  # Add a legend for shapes
p
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_line()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).

rm(list=ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7"))
y1 <- tax_glom(pseq, taxrank = 'Family')
y3 <- transform_sample_counts(y1, function(x) x / sum(x))
y4 <- psmelt(y3)
y4$Family <- as.character(y4$Family)

bacteroidaceae_data <- subset(y4, Family == "Bacteroidaceae")
# Calculate averages and standard error
averages_data <- bacteroidaceae_data %>%
  group_by(DaysPost, Tx, FacilityOrigin) %>%
  dplyr::summarize(avg_value = mean(Abundance),
                   se = sd(Abundance) / sqrt(dplyr::n()))
## `summarise()` has grouped output by 'DaysPost', 'Tx'. You can override using
## the `.groups` argument.
# Plot individual MouseID lines
p <- ggplot(averages_data, aes(x = DaysPost, y = avg_value)) + 
  geom_line(aes(color = Tx), size = 1) + 
  geom_point(size = 2) + 
  theme_classic() + 
  theme(text = element_text(size = 12), 
        axis.text.x = element_text(angle = 45, hjust = 1)) +
  guides(color = guide_legend(keywidth = 0.4, keyheight = 0.7)) +
  facet_grid(rows = vars(FacilityOrigin))

# Add average lines and standard error shading
p <- p + 
  geom_line(data = averages_data, aes(x = DaysPost, y = avg_value, group = Tx, color = Tx), size = 1.5) + 
  geom_ribbon(data = averages_data, aes(x = DaysPost, ymin = avg_value - se, ymax = avg_value + se, fill = Tx), alpha = 0.2)
p

ggsave("Bacteroidaceae.tiff", width=12, height=8, units="in")
rm(list=ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7"))
y1 <- tax_glom(pseq, taxrank = "Phylum")
y3 <- transform_sample_counts(y1, function(x) x / sum(x))
y4 <- psmelt(y3)
y4$Phylum <- as.character(y4$Phylum)

bacteroidaceae_data <- subset(y4, Phylum == "Bacteroidota")
bacteroidaceae_data
##      OTU         Sample  Abundance MouseID  Tx FacilityOrigin DaysPost  Sex
## 17  ASV1 RRN-SKG2-p1-60 0.92270624      12 PBS            MTZ       -2 <NA>
## 98  ASV1 RRN-SKG2-p2-63 0.88347733      15 PBS            MTZ       12 <NA>
## 31  ASV1 RRN-SKG1-p2-77 0.87459260      12 PBS            MTZ       17    F
## 21  ASV1 RRN-SKG1-p2-76 0.83412119      11 PBS            MTZ       17    F
## 35  ASV1 RRN-SKG2-p2-80 0.81956627      16 PBS            MTZ       14 <NA>
## 105 ASV1 RRN-SKG2-p2-87 0.79320489      15 PBS            MTZ       19 <NA>
## 75  ASV1 RRN-SKG2-p2-84 0.79137809      12 PBS            MTZ       19 <NA>
## 22  ASV1 RRN-SKG2-p2-20 0.78881865       4 MTX            MTZ       14 <NA>
## 54  ASV1 RRN-SKG2-p2-94 0.78865356      14 PBS            PSB       21 <NA>
## 11  ASV1 RRN-SKG1-p2-75 0.78340475      10 PBS            PSB       17    F
## 62  ASV1 RRN-SKG2-p2-24 0.76006314      12 PBS            MTZ        7 <NA>
## 126 ASV1 RRN-SKG2-p1-81 0.74231505       1 MTX            PSB       10 <NA>
## 41  ASV1 RRN-SKG1-p2-78 0.73818334      13 PBS            PSB       17    F
## 15  ASV1 RRN-SKG2-p2-79 0.73419773      15 PBS            MTZ       14 <NA>
## 8   ASV1 RRN-SKG2-p2-55 0.72136765      11 PBS            MTZ       12 <NA>
## 66  ASV1 RRN-SKG2-p1-76 0.72066421      12 PBS            MTZ        0 <NA>
## 160 ASV1 RRN-SKG2-p2-39 0.72057541      11 PBS            MTZ       10 <NA>
## 95  ASV1 RRN-SKG2-p2-86 0.71697473      14 PBS            PSB       19 <NA>
## 85  ASV1 RRN-SKG2-p2-85 0.71369427      13 PBS            PSB       19 <NA>
## 51  ASV1 RRN-SKG1-p2-81 0.71298568      16 PBS            MTZ       17    F
## 61  ASV1  RRN-SKG2-p1-1 0.70954649       1 MTX            PSB       -2 <NA>
## 107 ASV1  RRN-SKG2-p1-4 0.70637343       4 MTX            MTZ       -2 <NA>
## 27  ASV1 RRN-SKG2-p1-61 0.70106496      13 PBS            PSB       -2 <NA>
## 19  ASV1 RRN-SKG2-p2-44 0.69953807       8 MTX            MTZ       17 <NA>
## 101 ASV1  RRN-SKG2-p1-2 0.69243354       2 MTX            PSB       -2 <NA>
## 146 ASV1 RRN-SKG2-p2-72 0.68930876      12 PBS            MTZ       14 <NA>
## 63  ASV1 RRN-SKG2-p2-11 0.68898187       7 MTX            PSB       12 <NA>
## 153 ASV1 RRN-SKG2-p2-74 0.68538308       6 MTX            PSB       21 <NA>
## 45  ASV1 RRN-SKG2-p2-81 0.67349967       9 PBS            PSB       19 <NA>
## 34  ASV1 RRN-SKG2-p2-92 0.66573080      12 PBS            MTZ       21 <NA>
## 119 ASV1 RRN-SKG2-p2-54 0.66061691      10 PBS            PSB       12 <NA>
## 84  ASV1 RRN-SKG2-p1-68 0.66042693       4 MTX            MTZ        7 <NA>
## 108 ASV1 RRN-SKG2-p2-64 0.65784400      16 PBS            MTZ       12 <NA>
## 9   ASV1 RRN-SKG2-p2-42 0.65716912       6 MTX            PSB       17 <NA>
## 113 ASV1 RRN-SKG2-p2-18 0.65427303       2 MTX            PSB       14 <NA>
## 149 ASV1 RRN-SKG2-p1-59 0.65325251      11 PBS            MTZ       -2 <NA>
## 32  ASV1 RRN-SKG2-p2-21 0.64892033       9 PBS            PSB        7 <NA>
## 49  ASV1 RRN-SKG2-p2-47 0.64470983      15 PBS            MTZ       10 <NA>
## 166 ASV1 RRN-SKG2-p2-77 0.64428191      13 PBS            PSB       14 <NA>
## 72  ASV1 RRN-SKG2-p2-25 0.63854733       6 MTX            PSB       14 <NA>
## 6   ASV1 RRN-SKG2-p1-70 0.63408950       6 MTX            PSB        7 <NA>
## 115 ASV1 RRN-SKG2-p2-88 0.62707626      16 PBS            MTZ       19 <NA>
## 13  ASV1 RRN-SKG2-p1-94 0.62544484      14 PBS            PSB        3 <NA>
## 2   ASV1 RRN-SKG2-p2-19 0.62071846       3 MTX            MTZ       14 <NA>
## 80  ASV1 RRN-SKG2-p1-36 0.62025013       4 MTX            MTZ        3 <NA>
## 109 ASV1 RRN-SKG2-p2-53 0.61989343       9 PBS            PSB       12 <NA>
## 1   ASV1 RRN-SKG1-p2-74 0.61823957       9 PBS            PSB       17    F
## 78  ASV1 RRN-SKG2-p2-61 0.61371158      13 PBS            PSB       12 <NA>
## 114 ASV1 RRN-SKG2-p1-49 0.61297606       1 MTX            PSB        5 <NA>
## 158 ASV1 RRN-SKG2-p1-55 0.60742816       7 MTX            PSB        5 <NA>
## 5   ASV1 RRN-SKG2-p2-78 0.59921057      14 PBS            PSB       14 <NA>
## 152 ASV1 RRN-SKG2-p2-70 0.59734681      10 PBS            PSB       14 <NA>
## 130 ASV1 RRN-SKG2-p1-84 0.59686799       4 MTX            MTZ       10 <NA>
## 92  ASV1 RRN-SKG2-p2-27 0.59642423       7 MTX            PSB       14 <NA>
## 157 ASV1  RRN-SKG2-p2-4 0.58942504       4 MTX            MTZ       12 <NA>
## 106 ASV1  RRN-SKG2-p1-8 0.58858355       8 MTX            MTZ       -2 <NA>
## 133 ASV1 RRN-SKG2-p2-35 0.58749041       3 MTX            MTZ       17 <NA>
## 18  ASV1 RRN-SKG2-p2-56 0.58747798      12 PBS            MTZ       12 <NA>
## 73  ASV1 RRN-SKG2-p2-12 0.58463768       8 MTX            MTZ       12 <NA>
## 99  ASV1 RRN-SKG2-p2-52 0.58387604       4 MTX            MTZ       19 <NA>
## 121 ASV1 RRN-SKG2-p1-21 0.57767612       5 MTX            PSB        0 <NA>
## 116 ASV1 RRN-SKG2-p1-80 0.57468945      16 PBS            MTZ        0 <NA>
## 96  ASV1 RRN-SKG2-p1-79 0.57114754      15 PBS            MTZ        0 <NA>
## 38  ASV1 RRN-SKG2-p2-58 0.56446171       6 MTX            PSB       19 <NA>
## 65  ASV1 RRN-SKG2-p2-83 0.55923356      11 PBS            MTZ       19 <NA>
## 129 ASV1 RRN-SKG2-p2-31 0.55802288      15 PBS            MTZ        7 <NA>
## 44  ASV1 RRN-SKG2-p2-93 0.55691596      13 PBS            PSB       21 <NA>
## 56  ASV1 RRN-SKG2-p1-75 0.55666667      11 PBS            MTZ        0 <NA>
## 76  ASV1 RRN-SKG2-p1-77 0.55519545      13 PBS            PSB        0 <NA>
## 163 ASV1 RRN-SKG2-p2-41 0.55424663       5 MTX            PSB       17 <NA>
## 89  ASV1 RRN-SKG2-p2-51 0.54706552       3 MTX            MTZ       19 <NA>
## 125 ASV1 RRN-SKG2-p2-67 0.54271488       3 MTX            MTZ       21 <NA>
## 46  ASV1 RRN-SKG2-p1-74 0.54154761      10 PBS            PSB        0 <NA>
## 165 ASV1 RRN-SKG2-p1-92 0.53846861      12 PBS            MTZ        3 <NA>
## 136 ASV1 RRN-SKG2-p2-71 0.53218125      11 PBS            MTZ       14 <NA>
## 137 ASV1 RRN-SKG2-p1-86 0.52815013       6 MTX            PSB       10 <NA>
## 150 ASV1 RRN-SKG2-p2-38 0.52513003      10 PBS            PSB       10 <NA>
## 74  ASV1 RRN-SKG2-p2-96 0.52114116      16 PBS            MTZ       21 <NA>
## 155 ASV1 RRN-SKG2-p1-56 0.51913933       8 MTX            MTZ        5 <NA>
## 131 ASV1 RRN-SKG2-p1-51 0.51697456       3 MTX            MTZ        5 <NA>
## 148 ASV1 RRN-SKG2-p1-54 0.51514230       6 MTX            PSB        5 <NA>
## 117 ASV1 RRN-SKG2-p1-40 0.51310564       8 MTX            MTZ        3 <NA>
## 122 ASV1  RRN-SKG2-p2-3 0.51211331       3 MTX            MTZ       12 <NA>
## 23  ASV1 RRN-SKG2-p1-95 0.51010458      15 PBS            MTZ        3 <NA>
## 67  ASV1 RRN-SKG2-p1-65 0.50947469       1 MTX            PSB        7 <NA>
## 58  ASV1  RRN-SKG2-p2-6 0.50814545      10 PBS            PSB        5 <NA>
## 144 ASV1 RRN-SKG2-p1-88 0.50143287       8 MTX            MTZ       10 <NA>
## 7   ASV1  RRN-SKG2-p1-6 0.49603379       6 MTX            PSB       -2 <NA>
## 36  ASV1 RRN-SKG2-p1-73 0.48565949       9 PBS            PSB        0 <NA>
## 4   ASV1 RRN-SKG2-p2-89 0.48505816       9 PBS            PSB       21 <NA>
## 77  ASV1 RRN-SKG2-p1-66 0.48498456       2 MTX            PSB        7 <NA>
## 53  ASV1 RRN-SKG2-p2-10 0.48195122       6 MTX            PSB       12 <NA>
## 29  ASV1 RRN-SKG2-p2-45 0.47824019      13 PBS            PSB       10 <NA>
## 25  ASV1  RRN-SKG2-p2-8 0.47667203      12 PBS            MTZ        5 <NA>
## 102 ASV1 RRN-SKG2-p2-28 0.47397732       8 MTX            MTZ       14 <NA>
## 86  ASV1 RRN-SKG2-p1-78 0.47080530      14 PBS            PSB        0 <NA>
## 112 ASV1 RRN-SKG2-p2-29 0.46915500      14 PBS            PSB        7 <NA>
## 57  ASV1 RRN-SKG2-p1-64 0.45781250      16 PBS            MTZ       -2 <NA>
## 88  ASV1 RRN-SKG2-p2-62 0.45717845      14 PBS            PSB       12 <NA>
## 60  ASV1 RRN-SKG2-p1-34 0.45597043       2 MTX            PSB        3 <NA>
## 132 ASV1 RRN-SKG2-p2-30 0.45551546      13 PBS            PSB        7 <NA>
## 162 ASV1 RRN-SKG2-p2-40 0.45204503      12 PBS            MTZ       10 <NA>
## 70  ASV1 RRN-SKG2-p1-35 0.44335749       3 MTX            MTZ        3 <NA>
## 40  ASV1  RRN-SKG2-p1-3 0.44088697       3 MTX            MTZ       -2 <NA>
## 145 ASV1 RRN-SKG2-p2-69 0.43912631       9 PBS            PSB       14 <NA>
## 79  ASV1  RRN-SKG2-p2-5 0.43613963       9 PBS            PSB        5 <NA>
## 143 ASV1 RRN-SKG2-p2-36 0.43282202       4 MTX            MTZ       17 <NA>
## 16  ASV1 RRN-SKG2-p1-71 0.41916028       7 MTX            PSB        7 <NA>
## 47  ASV1 RRN-SKG2-p1-63 0.41804595      15 PBS            MTZ       -2 <NA>
## 147 ASV1 RRN-SKG2-p1-87 0.41392888       7 MTX            PSB       10 <NA>
## 110 ASV1 RRN-SKG2-p1-82 0.41289159       2 MTX            PSB       10 <NA>
## 151 ASV1 RRN-SKG2-p1-90 0.40315368      10 PBS            PSB        3 <NA>
## 55  ASV1 RRN-SKG2-p2-82 0.39593759      10 PBS            PSB       19 <NA>
## 156 ASV1 RRN-SKG2-p2-73 0.39110169       5 MTX            PSB       21 <NA>
## 12  ASV1  RRN-SKG2-p2-2 0.38873178       2 MTX            PSB       12 <NA>
## 103 ASV1 RRN-SKG2-p2-17 0.38728777       1 MTX            PSB       14 <NA>
## 91  ASV1 RRN-SKG2-p1-19 0.38516533       3 MTX            MTZ        0 <NA>
## 71  ASV1 RRN-SKG2-p1-17 0.38491257       1 MTX            PSB        0 <NA>
## 59  ASV1 RRN-SKG2-p2-48 0.38313200      16 PBS            MTZ       10 <NA>
## 93  ASV1 RRN-SKG2-p2-16 0.37978011      16 PBS            MTZ        5 <NA>
## 161 ASV1 RRN-SKG2-p1-91 0.37947293      11 PBS            MTZ        3 <NA>
## 52  ASV1 RRN-SKG2-p2-23 0.37118695      11 PBS            MTZ        7 <NA>
## 111 ASV1 RRN-SKG2-p1-20 0.36795252       4 MTX            MTZ        0 <NA>
## 42  ASV1 RRN-SKG2-p2-22 0.36576402      10 PBS            PSB        7 <NA>
## 28  ASV1 RRN-SKG2-p2-57 0.36516443       5 MTX            PSB       19 <NA>
## 3   ASV1 RRN-SKG2-p1-93 0.36070004      13 PBS            PSB        3 <NA>
## 24  ASV1 RRN-SKG2-p2-90 0.36069335      10 PBS            PSB       21 <NA>
## 120 ASV1 RRN-SKG2-p1-83 0.35748574       3 MTX            MTZ       10 <NA>
## 43  ASV1  RRN-SKG2-p2-1 0.35709037       1 MTX            PSB       12 <NA>
## 20  ASV1 RRN-SKG2-p1-23 0.35087719       7 MTX            PSB        0 <NA>
## 14  ASV1  RRN-SKG2-p2-9 0.34646018       5 MTX            PSB       12 <NA>
## 83  ASV1 RRN-SKG2-p2-14 0.34457511      14 PBS            PSB        5 <NA>
## 68  ASV1 RRN-SKG2-p2-60 0.34247634       8 MTX            MTZ       19 <NA>
## 141 ASV1 RRN-SKG2-p1-52 0.33667025       4 MTX            MTZ        5 <NA>
## 48  ASV1 RRN-SKG2-p2-59 0.33067314       7 MTX            PSB       19 <NA>
## 30  ASV1 RRN-SKG2-p1-24 0.31945038       8 MTX            MTZ        0 <NA>
## 123 ASV1 RRN-SKG2-p2-34 0.31091281       2 MTX            PSB       17 <NA>
## 100 ASV1 RRN-SKG2-p1-38 0.30902267       6 MTX            PSB        3 <NA>
## 33  ASV1 RRN-SKG2-p1-96 0.30831115      16 PBS            MTZ        3 <NA>
## 139 ASV1 RRN-SKG2-p2-33 0.30695739       1 MTX            PSB       17 <NA>
## 69  ASV1 RRN-SKG2-p2-49 0.29315100       1 MTX            PSB       19 <NA>
## 118 ASV1 RRN-SKG2-p2-65 0.29095275       1 MTX            PSB       21 <NA>
## 135 ASV1 RRN-SKG2-p2-68 0.29047302       4 MTX            MTZ       21 <NA>
## 10  ASV1 RRN-SKG2-p1-22 0.28556535       6 MTX            PSB        0 <NA>
## 97  ASV1 RRN-SKG2-p1-39 0.28423620       7 MTX            PSB        3 <NA>
## 50  ASV1 RRN-SKG2-p1-33 0.28091471       1 MTX            PSB        3 <NA>
## 87  ASV1 RRN-SKG2-p1-67 0.27049528       3 MTX            MTZ        7 <NA>
## 26  ASV1 RRN-SKG2-p1-72 0.26399699       8 MTX            MTZ        7 <NA>
## 37  ASV1 RRN-SKG2-p1-62 0.26372768      14 PBS            PSB       -2 <NA>
## 81  ASV1 RRN-SKG2-p1-18 0.26140319       2 MTX            PSB        0 <NA>
## 90  ASV1 RRN-SKG2-p1-37 0.25698462       5 MTX            PSB        3 <NA>
## 39  ASV1 RRN-SKG2-p2-46 0.25337058      14 PBS            PSB       10 <NA>
## 154 ASV1 RRN-SKG2-p1-89 0.24634574       9 PBS            PSB        3 <NA>
## 138 ASV1 RRN-SKG2-p1-53 0.24284432       5 MTX            PSB        5 <NA>
## 127 ASV1 RRN-SKG2-p1-85 0.24247351       5 MTX            PSB       10 <NA>
## 128 ASV1 RRN-SKG2-p2-66 0.24010852       2 MTX            PSB       21 <NA>
## 164 ASV1 RRN-SKG2-p1-57 0.22967000       9 PBS            PSB       -2 <NA>
## 104 ASV1  RRN-SKG2-p1-7 0.22190223       7 MTX            PSB       -2 <NA>
## 124 ASV1  RRN-SKG2-p1-5 0.21483126       5 MTX            PSB       -2 <NA>
## 134 ASV1 RRN-SKG2-p1-50 0.21116928       2 MTX            PSB        5 <NA>
## 94  ASV1 RRN-SKG2-p1-69 0.21083831       5 MTX            PSB        7 <NA>
## 82  ASV1 RRN-SKG2-p2-26 0.20272040       5 MTX            PSB       14 <NA>
## 159 ASV1 RRN-SKG2-p2-75 0.19027544       7 MTX            PSB       21 <NA>
## 64  ASV1 RRN-SKG2-p2-95 0.19016773      15 PBS            MTZ       21 <NA>
## 140 ASV1 RRN-SKG2-p2-37 0.16551984       9 PBS            PSB       10 <NA>
## 142 ASV1  RRN-SKG2-p2-7 0.09637995      11 PBS            MTZ        5 <NA>
##     Genotype Genotype2 TimePoint SampleInfo Row Column  type SKG_Exp replicate
## 17      <NA>       SKG         4       <NA>   D      8 feces    SKG2         0
## 98      <NA>       SKG        10       <NA>   G      8 feces    SKG2         0
## 31      <NA>       SKG        12       <NA>   E     10 feces    SKG2         0
## 21      <NA>       SKG        12       <NA>   D     10 feces    SKG2         0
## 35      <NA>       SKG        11       <NA>   H     10 feces    SKG2         0
## 105     <NA>       SKG        13       <NA>   G     11 feces    SKG2         0
## 75      <NA>       SKG        13       <NA>   D     11 feces    SKG2         0
## 22      <NA>       SKG         8       <NA>   D      3 feces    SKG2         0
## 54      <NA>       SKG        14       <NA>   F     12 feces    SKG2         0
## 11      <NA>       SKG        12       <NA>   C     10 feces    SKG2         0
## 62      <NA>       SKG         8       <NA>   H      3 feces    SKG2         0
## 126     <NA>       SKG         6       <NA>   A     11 feces    SKG2         0
## 41      <NA>       SKG        12       <NA>   F     10 feces    SKG2         0
## 15      <NA>       SKG        11       <NA>   G     10 feces    SKG2         0
## 8       <NA>       SKG        10       <NA>   G      7 feces    SKG2         0
## 66      <NA>       SKG         5       <NA>   D     10 feces    SKG2         0
## 160     <NA>       SKG         9       <NA>   G      5 feces    SKG2         0
## 95      <NA>       SKG        13       <NA>   F     11 feces    SKG2         0
## 85      <NA>       SKG        13       <NA>   E     11 feces    SKG2         0
## 51      <NA>       SKG        12       <NA>   A     11 feces    SKG2         0
## 61      <NA>       SKG         1       <NA>   A      1 feces    SKG2         0
## 107     <NA>       SKG         1       <NA>   D      1 feces    SKG2         0
## 27      <NA>       SKG         4       <NA>   E      8 feces    SKG2         0
## 19      <NA>       SKG         9       <NA>   D      6 feces    SKG2         0
## 101     <NA>       SKG         1       <NA>   B      1 feces    SKG2         0
## 146     <NA>       SKG        11       <NA>   H      9 feces    SKG2         0
## 63      <NA>       SKG         7       <NA>   C      2 feces    SKG2         0
## 153     <NA>       SKG        11       <NA>   B     10 feces    SKG2         0
## 45      <NA>       SKG        13       <NA>   A     11 feces    SKG2         0
## 34      <NA>       SKG        14       <NA>   D     12 feces    SKG2         0
## 119     <NA>       SKG        10       <NA>   F      7 feces    SKG2         0
## 84      <NA>       SKG         5       <NA>   D      9 feces    SKG2         0
## 108     <NA>       SKG        10       <NA>   H      8 feces    SKG2         0
## 9       <NA>       SKG         9       <NA>   B      6 feces    SKG2         0
## 113     <NA>       SKG         8       <NA>   B      3 feces    SKG2         0
## 149     <NA>       SKG         4       <NA>   C      8 feces    SKG2         0
## 32      <NA>       SKG         8       <NA>   E      3 feces    SKG2         0
## 49      <NA>       SKG         9       <NA>   G      6 feces    SKG2         0
## 166     <NA>       SKG        11       <NA>   E     10 feces    SKG2         0
## 72      <NA>       SKG         8       <NA>   A      4 feces    SKG2         0
## 6       <NA>       SKG         5       <NA>   F      9 feces    SKG2         0
## 115     <NA>       SKG        13       <NA>   H     11 feces    SKG2         0
## 13      <NA>       SKG         6       <NA>   F     12 feces    SKG2         0
## 2       <NA>       SKG         8       <NA>   C      3 feces    SKG2         0
## 80      <NA>       SKG         3       <NA>   D      5 feces    SKG2         0
## 109     <NA>       SKG        10       <NA>   E      7 feces    SKG2         0
## 1       <NA>       SKG        12       <NA>   B     10 feces    SKG2         0
## 78      <NA>       SKG        10       <NA>   E      8 feces    SKG2         0
## 114     <NA>       SKG         4       <NA>   A      7 feces    SKG2         0
## 158     <NA>       SKG         4       <NA>   G      7 feces    SKG2         0
## 5       <NA>       SKG        11       <NA>   F     10 feces    SKG2         0
## 152     <NA>       SKG        11       <NA>   F      9 feces    SKG2         0
## 130     <NA>       SKG         6       <NA>   D     11 feces    SKG2         0
## 92      <NA>       SKG         8       <NA>   C      4 feces    SKG2         0
## 157     <NA>       SKG         7       <NA>   D      1 feces    SKG2         0
## 106     <NA>       SKG         1       <NA>   H      1 feces    SKG2         0
## 133     <NA>       SKG         9       <NA>   C      5 feces    SKG2         0
## 18      <NA>       SKG        10       <NA>   H      7 feces    SKG2         0
## 73      <NA>       SKG         7       <NA>   D      2 feces    SKG2         0
## 99      <NA>       SKG        10       <NA>   D      7 feces    SKG2         0
## 121     <NA>       SKG         2       <NA>   E      3 feces    SKG2         0
## 116     <NA>       SKG         5       <NA>   H     10 feces    SKG2         0
## 96      <NA>       SKG         5       <NA>   G     10 feces    SKG2         0
## 38      <NA>       SKG        10       <NA>   B      8 feces    SKG2         0
## 65      <NA>       SKG        13       <NA>   C     11 feces    SKG2         0
## 129     <NA>       SKG         8       <NA>   G      4 feces    SKG2         0
## 44      <NA>       SKG        14       <NA>   E     12 feces    SKG2         0
## 56      <NA>       SKG         5       <NA>   C     10 feces    SKG2         0
## 76      <NA>       SKG         5       <NA>   E     10 feces    SKG2         0
## 163     <NA>       SKG         9       <NA>   A      6 feces    SKG2         0
## 89      <NA>       SKG        10       <NA>   C      7 feces    SKG2         0
## 125     <NA>       SKG        11       <NA>   C      9 feces    SKG2         0
## 46      <NA>       SKG         5       <NA>   B     10 feces    SKG2         0
## 165     <NA>       SKG         6       <NA>   D     12 feces    SKG2         0
## 136     <NA>       SKG        11       <NA>   G      9 feces    SKG2         0
## 137     <NA>       SKG         6       <NA>   F     11 feces    SKG2         0
## 150     <NA>       SKG         9       <NA>   F      5 feces    SKG2         0
## 74      <NA>       SKG        14       <NA>   H     12 feces    SKG2         0
## 155     <NA>       SKG         4       <NA>   H      7 feces    SKG2         0
## 131     <NA>       SKG         4       <NA>   C      7 feces    SKG2         0
## 148     <NA>       SKG         4       <NA>   F      7 feces    SKG2         0
## 117     <NA>       SKG         3       <NA>   H      5 feces    SKG2         0
## 122     <NA>       SKG         7       <NA>   C      1 feces    SKG2         0
## 23      <NA>       SKG         6       <NA>   G     12 feces    SKG2         0
## 67      <NA>       SKG         5       <NA>   A      9 feces    SKG2         0
## 58      <NA>       SKG         7       <NA>   F      1 feces    SKG2         0
## 144     <NA>       SKG         6       <NA>   H     11 feces    SKG2         0
## 7       <NA>       SKG         1       <NA>   F      1 feces    SKG2         0
## 36      <NA>       SKG         5       <NA>   A     10 feces    SKG2         0
## 4       <NA>       SKG        14       <NA>   A     12 feces    SKG2         0
## 77      <NA>       SKG         5       <NA>   B      9 feces    SKG2         0
## 53      <NA>       SKG         7       <NA>   B      2 feces    SKG2         0
## 29      <NA>       SKG         9       <NA>   E      6 feces    SKG2         0
## 25      <NA>       SKG         7       <NA>   H      1 feces    SKG2         0
## 102     <NA>       SKG         8       <NA>   D      4 feces    SKG2         0
## 86      <NA>       SKG         5       <NA>   F     10 feces    SKG2         0
## 112     <NA>       SKG         8       <NA>   E      4 feces    SKG2         0
## 57      <NA>       SKG         4       <NA>   H      8 feces    SKG2         0
## 88      <NA>       SKG        10       <NA>   F      8 feces    SKG2         0
## 60      <NA>       SKG         3       <NA>   B      5 feces    SKG2         0
## 132     <NA>       SKG         8       <NA>   F      4 feces    SKG2         0
## 162     <NA>       SKG         9       <NA>   H      5 feces    SKG2         0
## 70      <NA>       SKG         3       <NA>   C      5 feces    SKG2         0
## 40      <NA>       SKG         1       <NA>   C      1 feces    SKG2         0
## 145     <NA>       SKG        11       <NA>   E      9 feces    SKG2         0
## 79      <NA>       SKG         7       <NA>   E      1 feces    SKG2         0
## 143     <NA>       SKG         9       <NA>   D      5 feces    SKG2         0
## 16      <NA>       SKG         5       <NA>   G      9 feces    SKG2         0
## 47      <NA>       SKG         4       <NA>   G      8 feces    SKG2         0
## 147     <NA>       SKG         6       <NA>   G     11 feces    SKG2         0
## 110     <NA>       SKG         6       <NA>   B     11 feces    SKG2         0
## 151     <NA>       SKG         6       <NA>   B     12 feces    SKG2         0
## 55      <NA>       SKG        13       <NA>   B     11 feces    SKG2         0
## 156     <NA>       SKG        11       <NA>   A     10 feces    SKG2         0
## 12      <NA>       SKG         7       <NA>   B      1 feces    SKG2         0
## 103     <NA>       SKG         8       <NA>   A      3 feces    SKG2         0
## 91      <NA>       SKG         2       <NA>   C      3 feces    SKG2         0
## 71      <NA>       SKG         2       <NA>   A      3 feces    SKG2         0
## 59      <NA>       SKG         9       <NA>   H      6 feces    SKG2         0
## 93      <NA>       SKG         7       <NA>   H      2 feces    SKG2         0
## 161     <NA>       SKG         6       <NA>   C     12 feces    SKG2         0
## 52      <NA>       SKG         8       <NA>   G      3 feces    SKG2         0
## 111     <NA>       SKG         2       <NA>   D      3 feces    SKG2         0
## 42      <NA>       SKG         8       <NA>   F      3 feces    SKG2         0
## 28      <NA>       SKG        10       <NA>   A      8 feces    SKG2         0
## 3       <NA>       SKG         6       <NA>   E     12 feces    SKG2         0
## 24      <NA>       SKG        14       <NA>   B     12 feces    SKG2         0
## 120     <NA>       SKG         6       <NA>   C     11 feces    SKG2         0
## 43      <NA>       SKG         7       <NA>   A      1 feces    SKG2         0
## 20      <NA>       SKG         2       <NA>   G      3 feces    SKG2         0
## 14      <NA>       SKG         7       <NA>   A      2 feces    SKG2         0
## 83      <NA>       SKG         7       <NA>   F      2 feces    SKG2         0
## 68      <NA>       SKG        10       <NA>   D      8 feces    SKG2         0
## 141     <NA>       SKG         4       <NA>   D      7 feces    SKG2         0
## 48      <NA>       SKG        10       <NA>   C      8 feces    SKG2         0
## 30      <NA>       SKG         2       <NA>   H      3 feces    SKG2         0
## 123     <NA>       SKG         9       <NA>   B      5 feces    SKG2         0
## 100     <NA>       SKG         3       <NA>   F      5 feces    SKG2         0
## 33      <NA>       SKG         6       <NA>   H     12 feces    SKG2         0
## 139     <NA>       SKG         9       <NA>   A      5 feces    SKG2         0
## 69      <NA>       SKG        10       <NA>   A      7 feces    SKG2         0
## 118     <NA>       SKG        11       <NA>   A      9 feces    SKG2         0
## 135     <NA>       SKG        11       <NA>   D      9 feces    SKG2         0
## 10      <NA>       SKG         2       <NA>   F      3 feces    SKG2         0
## 97      <NA>       SKG         3       <NA>   G      5 feces    SKG2         0
## 50      <NA>       SKG         3       <NA>   A      5 feces    SKG2         0
## 87      <NA>       SKG         5       <NA>   C      9 feces    SKG2         0
## 26      <NA>       SKG         5       <NA>   H      9 feces    SKG2         0
## 37      <NA>       SKG         4       <NA>   F      8 feces    SKG2         0
## 81      <NA>       SKG         2       <NA>   B      3 feces    SKG2         0
## 90      <NA>       SKG         3       <NA>   E      5 feces    SKG2         0
## 39      <NA>       SKG         9       <NA>   F      6 feces    SKG2         0
## 154     <NA>       SKG         6       <NA>   A     12 feces    SKG2         0
## 138     <NA>       SKG         4       <NA>   E      7 feces    SKG2         0
## 127     <NA>       SKG         6       <NA>   E     11 feces    SKG2         0
## 128     <NA>       SKG        11       <NA>   B      9 feces    SKG2         0
## 164     <NA>       SKG         4       <NA>   A      8 feces    SKG2         0
## 104     <NA>       SKG         1       <NA>   G      1 feces    SKG2         0
## 124     <NA>       SKG         1       <NA>   E      1 feces    SKG2         0
## 134     <NA>       SKG         4       <NA>   B      7 feces    SKG2         0
## 94      <NA>       SKG         5       <NA>   E      9 feces    SKG2         0
## 82      <NA>       SKG         8       <NA>   B      4 feces    SKG2         0
## 159     <NA>       SKG        11       <NA>   C     10 feces    SKG2         0
## 64      <NA>       SKG        14       <NA>   G     12 feces    SKG2         0
## 140     <NA>       SKG         9       <NA>   E      5 feces    SKG2         0
## 142     <NA>       SKG         7       <NA>   G      1 feces    SKG2         0
##     JA_Group JA_Sex JA_Abx JA_Collection FacilityTx  exp  plate Day    Cage
## 17        NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150962
## 98        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 31        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA      NA
## 21        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA      NA
## 35        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 105       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 75        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 22        NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 54        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 11        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA      NA
## 62        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 126       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 41        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA      NA
## 15        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 8         NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 66        NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150962
## 160       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 95        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 85        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 51        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA      NA
## 61        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 107       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 27        NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150966
## 19        NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070853
## 101       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 146       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 63        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 153       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 45        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 34        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 119       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 84        NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 108       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 9         NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 113       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 149       NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150962
## 32        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 49        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 166       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 72        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 6         NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 115       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 13        NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150966
## 2         NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 80        NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 109       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 1         NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA      NA
## 78        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 114       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 158       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 5         NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 152       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 130       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 92        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 157       NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 106       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070853
## 133       NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 18        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 73        NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070853
## 99        NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 121       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 116       NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150966
## 96        NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150966
## 38        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 65        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 129       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 44        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 56        NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150962
## 76        NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150966
## 163       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 89        NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 125       NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 46        NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150962
## 165       NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150962
## 136       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 137       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 150       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 74        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 155       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070853
## 131       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 148       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 117       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070853
## 122       NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 23        NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150966
## 67        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 58        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 144       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070853
## 7         NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 36        NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150962
## 4         NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 77        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 53        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 29        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 25        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 102       NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070853
## 86        NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150966
## 112       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 57        NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150966
## 88        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 60        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 132       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 162       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 70        NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 40        NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 145       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 79        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 143       NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 16        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 47        NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150966
## 147       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 110       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 151       NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150962
## 55        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 156       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 12        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 103       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 91        NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 71        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 59        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 93        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 161       NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150962
## 52        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
## 111       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 42        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 28        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 3         NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150966
## 24        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 120       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 43        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 20        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 14        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 83        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 68        NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070853
## 141       NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 48        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 30        NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070853
## 123       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 100       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 33        NA   <NA>     NA            NA    MTZ_PBS skg2 plate1  NA 4150966
## 139       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 69        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 118       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 135       NA   <NA>     NA            NA    MTZ_MTX skg2 plate2  NA 4070852
## 10        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 97        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 50        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 87        NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070852
## 26        NA   <NA>     NA            NA    MTZ_MTX skg2 plate1  NA 4070853
## 37        NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150966
## 81        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 90        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 39        NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150966
## 154       NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150962
## 138       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 127       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 128       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070852
## 164       NA   <NA>     NA            NA    PSB_PBS skg2 plate1  NA 4150962
## 104       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 124       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 134       NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070852
## 94        NA   <NA>     NA            NA    PSB_MTX skg2 plate1  NA 4070853
## 82        NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 159       NA   <NA>     NA            NA    PSB_MTX skg2 plate2  NA 4070853
## 64        NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150966
## 140       NA   <NA>     NA            NA    PSB_PBS skg2 plate2  NA 4150962
## 142       NA   <NA>     NA            NA    MTZ_PBS skg2 plate2  NA 4150962
##     Bacteroides    Date CAS_Score  Kingdom       Phylum
## 17         less 5/12/21       0.0 Bacteria Bacteroidota
## 98         more 5/26/21       3.3 Bacteria Bacteroidota
## 31         more 5/31/21       1.2 Bacteria Bacteroidota
## 21         more 5/31/21       4.0 Bacteria Bacteroidota
## 35         more 5/28/21       3.9 Bacteria Bacteroidota
## 105        more  6/2/21       4.3 Bacteria Bacteroidota
## 75         more  6/2/21       2.4 Bacteria Bacteroidota
## 22         more 5/21/21       0.1 Bacteria Bacteroidota
## 54         more  6/4/21       3.3 Bacteria Bacteroidota
## 11         more 5/31/21       4.6 Bacteria Bacteroidota
## 62         more 5/21/21       0.0 Bacteria Bacteroidota
## 126        more 5/17/21       0.9 Bacteria Bacteroidota
## 41         more 5/31/21       5.8 Bacteria Bacteroidota
## 15         more 5/28/21       3.7 Bacteria Bacteroidota
## 8          more 5/26/21       2.4 Bacteria Bacteroidota
## 66         less 5/14/21       0.0 Bacteria Bacteroidota
## 160        more 5/24/21       1.5 Bacteria Bacteroidota
## 95         more  6/2/21       3.0 Bacteria Bacteroidota
## 85         more  6/2/21       5.8 Bacteria Bacteroidota
## 51         more 5/31/21       5.4 Bacteria Bacteroidota
## 61         less    <NA>        NA Bacteria Bacteroidota
## 107        less    <NA>        NA Bacteria Bacteroidota
## 27         less 5/12/21       0.0 Bacteria Bacteroidota
## 19         more 5/24/21       2.0 Bacteria Bacteroidota
## 101        less    <NA>        NA Bacteria Bacteroidota
## 146        more 5/28/21       0.4 Bacteria Bacteroidota
## 63         more 5/19/21       1.9 Bacteria Bacteroidota
## 153        more 5/28/21       1.3 Bacteria Bacteroidota
## 45         more  6/2/21       5.8 Bacteria Bacteroidota
## 34         more  6/4/21       3.8 Bacteria Bacteroidota
## 119        more 5/26/21       3.7 Bacteria Bacteroidota
## 84         more 5/14/21       0.1 Bacteria Bacteroidota
## 108        more 5/26/21       3.4 Bacteria Bacteroidota
## 9          more 5/24/21       0.9 Bacteria Bacteroidota
## 113        more 5/21/21       2.5 Bacteria Bacteroidota
## 149        less 5/12/21       0.0 Bacteria Bacteroidota
## 32         more 5/21/21       0.9 Bacteria Bacteroidota
## 49         more 5/24/21       1.6 Bacteria Bacteroidota
## 166        more 5/28/21       5.4 Bacteria Bacteroidota
## 72         more 5/21/21       0.9 Bacteria Bacteroidota
## 6          more 5/14/21       0.0 Bacteria Bacteroidota
## 115        more  6/2/21       5.8 Bacteria Bacteroidota
## 13         less 5/17/21       0.0 Bacteria Bacteroidota
## 2          more 5/21/21       0.7 Bacteria Bacteroidota
## 80         less 5/10/21       0.0 Bacteria Bacteroidota
## 109        more 5/26/21       3.4 Bacteria Bacteroidota
## 1          more 5/31/21       4.8 Bacteria Bacteroidota
## 78         more 5/26/21       5.0 Bacteria Bacteroidota
## 114        less 5/12/21       0.0 Bacteria Bacteroidota
## 158        less 5/12/21       0.0 Bacteria Bacteroidota
## 5          more 5/28/21       1.7 Bacteria Bacteroidota
## 152        more 5/28/21       3.6 Bacteria Bacteroidota
## 130        more 5/17/21       0.1 Bacteria Bacteroidota
## 92         more 5/21/21       2.0 Bacteria Bacteroidota
## 157        more 5/19/21       0.1 Bacteria Bacteroidota
## 106        less    <NA>        NA Bacteria Bacteroidota
## 133        more 5/24/21       0.7 Bacteria Bacteroidota
## 18         more 5/26/21       0.3 Bacteria Bacteroidota
## 73         more 5/19/21       0.2 Bacteria Bacteroidota
## 99         more 5/26/21       1.4 Bacteria Bacteroidota
## 121        less    <NA>        NA Bacteria Bacteroidota
## 116        less 5/14/21       0.0 Bacteria Bacteroidota
## 96         less 5/14/21       0.0 Bacteria Bacteroidota
## 38         more 5/26/21       0.9 Bacteria Bacteroidota
## 65         more  6/2/21       4.8 Bacteria Bacteroidota
## 129        more 5/21/21       0.7 Bacteria Bacteroidota
## 44         more  6/4/21       5.8 Bacteria Bacteroidota
## 56         less 5/14/21       0.0 Bacteria Bacteroidota
## 76         less 5/14/21       0.0 Bacteria Bacteroidota
## 163        more 5/24/21       3.2 Bacteria Bacteroidota
## 89         more 5/26/21       0.7 Bacteria Bacteroidota
## 125        more 5/28/21       0.6 Bacteria Bacteroidota
## 46         less 5/14/21       0.0 Bacteria Bacteroidota
## 165        less 5/17/21       0.0 Bacteria Bacteroidota
## 136        more 5/28/21       2.9 Bacteria Bacteroidota
## 137        more 5/17/21       0.1 Bacteria Bacteroidota
## 150        more 5/24/21       1.5 Bacteria Bacteroidota
## 74         more  6/4/21       5.8 Bacteria Bacteroidota
## 155        less 5/12/21       0.0 Bacteria Bacteroidota
## 131        less 5/12/21       0.0 Bacteria Bacteroidota
## 148        less 5/12/21       0.0 Bacteria Bacteroidota
## 117        less 5/10/21       0.0 Bacteria Bacteroidota
## 122        more 5/19/21       0.6 Bacteria Bacteroidota
## 23         less 5/17/21       0.0 Bacteria Bacteroidota
## 67         more 5/14/21       0.5 Bacteria Bacteroidota
## 58         less 5/19/21       0.0 Bacteria Bacteroidota
## 144        more 5/17/21       0.7 Bacteria Bacteroidota
## 7          less    <NA>        NA Bacteria Bacteroidota
## 36         less 5/14/21       0.0 Bacteria Bacteroidota
## 4          more  6/4/21       5.8 Bacteria Bacteroidota
## 77         more 5/14/21       0.1 Bacteria Bacteroidota
## 53         more 5/19/21       0.6 Bacteria Bacteroidota
## 29         more 5/24/21       2.3 Bacteria Bacteroidota
## 25         less 5/19/21       0.0 Bacteria Bacteroidota
## 102        more 5/21/21       1.2 Bacteria Bacteroidota
## 86         less 5/14/21       0.0 Bacteria Bacteroidota
## 112        more 5/21/21       0.1 Bacteria Bacteroidota
## 57         less 5/12/21       0.0 Bacteria Bacteroidota
## 88         more 5/26/21       1.8 Bacteria Bacteroidota
## 60         less 5/10/21       0.0 Bacteria Bacteroidota
## 132        more 5/21/21       0.8 Bacteria Bacteroidota
## 162        more 5/24/21       0.3 Bacteria Bacteroidota
## 70         less 5/10/21       0.0 Bacteria Bacteroidota
## 40         less    <NA>        NA Bacteria Bacteroidota
## 145        more 5/28/21       4.7 Bacteria Bacteroidota
## 79         less 5/19/21       0.0 Bacteria Bacteroidota
## 143        more 5/24/21       0.1 Bacteria Bacteroidota
## 16         more 5/14/21       0.0 Bacteria Bacteroidota
## 47         less 5/12/21       0.0 Bacteria Bacteroidota
## 147        more 5/17/21       1.4 Bacteria Bacteroidota
## 110        more 5/17/21       1.3 Bacteria Bacteroidota
## 151        less 5/17/21       0.0 Bacteria Bacteroidota
## 55         more  6/2/21       5.8 Bacteria Bacteroidota
## 156        more 5/28/21       5.4 Bacteria Bacteroidota
## 12         more 5/19/21       2.4 Bacteria Bacteroidota
## 103        more 5/21/21       1.9 Bacteria Bacteroidota
## 91         less    <NA>        NA Bacteria Bacteroidota
## 71         less    <NA>        NA Bacteria Bacteroidota
## 59         more 5/24/21       1.1 Bacteria Bacteroidota
## 93         less 5/19/21       0.0 Bacteria Bacteroidota
## 161        less 5/17/21       0.0 Bacteria Bacteroidota
## 52         more 5/21/21       0.1 Bacteria Bacteroidota
## 111        less    <NA>        NA Bacteria Bacteroidota
## 42         more 5/21/21       0.1 Bacteria Bacteroidota
## 28         more 5/26/21       4.4 Bacteria Bacteroidota
## 3          less 5/17/21       0.0 Bacteria Bacteroidota
## 24         more  6/4/21       5.8 Bacteria Bacteroidota
## 120        more 5/17/21       0.6 Bacteria Bacteroidota
## 43         more 5/19/21       1.1 Bacteria Bacteroidota
## 20         less    <NA>        NA Bacteria Bacteroidota
## 14         more 5/19/21       1.6 Bacteria Bacteroidota
## 83         less 5/19/21       0.0 Bacteria Bacteroidota
## 68         more 5/26/21       3.2 Bacteria Bacteroidota
## 141        less 5/12/21       0.0 Bacteria Bacteroidota
## 48         more 5/26/21       3.9 Bacteria Bacteroidota
## 30         less    <NA>        NA Bacteria Bacteroidota
## 123        more 5/24/21       3.6 Bacteria Bacteroidota
## 100        less 5/10/21       0.0 Bacteria Bacteroidota
## 33         less 5/17/21       0.0 Bacteria Bacteroidota
## 139        more 5/24/21       3.2 Bacteria Bacteroidota
## 69         more 5/26/21       4.1 Bacteria Bacteroidota
## 118        more 5/28/21       4.0 Bacteria Bacteroidota
## 135        more 5/28/21       1.8 Bacteria Bacteroidota
## 10         less    <NA>        NA Bacteria Bacteroidota
## 97         less 5/10/21       0.0 Bacteria Bacteroidota
## 50         less 5/10/21       0.0 Bacteria Bacteroidota
## 87         more 5/14/21       0.6 Bacteria Bacteroidota
## 26         more 5/14/21       0.0 Bacteria Bacteroidota
## 37         less 5/12/21       0.0 Bacteria Bacteroidota
## 81         less    <NA>        NA Bacteria Bacteroidota
## 90         less 5/10/21       0.0 Bacteria Bacteroidota
## 39         more 5/24/21       1.4 Bacteria Bacteroidota
## 154        less 5/17/21       0.0 Bacteria Bacteroidota
## 138        less 5/12/21       0.0 Bacteria Bacteroidota
## 127        more 5/17/21       1.1 Bacteria Bacteroidota
## 128        more 5/28/21       4.3 Bacteria Bacteroidota
## 164        less 5/12/21       0.0 Bacteria Bacteroidota
## 104        less    <NA>        NA Bacteria Bacteroidota
## 124        less    <NA>        NA Bacteria Bacteroidota
## 134        less 5/12/21       0.0 Bacteria Bacteroidota
## 94         more 5/14/21       0.1 Bacteria Bacteroidota
## 82         more 5/21/21       1.6 Bacteria Bacteroidota
## 159        more 5/28/21       4.0 Bacteria Bacteroidota
## 64         more  6/4/21       4.3 Bacteria Bacteroidota
## 140        more 5/24/21       2.2 Bacteria Bacteroidota
## 142        less 5/19/21       0.0 Bacteria Bacteroidota
library(dplyr)
data_subset <- bacteroidaceae_data %>%
  select(Abundance, FacilityOrigin, Tx, DaysPost)

psb_data_filtered <- data_subset %>%
  filter(FacilityOrigin == "MTZ" & !DaysPost %in% c(-9, -4, -7, 17))

psb_results <- psb_data_filtered %>%
  group_by(DaysPost) %>%
  summarise(t_test_p_value = wilcox.test(Abundance ~ Tx)$p.value)
psb_results <- psb_results %>%
  mutate(adjusted_p_value = p.adjust(t_test_p_value, method = "BH"))

print(psb_results)
## # A tibble: 10 × 3
##    DaysPost t_test_p_value adjusted_p_value
##       <int>          <dbl>            <dbl>
##  1       -2         1                 1    
##  2        0         0.0571            0.381
##  3        3         0.4               0.667
##  4        5         0.4               0.667
##  5        7         0.4               0.667
##  6       10         0.629             0.786
##  7       12         0.114             0.381
##  8       14         0.629             0.786
##  9       19         0.114             0.381
## 10       21         1                 1
data_subset <- bacteroidaceae_data %>%
  select(Abundance, FacilityOrigin, Tx, DaysPost)

psb_data_filtered <- data_subset %>%
  filter(FacilityOrigin == "PSB" & !DaysPost %in% c(-9, -4, -7, 17))

psb_results <- psb_data_filtered %>%
  group_by(DaysPost) %>%
  summarise(t_test_p_value = t.test(Abundance ~ Tx)$p.value)
psb_results <- psb_results %>%
  mutate(adjusted_p_value = p.adjust(t_test_p_value, method = "BH"))

print(psb_results)
## # A tibble: 10 × 3
##    DaysPost t_test_p_value adjusted_p_value
##       <int>          <dbl>            <dbl>
##  1       -2         0.731             0.812
##  2        0         0.0637            0.319
##  3        3         0.350             0.633
##  4        5         0.937             0.937
##  5        7         0.728             0.812
##  6       10         0.380             0.633
##  7       12         0.128             0.426
##  8       14         0.480             0.686
##  9       19         0.0544            0.319
## 10       21         0.179             0.448

#BacteroidaceaeFamily

rm(list=ls())
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")
pseq <- subset_samples(ps, exp!="skg1" & SKG_Exp=="SKG2" & !is.na(MouseID) & !DaysPost %in% c("-9", "-4", "-7"))
y1 <- tax_glom(pseq, taxrank = 'Family')
y3 <- transform_sample_counts(y1, function(x) x / sum(x))
y4 <- psmelt(y3)
y4$Family <- as.character(y4$Family)

bacteroidaceae_data <- subset(y4, Family == "Bacteroidaceae")

data_subset <- bacteroidaceae_data %>%
  select(Abundance, FacilityOrigin, Tx, DaysPost)

psb_data_filtered <- data_subset %>%
  filter(FacilityOrigin == "PSB" & !DaysPost %in% c(-9, -4, -7))

psb_results <- psb_data_filtered %>%
  group_by(DaysPost) %>%
  summarise(t_test_p_value = t.test(Abundance ~ Tx)$p.value)
psb_results <- psb_results %>%
  mutate(adjusted_p_value = p.adjust(t_test_p_value, method = "BH"))


data_subset <- bacteroidaceae_data %>%
  select(Abundance, FacilityOrigin, Tx, DaysPost)

psb_data_filtered <- data_subset %>%
  filter(FacilityOrigin == "MTZ" & !DaysPost %in% c(-9, -4, -7))

mtz_results <- psb_data_filtered %>%
  group_by(DaysPost) %>%
  summarise(t_test_p_value = t.test(Abundance ~ Tx)$p.value)
mtz_results <- mtz_results %>%
  mutate(adjusted_p_value = p.adjust(t_test_p_value, method = "BH"))

print(mtz_results)
## # A tibble: 11 × 3
##    DaysPost t_test_p_value adjusted_p_value
##       <int>          <dbl>            <dbl>
##  1       -2        0.611             0.733 
##  2        0        0.277             0.381 
##  3        3        0.666             0.733 
##  4        5        0.974             0.974 
##  5        7        0.116             0.238 
##  6       10        0.107             0.238 
##  7       12        0.0551            0.202 
##  8       14        0.130             0.238 
##  9       17        0.00409           0.0450
## 10       19        0.00937           0.0515
## 11       21        0.226             0.356

#Day0 bacteroides Plot

rm(list = ls())
library(ggpubr)
ps <- readRDS("../../02_CreatPhyloseq/Phyloseq.rds")

# Subset the samples based on criteria
pseq <- subset_samples(ps, exp != "skg1" & SKG_Exp == "SKG2" & !is.na(MouseID) & DaysPost == "0")
# Agglomerate taxa at Genus level and normalize counts
y1 <- tax_glom(pseq, taxrank = 'Genus')
y3 <- transform_sample_counts(y1, function(x) x / sum(x))

# Convert phyloseq object to data frame
y4 <- psmelt(y3)
y4$Genus <- as.character(y4$Genus)

# Filter for Bacteroides genus
bacteroides <- subset(y4, Genus == "Bacteroides")

p <- ggplot(bacteroides, aes(x = FacilityTx, y = Abundance)) +
  geom_boxplot(outlier.shape = NA) +  # Boxplot without outlier points
  geom_point(aes(color = Tx, shape = FacilityOrigin), size = 3, position = position_jitter(width = 0.2)) +  # Add jittered points
  theme_classic() +
  theme(text = element_text(size = 12), 
        axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(x = "FacilityTx", y = "Abundance of Bacteroides") +
  guides(color = guide_legend(keywidth = 0.4, keyheight = 0.7),
         shape = guide_legend(keywidth = 0.4, keyheight = 0.7)) +
  stat_compare_means(method = "t.test", label = "p.format", comparisons = list(
    c("MTZ_MTX", "MTZ_PBS"),  # Replace with actual FacilityTx group names
    c("PSB_MTX", "PSB_PBS"),  # Add more comparisons as needed
    c("MTZ_PBS", "PSB_MTX")))
p