Import data

# csv file
data <- read_csv("../00_data/myData.csv")
data
## # A tibble: 691 × 22
##     ...1 sort_name   clean_name album rank_2003 rank_2012 rank_2020 differential
##    <dbl> <chr>       <chr>      <chr>     <dbl>     <dbl>     <dbl>        <dbl>
##  1     1 Sinatra, F… Frank Sin… "In …       100       101       282         -182
##  2     2 Diddley, Bo Bo Diddley "Bo …       214       216       455         -241
##  3     3 Presley, E… Elvis Pre… "Elv…        55        56       332         -277
##  4     4 Sinatra, F… Frank Sin… "Son…       306       308        NA         -195
##  5     5 Little Ric… Little Ri… "Her…        50        50       227         -177
##  6     6 Beyonce     Beyonce    "Lem…        NA        NA        32          469
##  7     7 Winehouse,… Amy Wineh… "Bac…        NA       451        33          468
##  8     8 Crickets    Buddy Hol… "The…       421       420        NA          -80
##  9     9 Bush, Kate  Kate Bush  "Hou…        NA        NA        68          433
## 10    10 Davis, Mil… Miles Dav… "Kin…        12        12        31          -19
## # ℹ 681 more rows
## # ℹ 14 more variables: release_year <dbl>, genre <chr>, type <chr>,
## #   weeks_on_billboard <dbl>, peak_billboard_position <dbl>,
## #   spotify_popularity <dbl>, spotify_url <chr>, artist_member_count <dbl>,
## #   artist_gender <chr>, artist_birth_year_sum <dbl>,
## #   debut_album_release_year <dbl>, ave_age_at_top_500 <dbl>,
## #   years_between <dbl>, album_id <chr>
# excel file

Apply the following dplyr verbs to your data

Filter rows

filter(data, sort_name == "Sinatra, Frank")
## # A tibble: 2 × 22
##    ...1 sort_name    clean_name album rank_2003 rank_2012 rank_2020 differential
##   <dbl> <chr>        <chr>      <chr>     <dbl>     <dbl>     <dbl>        <dbl>
## 1     1 Sinatra, Fr… Frank Sin… In t…       100       101       282         -182
## 2     4 Sinatra, Fr… Frank Sin… Song…       306       308        NA         -195
## # ℹ 14 more variables: release_year <dbl>, genre <chr>, type <chr>,
## #   weeks_on_billboard <dbl>, peak_billboard_position <dbl>,
## #   spotify_popularity <dbl>, spotify_url <chr>, artist_member_count <dbl>,
## #   artist_gender <chr>, artist_birth_year_sum <dbl>,
## #   debut_album_release_year <dbl>, ave_age_at_top_500 <dbl>,
## #   years_between <dbl>, album_id <chr>
filter(data, rank_2020 < 100)
## # A tibble: 99 × 22
##     ...1 sort_name   clean_name album rank_2003 rank_2012 rank_2020 differential
##    <dbl> <chr>       <chr>      <chr>     <dbl>     <dbl>     <dbl>        <dbl>
##  1     6 Beyonce     Beyonce    Lemo…        NA        NA        32          469
##  2     7 Winehouse,… Amy Wineh… Back…        NA       451        33          468
##  3     9 Bush, Kate  Kate Bush  Houn…        NA        NA        68          433
##  4    10 Davis, Mil… Miles Dav… Kind…        12        12        31          -19
##  5    12 Beyonce     Beyonce    Beyo…        NA        NA        81          420
##  6    14 Badu, Eryk… Erykah Ba… Badu…        NA        NA        89          412
##  7    15 Elliott, M… Missy Ell… Supa…        NA        NA        93          408
##  8    17 Swift, Tay… Taylor Sw… Red          NA        NA        99          402
##  9    39 Brown, Jam… James Bro… Live…        24        25        65          -41
## 10    81 Dylan, Bob  Bob Dylan  High…         4         4        18          -14
## # ℹ 89 more rows
## # ℹ 14 more variables: release_year <dbl>, genre <chr>, type <chr>,
## #   weeks_on_billboard <dbl>, peak_billboard_position <dbl>,
## #   spotify_popularity <dbl>, spotify_url <chr>, artist_member_count <dbl>,
## #   artist_gender <chr>, artist_birth_year_sum <dbl>,
## #   debut_album_release_year <dbl>, ave_age_at_top_500 <dbl>,
## #   years_between <dbl>, album_id <chr>

Arrange rows

arrange(data, desc(sort_name))
## # A tibble: 691 × 22
##     ...1 sort_name   clean_name album rank_2003 rank_2012 rank_2020 differential
##    <dbl> <chr>       <chr>      <chr>     <dbl>     <dbl>     <dbl>        <dbl>
##  1   149 Zombies     The Zombi… Odes…        80       100       243         -163
##  2   316 ZZ Top      ZZ Top     Tres…       498       490        NA           -3
##  3   517 ZZ Top      ZZ Top     Elim…       396       398        NA         -105
##  4   177 Young, Neil Neil Young Ever…       208       210       407         -199
##  5   193 Young, Neil Neil Young Afte…        71        74        90          -19
##  6   255 Young, Neil Neil Young Harv…        78        82        72            6
##  7   325 Young, Neil Neil Young On t…        NA        NA       311          190
##  8   353 Young, Neil Neil Young Toni…       331       330       302           29
##  9   465 Young, Neil Neil Young Rust…       350       351       296           54
## 10   491 Yo La Tengo Yo La Ten… I Ca…        NA        NA       423           78
## # ℹ 681 more rows
## # ℹ 14 more variables: release_year <dbl>, genre <chr>, type <chr>,
## #   weeks_on_billboard <dbl>, peak_billboard_position <dbl>,
## #   spotify_popularity <dbl>, spotify_url <chr>, artist_member_count <dbl>,
## #   artist_gender <chr>, artist_birth_year_sum <dbl>,
## #   debut_album_release_year <dbl>, ave_age_at_top_500 <dbl>,
## #   years_between <dbl>, album_id <chr>

Select columns

select(data, rank_2003:release_year)
## # A tibble: 691 × 5
##    rank_2003 rank_2012 rank_2020 differential release_year
##        <dbl>     <dbl>     <dbl>        <dbl>        <dbl>
##  1       100       101       282         -182         1955
##  2       214       216       455         -241         1955
##  3        55        56       332         -277         1956
##  4       306       308        NA         -195         1956
##  5        50        50       227         -177         1957
##  6        NA        NA        32          469         2016
##  7        NA       451        33          468         2006
##  8       421       420        NA          -80         1957
##  9        NA        NA        68          433         1985
## 10        12        12        31          -19         1959
## # ℹ 681 more rows

Add columns

mutate(data,
       gain = rank_2020 - rank_2003)  %>%
    select(gain, rank_2020, rank_2003)
## # A tibble: 691 × 3
##     gain rank_2020 rank_2003
##    <dbl>     <dbl>     <dbl>
##  1   182       282       100
##  2   241       455       214
##  3   277       332        55
##  4    NA        NA       306
##  5   177       227        50
##  6    NA        32        NA
##  7    NA        33        NA
##  8    NA        NA       421
##  9    NA        68        NA
## 10    19        31        12
## # ℹ 681 more rows

Summarize by groups

group_by(data, rank_2003)
## # A tibble: 691 × 22
## # Groups:   rank_2003 [499]
##     ...1 sort_name   clean_name album rank_2003 rank_2012 rank_2020 differential
##    <dbl> <chr>       <chr>      <chr>     <dbl>     <dbl>     <dbl>        <dbl>
##  1     1 Sinatra, F… Frank Sin… "In …       100       101       282         -182
##  2     2 Diddley, Bo Bo Diddley "Bo …       214       216       455         -241
##  3     3 Presley, E… Elvis Pre… "Elv…        55        56       332         -277
##  4     4 Sinatra, F… Frank Sin… "Son…       306       308        NA         -195
##  5     5 Little Ric… Little Ri… "Her…        50        50       227         -177
##  6     6 Beyonce     Beyonce    "Lem…        NA        NA        32          469
##  7     7 Winehouse,… Amy Wineh… "Bac…        NA       451        33          468
##  8     8 Crickets    Buddy Hol… "The…       421       420        NA          -80
##  9     9 Bush, Kate  Kate Bush  "Hou…        NA        NA        68          433
## 10    10 Davis, Mil… Miles Dav… "Kin…        12        12        31          -19
## # ℹ 681 more rows
## # ℹ 14 more variables: release_year <dbl>, genre <chr>, type <chr>,
## #   weeks_on_billboard <dbl>, peak_billboard_position <dbl>,
## #   spotify_popularity <dbl>, spotify_url <chr>, artist_member_count <dbl>,
## #   artist_gender <chr>, artist_birth_year_sum <dbl>,
## #   debut_album_release_year <dbl>, ave_age_at_top_500 <dbl>,
## #   years_between <dbl>, album_id <chr>