Introduction
To settle the online debate on which subtest of intelligence measures
it the best, I collected 234 effect sizes, representing 430,000
individuals. I looked in several public datasets (e.g. NLSY) and a few
meta-analyses (e.g. Jensen 1985) to speed up the process.
I excluded any study that had less than 100 individuals or six
subtests, had no g-loadings, did not use univariate models, or
overlapped with other samples. I then searched for publications by
typing (WAIS/Weschler/Woodcock Johnson/Stanford Binet) + factor
analysis.
First, sample size + k
testn <- unique(jg %>% select(n, source))
sum(testn$n)
[1] 427596
nrow(testn)
[1] 18
Data-analysis
Median by study. No adjustments
means <- jg %>% group_by(Macrogroup) %>% summarise(median=median(g.loading, na.rm=T)) %>% arrange(-median)
print(means, n=43)
Mixed-effects meta-analysis to adjust for the effects of individual
datasets. The effects of each dataset relative to the reference are
fairly split between positive and negative, meaning that the arbitrary
choice is probably not biasing the overall mean.
jg$se <- 1/sqrt(jg$n)
meta <- rma(data=jg, yi=g.loading, sei=se, mods = ~ source + Macrogroup)
summary(meta)
Mixed-Effects Model (k = 233; tau^2 estimator: REML)
logLik deviance AIC BIC AICc
193.4114 -386.8228 -294.8228 -145.9465 -264.1561
tau^2 (estimated amount of residual heterogeneity): 0.0066 (SE = 0.0008)
tau (square root of estimated tau^2 value): 0.0809
I^2 (residual heterogeneity / unaccounted variability): 99.30%
H^2 (unaccounted variability / sampling variability): 143.26
R^2 (amount of heterogeneity accounted for): 66.13%
Test for Residual Heterogeneity:
QE(df = 188) = 31568.8888, p-val < .0001
Test of Moderators (coefficients 2:45):
QM(df = 44) = 448.5662, p-val < .0001
Model Results:
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Cleaning up the means and posting them.
testvector <- data.frame(Macrogroup=names(coefficients(meta)), gloadings=as.numeric(coefficients(meta))+0.6695, SE=meta$se)
testvector$Macrogroup[18] <- 'Macrogroup2D spatial ability'
testvector$gloadings[18] <- 0.6695
testvector$Macrogroup[2:length(testvector$Macrogroup)] <- sapply(testvector$Macrogroup[2:length(testvector$Macrogroup)], function(x) substr(x, start = 11, stop = nchar(x)))
testvector <- testvector[18:45, ] %>% arrange(-gloadings)
testvector[, 2:3] <- round(testvector[, 2:3], 3)
testvector
Discussion
It looks like reading comprehension came out on top. It makes sense,
as it’s measuring a range of abilities indirectly (e.g. memory, verbal
ability, ability to synthesize and connect information). Verbal ability
seems to beat mathematical ability slightly, which is interesting,
because mathematical ability is notoriously easy to practice, which
actually suggests that mathematical ability may in fact be a truly
better measurement of intelligence. Dexterity and processing speed stand
out as rather weak measurements of intelligence.
LS0tCnRpdGxlOiAiZy1sb2FkaW5nIGJ5IHN1YnRlc3QiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiMjIyBJbnRyb2R1Y3Rpb24KCgpUbyBzZXR0bGUgdGhlIG9ubGluZSBkZWJhdGUgb24gd2hpY2ggc3VidGVzdCBvZiBpbnRlbGxpZ2VuY2UgbWVhc3VyZXMgaXQgdGhlIGJlc3QsCkkgY29sbGVjdGVkIDIzNCBlZmZlY3Qgc2l6ZXMsIHJlcHJlc2VudGluZyA0MzAsMDAwIGluZGl2aWR1YWxzLgpJIGxvb2tlZCBpbiBzZXZlcmFsIHB1YmxpYyBkYXRhc2V0cyAoZS5nLiBOTFNZKSBhbmQgYSBmZXcgbWV0YS1hbmFseXNlcyAoZS5nLiAKSmVuc2VuIDE5ODUpIHRvIHNwZWVkIHVwIHRoZSBwcm9jZXNzLiAKCkkgZXhjbHVkZWQgYW55IHN0dWR5IHRoYXQgaGFkIGxlc3MgdGhhbiAxMDAgaW5kaXZpZHVhbHMgb3Igc2l4IHN1YnRlc3RzLCAKaGFkIG5vIGctbG9hZGluZ3MsIGRpZCBub3QgdXNlIHVuaXZhcmlhdGUgbW9kZWxzLCBvciBvdmVybGFwcGVkIHdpdGggb3RoZXIgc2FtcGxlcy4KSSB0aGVuIHNlYXJjaGVkIGZvciBwdWJsaWNhdGlvbnMgYnkgdHlwaW5nIChXQUlTL1dlc2NobGVyL1dvb2Rjb2NrIEpvaG5zb24vU3RhbmZvcmQgQmluZXQpCisgZmFjdG9yIGFuYWx5c2lzLgoKRmlyc3QsIHNhbXBsZSBzaXplICsgawoKYGBge3J9CnRlc3RuIDwtIHVuaXF1ZShqZyAlPiUgc2VsZWN0KG4sIHNvdXJjZSkpCnN1bSh0ZXN0biRuKQpucm93KHRlc3RuKQpgYGAKCiMjIyBEYXRhLWFuYWx5c2lzCgoKTWVkaWFuIGJ5IHN0dWR5LiBObyBhZGp1c3RtZW50cwpgYGB7cn0KbWVhbnMgPC0gamcgJT4lIGdyb3VwX2J5KE1hY3JvZ3JvdXApICU+JSBzdW1tYXJpc2UobWVkaWFuPW1lZGlhbihnLmxvYWRpbmcsIG5hLnJtPVQpKSAlPiUgYXJyYW5nZSgtbWVkaWFuKQpwcmludChtZWFucywgbj00MykKYGBgCgpNaXhlZC1lZmZlY3RzIG1ldGEtYW5hbHlzaXMgdG8gYWRqdXN0IGZvciB0aGUgZWZmZWN0cyBvZiBpbmRpdmlkdWFsIGRhdGFzZXRzLgpUaGUgZWZmZWN0cyBvZiBlYWNoIGRhdGFzZXQgcmVsYXRpdmUgdG8gdGhlIHJlZmVyZW5jZSBhcmUgZmFpcmx5IHNwbGl0IGJldHdlZW4KcG9zaXRpdmUgYW5kIG5lZ2F0aXZlLCBtZWFuaW5nIHRoYXQgdGhlIGFyYml0cmFyeSBjaG9pY2UgaXMgcHJvYmFibHkgbm90CmJpYXNpbmcgdGhlIG92ZXJhbGwgbWVhbi4KYGBge3J9CmpnJHNlIDwtIDEvc3FydChqZyRuKQptZXRhIDwtIHJtYShkYXRhPWpnLCB5aT1nLmxvYWRpbmcsIHNlaT1zZSwgbW9kcyA9IH4gc291cmNlICsgTWFjcm9ncm91cCkKc3VtbWFyeShtZXRhKQpgYGAKCkNsZWFuaW5nIHVwIHRoZSBtZWFucyBhbmQgcG9zdGluZyB0aGVtLgpgYGB7cn0KdGVzdHZlY3RvciA8LSBkYXRhLmZyYW1lKE1hY3JvZ3JvdXA9bmFtZXMoY29lZmZpY2llbnRzKG1ldGEpKSwgZ2xvYWRpbmdzPWFzLm51bWVyaWMoY29lZmZpY2llbnRzKG1ldGEpKSswLjY2OTUsIFNFPW1ldGEkc2UpCnRlc3R2ZWN0b3IkTWFjcm9ncm91cFsxOF0gPC0gJ01hY3JvZ3JvdXAyRCBzcGF0aWFsIGFiaWxpdHknCnRlc3R2ZWN0b3IkZ2xvYWRpbmdzWzE4XSA8LSAwLjY2OTUKdGVzdHZlY3RvciRNYWNyb2dyb3VwWzI6bGVuZ3RoKHRlc3R2ZWN0b3IkTWFjcm9ncm91cCldIDwtIHNhcHBseSh0ZXN0dmVjdG9yJE1hY3JvZ3JvdXBbMjpsZW5ndGgodGVzdHZlY3RvciRNYWNyb2dyb3VwKV0sIGZ1bmN0aW9uKHgpIHN1YnN0cih4LCBzdGFydCA9IDExLCBzdG9wID0gbmNoYXIoeCkpKQoKdGVzdHZlY3RvciA8LSB0ZXN0dmVjdG9yWzE4OjQ1LCBdICU+JSBhcnJhbmdlKC1nbG9hZGluZ3MpCnRlc3R2ZWN0b3JbLCAyOjNdIDwtIHJvdW5kKHRlc3R2ZWN0b3JbLCAyOjNdLCAzKQoKdGVzdHZlY3RvcgpgYGAKCiMjIyBEaXNjdXNzaW9uCgoKSXQgbG9va3MgbGlrZSByZWFkaW5nIGNvbXByZWhlbnNpb24gY2FtZSBvdXQgb24gdG9wLiBJdCBtYWtlcyBzZW5zZSwgYXMgaXQncwptZWFzdXJpbmcgYSByYW5nZSBvZiBhYmlsaXRpZXMgaW5kaXJlY3RseSAoZS5nLiBtZW1vcnksIHZlcmJhbCBhYmlsaXR5LCBhYmlsaXR5CnRvIHN5bnRoZXNpemUgYW5kIGNvbm5lY3QgaW5mb3JtYXRpb24pLiBWZXJiYWwgYWJpbGl0eSBzZWVtcyB0byBiZWF0IG1hdGhlbWF0aWNhbAphYmlsaXR5IHNsaWdodGx5LCB3aGljaCBpcyBpbnRlcmVzdGluZywgYmVjYXVzZSBtYXRoZW1hdGljYWwgYWJpbGl0eSBpcyBub3RvcmlvdXNseQplYXN5IHRvIHByYWN0aWNlLCB3aGljaCBhY3R1YWxseSBzdWdnZXN0cyB0aGF0IG1hdGhlbWF0aWNhbCBhYmlsaXR5IG1heSBpbiBmYWN0IGJlIAphIHRydWx5IGJldHRlciBtZWFzdXJlbWVudCBvZiBpbnRlbGxpZ2VuY2UuIERleHRlcml0eSBhbmQgcHJvY2Vzc2luZyBzcGVlZApzdGFuZCBvdXQgYXMgcmF0aGVyIHdlYWsgbWVhc3VyZW1lbnRzIG9mIGludGVsbGlnZW5jZS4=