---
title: "Soc-Ace: POLECAT Data Analysis"
author: Gagan Atreya
date: today
format:
html:
toc: true
toc-location: left
toc-depth: 4
theme: lumen
fontsize: large
code-fold: true
code-tools: true
code-summary: "Display code"
code-overflow: wrap
editor:
markdown:
wrap: 72
editor_options:
chunk_output_type: console
---
# **Section 1. POLECAT Events By Country: 2020 - 2023**
## **1.1 Breakdown of Events by Country**
```{r, error = F, warning = F, message = F}
## Gagan Atreya
## POLECAT Analysis
rm(list = ls())
pacman::p_load(data.table, tidyverse, lubridate,
vtable, stringi, stringr, ggcharts, plyr,
gridExtra, RgoogleMaps, ggmap, mapproj)
df_2020 <- as.data.table(read.delim("~/Desktop/soc_ace_2024/data/polecat/ngecEvents.DV.2020.txt"))
df_2021 <- as.data.table(read.delim("~/Desktop/soc_ace_2024/data/polecat/ngecEvents.DV.2021.txt"))
df_2022 <- as.data.table(read.delim("~/Desktop/soc_ace_2024/data/polecat/ngecEvents.DV.2022.txt"))
df_2023 <- as.data.table(read.delim("~/Desktop/soc_ace_2024/data/polecat/ngecEvents.DV.2023.txt"))
df <- rbindlist(list(df_2020, df_2021, df_2022, df_2023))
country_list <- c("ARM", "BLR", "GEO", "HUN",
"KAZ", "KGZ", "MDA", "POL",
"ROU", "RUS", "SVK", "UKR")
df01 <- df[df$Country %in% country_list, ]
df <- df01
rm(list = setdiff(ls(), c("df")))
table(df$Country)
df_agg <- df[, .(value = .N), by = Country]
ggplot(df_agg,
aes(x = reorder(Country, value), y = value)) +
geom_segment(aes(xend = Country, yend = 0), color = "grey") + # Line segment
geom_point(size = 3, color = "blue") + # Lollipop
coord_flip() + # Flip coordinates for better readability
labs(title = "Country Events in POLECAT",
x = "Country",
y = "Value") +
theme_minimal()
```
## **1.2 Breakdown of Events by Contexts**
We are interested in events with the following "contexts":
- Crime
- Corruption
- Illegal Drugs
- Trafficking
However, the data show that there are no events that align with the above contexts, except a few for "illegal drugs".
```{r, error = F, warning = F, message = F}
#### Contexts #####
context_list <- c("crime", "corruption", "illegal drugs", "trafficking")
df[, crime := as.integer(str_detect(Contexts,
"crime"))]
# table(df$crime)
df[, corruption := as.integer(str_detect(Contexts,
"corruption"))]
# table(df$corruption)
df[, trafficking := as.integer(str_detect(Contexts,
"trafficking"))]
# table(df$trafficking)
df[, drugs := as.integer(str_detect(Contexts,
"illegal_drugs"))]
table(df$drugs)
df_drugs <- df[df$drugs==1,]
```
```{r, error=F, warning=F, message=F}
df_agg_drugs <- df_drugs[, .(value = .N), by = Country]
ggplot(df_agg_drugs,
aes(x = reorder(Country, value), y = value)) +
geom_segment(aes(xend = Country, yend = 0), color = "grey") + # Line segment
geom_point(size = 3, color = "blue") + # Lollipop
coord_flip() + # Flip coordinates for better readability
labs(title = "Events related to \"illegal drugs\"",
x = "Country",
y = "Value") +
theme_minimal()
```
Since there were no events recorded for "crime" "corruption", and "trafficking", we can look at other 'context' categories which might be relevant to us. For example - "Economic", and "Legal" (See page 28 of the PLOVER manual).
Again, there are no events that fall under 'economic', but there are a few events recorded as 'legal':
```{r}
df[, economic : = as.integer (str_detect (Contexts,
"economic" ))]
# table(df$economic)
df[, legal : = as.integer (str_detect (Contexts,
"legal" ))]
table (df$ legal)
df_legal<- df[df$ legal== 1 ,]
df_agg_legal <- df_legal[, .(value = .N), by = Country]
ggplot (df_agg_legal,
aes (x = reorder (Country, value), y = value)) +
geom_segment (aes (xend = Country, yend = 0 ), color = "grey" ) + # Line segment
geom_point (size = 3 , color = "blue" ) + # Lollipop
coord_flip () + # Flip coordinates for better readability
labs (title = "Events related to \" legal \" " ,
x = "Country" ,
y = "Value" ) +
theme_minimal ()
```
Seems like these are the exact same events. That is, any event tagged as 'illegal drugs' is also tagged as 'legal'.
## **1.3. Other potential variables**
We can look at other potential variables to make our categories.
One potential category is "Event type"
```{r, error = F, warning = F, message = F}
table(df$Event.Type)
```
Another potential category is "Event mode"
```{r, error = F, warning = F, message = F}
table(df$Event.Mode)
## Visualise for "arrest"
```
## **1.4. "Arrest" across countries and years**
### Arrest vs countries
Occurence of event mode: "arrest" across countries:
```{r, error = F, warning = F, message = F}
df[, arrest := as.integer(str_detect(Event.Mode,
"arrest"))]
df_arrest<- df[df$arrest==1,]
df_agg_arrest <- df_arrest[, .(value = .N), by = Country]
ggplot(df_agg_arrest,
aes(x = reorder(Country, value), y = value)) +
geom_segment(aes(xend = Country, yend = 0), color = "grey") + # Line segment
geom_point(size = 3, color = "blue") + # Lollipop
coord_flip() + # Flip coordinates for better readability
labs(title = "Event Mode described as \"arrest\"",
x = "Country",
y = "Value") +
theme_minimal()
```
### Arrest vs years
Occurence of event mode: "arrest" across years:
```{r, error = F, warning = F, message = F}
df$year <- year(df$Event.Date)
df <- df[df$year > 2019, ]
df[, arrest := as.integer(str_detect(Event.Mode,
"arrest"))]
df_arrest <- df[df$arrest==1,]
table(df_arrest$year)
df_agg_arrest <- df_arrest[, .(value = .N), by = year]
# Create a lollipop chart
ggplot(df_agg_arrest,
aes(x = factor(year),
y = value)) +
geom_segment(aes(x = factor(year),
xend = factor(year),
y = 0, yend = value),
color = "gray") +
geom_point(size = 4, color = "blue") +
labs(title = "Event mode: \"arrest\" across years",
x = "Year",
y = "Count") +
coord_flip()+
theme_minimal()
```
### Arrest vs country vs years
Occurence of event mode: "arrest" across countries across years:
```{r, error = F, warning = F, message = F}
df11 <- df_arrest[, .(year, Country)]
df11_agg <- df11[, .N, by = .(Country, year)] # .N counts occurrences of each country per year
# Create a lollipop chart facetted by year
ggplot(df11_agg, aes(x = Country, y = N)) +
geom_segment(aes(x = Country, xend = Country, y = 0, yend = N), color = "gray") +
geom_point(size = 2, color = "blue") +
labs(title = "Arrest across countries by year",
x = "Country", y = "Count") +
theme_minimal() +
coord_flip()+
facet_wrap(~ year)
```
### Arrest vs country vs date
Occurence of event mode: "arrest" across countries across date:
```{r, error = F, warning = F, message = F}
df12 <- df_arrest[, .(Event.Date, Country)]
df12$Event.Date <- ymd(df12$Event.Date)
df12[, Year := year(Event.Date)]
df12a <- df12[df12$Country %in% c("ARM", "BLR", "GEO",
"HUN", "KAZ", "KGZ")]
df12b <- df12[df12$Country %in% c("MDA", "POL", "ROU",
"RUS", "SVK", "UKR")]
# Plot the data
ggplot(df12a, aes(x = Event.Date)) +
geom_bar(position = "stack", color = "black", fill = "blue") + # Default fill for better readability
scale_x_date(date_labels = "%Y", date_breaks = "12 months") + # Show every 12 months on x-axis
labs(title = "Country Occurrences for \"arrest\" Over Time",
x = "Date",
y = "Count") +
facet_wrap(~Country, ncol = 2) + # Facet by country with 4 columns
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis l
# Plot the data
ggplot(df12b, aes(x = Event.Date)) +
geom_bar(position = "stack", color = "black", fill = "blue") + # Default fill for better readability
scale_x_date(date_labels = "%Y", date_breaks = "12 months") + # Show every 12 months on x-axis
labs(title = "Country Occurrences for \"arrest\" Over Time",
x = "Date",
y = "Count") +
facet_wrap(~Country, ncol = 2) + # Facet by country with 4 columns
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis l
```
# **Section 2. Maps: Armenia**
```{r, error = F, message = F, warning = F}
ggmap::register_stadiamaps(key = "ecb62ab3-c884-4be1-9e19-4a49f5f8bed0")
```
## **2.1. Armenia: arrests**
```{r, error = F, message = F, warning = F}
dfarm <- df[df$Country == "ARM", ]
dfarm$Latitude <- as.numeric(dfarm$Latitude)
dfarm$Longitude <- as.numeric(dfarm$Longitude)
# summary(dfarm$Latitude)
# summary(dfarm$Longitude)
mapoutline <- get_map(location = c(left = 44.05, # lon min
bottom = 39.00, # lat min
right = 46.75, # lon max
top = 40.75), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfarm <- dfarm[dfarm$Event.Mode == "arrest", ]
dfarm$Event_count <- 1
df01 <- ddply(dfarm,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Armenia, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **2.2. Armenia: illegal drugs**
```{r, error = F, message = F, warning = F}
dfarm$drugs <- ifelse(str_detect(dfarm$Contexts, "illegal_drugs") == T, 1, 0)
dfarm <- dfarm[dfarm$drugs == 1, ]
dfarm$Event_count <- 1
df01 <- ddply(dfarm,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfarm$Longitude <- as.numeric(dfarm$Longitude)
dfarm$Latitude <- as.numeric(dfarm$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Armenia, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 3. Maps: Belarus**
## **3.1. Belarus: arrests**
```{r, error = F, message = F, warning = F}
dfblr <- df[df$Country == "BLR", ]
dfblr$Latitude <- as.numeric(dfblr$Latitude)
dfblr$Longitude <- as.numeric(dfblr$Longitude)
#summary(dfblr$Longitude)
#summary(dfblr$Latitude)
mapoutline <- get_map(location = c(left = 23.00, # lon min
bottom = 51.00, # lat min
right = 32.75, # lon max
top = 56.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfblr <- dfblr[dfblr$Event.Mode == "arrest", ]
dfblr$Event_count <- 1
df01 <- ddply(dfblr,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Belarus, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **3.2. Belarus: illegal drugs**
```{r, error = F, message = F, warning = F}
dfblr$drugs <- ifelse(str_detect(dfblr$Contexts, "illegal_drugs") == T, 1, 0)
dfblr <- dfblr[dfblr$drugs == 1, ]
dfblr$Event_count <- 1
df01 <- ddply(dfblr,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfblr$Longitude <- as.numeric(dfblr$Longitude)
dfblr$Latitude <- as.numeric(dfblr$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Belarus, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 4. Maps: Georgia**
## **4.1. Georgia: arrests**
```{r, error = F, message = F, warning = F}
dfgeo <- df[df$Country == "GEO", ]
dfgeo$Latitude <- as.numeric(dfgeo$Latitude)
dfgeo$Longitude <- as.numeric(dfgeo$Longitude)
# summary(dfgeo$Longitude)
# summary(dfgeo$Latitude)
mapoutline <- get_map(location = c(left = 40.00, # lon min
bottom = 41.00, # lat min
right = 46.50, # lon max
top = 43.50), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfgeo <- dfgeo[dfgeo$Event.Mode == "arrest", ]
dfgeo$Event_count <- 1
df01 <- ddply(dfgeo,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Georgia, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **4.2. Georgia: illegal drugs**
```{r, error = F, message = F, warning = F}
dfgeo$drugs <- ifelse(str_detect(dfgeo$Contexts, "illegal_drugs") == T, 1, 0)
dfgeo <- dfgeo[dfgeo$drugs == 1, ]
dfgeo$Event_count <- 1
df01 <- ddply(dfgeo,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfgeo$Longitude <- as.numeric(dfgeo$Longitude)
dfgeo$Latitude <- as.numeric(dfgeo$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Georgia, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 5. Maps: Hungary**
## **5.1. Hungary: arrests**
```{r, error = F, message = F, warning = F}
dfhun <- df[df$Country == "HUN", ]
dfhun$Latitude <- as.numeric(dfhun$Latitude)
dfhun$Longitude <- as.numeric(dfhun$Longitude)
# summary(dfhun$Longitude)
# summary(dfhun$Latitude)
mapoutline <- get_map(location = c(left = 15.50, # lon min
bottom = 45.55, # lat min
right = 22.50, # lon max
top = 49.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfhun <- dfhun[dfhun$Event.Mode == "arrest", ]
dfhun$Event_count <- 1
df01 <- ddply(dfhun,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Hungary, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **5.2. Hungary: illegal drugs**
```{r, error = F, message = F, warning = F}
dfhun$drugs <- ifelse(str_detect(dfhun$Contexts, "illegal_drugs") == T, 1, 0)
dfhun <- dfhun[dfhun$drugs == 1, ]
dfhun$Event_count <- 1
df01 <- ddply(dfhun,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfhun$Longitude <- as.numeric(dfhun$Longitude)
dfhun$Latitude <- as.numeric(dfhun$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Hungary, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 6. Maps: Kazakhstan**
## **6.1. Kazakhstan: arrests**
```{r, error = F, message = F, warning = F}
dfkaz <- df[df$Country == "KAZ", ]
dfkaz$Latitude <- as.numeric(dfkaz$Latitude)
dfkaz$Longitude <- as.numeric(dfkaz$Longitude)
# summary(dfkaz$Longitude)
# summary(dfkaz$Latitude)
mapoutline <- get_map(location = c(left = 47.00, # lon min
bottom = 40.00, # lat min
right = 85.350, # lon max
top = 55.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfkaz <- dfkaz[dfkaz$Event.Mode == "arrest", ]
dfkaz$Event_count <- 1
df01 <- ddply(dfkaz,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Kazakhstan, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **6.2. Kazakhstan: illegal drugs**
```{r, error = F, message = F, warning = F}
dfkaz$drugs <- ifelse(str_detect(dfkaz$Contexts, "illegal_drugs") == T, 1, 0)
dfkaz <- dfkaz[dfkaz$drugs == 1, ]
dfkaz$Event_count <- 1
df01 <- ddply(dfkaz,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfkaz$Longitude <- as.numeric(dfkaz$Longitude)
dfkaz$Latitude <- as.numeric(dfkaz$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Kazakhstan, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 7. Maps: Kyrgyzstan**
## **7.1. Kyrgyzstan: arrests**
```{r, error = F, message = F, warning = F}
dfkgz <- df[df$Country == "KGZ", ]
dfkgz$Latitude <- as.numeric(dfkgz$Latitude)
dfkgz$Longitude <- as.numeric(dfkgz$Longitude)
# summary(dfkgz$Longitude)
# summary(dfkgz$Latitude)
mapoutline <- get_map(location = c(left = 69.00, # lon min
bottom = 39.00, # lat min
right = 79.50, # lon max
top = 44.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfkgz <- dfkgz[dfkgz$Event.Mode == "arrest", ]
dfkgz$Event_count <- 1
df01 <- ddply(dfkgz,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Kyrgyzstan, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **7.2. Kyrgyzstan: illegal drugs**
```{r, error = F, message = F, warning = F}
dfkgz$drugs <- ifelse(str_detect(dfkgz$Contexts, "illegal_drugs") == T, 1, 0)
dfkgz <- dfkgz[dfkgz$drugs == 1, ]
dfkgz$Event_count <- 1
df01 <- ddply(dfkgz,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfkgz$Longitude <- as.numeric(dfkgz$Longitude)
dfkgz$Latitude <- as.numeric(dfkgz$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Kyrgyzstan, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 8. Maps: Moldova**
## **8.1. Moldova: arrests**
```{r, error = F, message = F, warning = F}
dfmda <- df[df$Country == "MDA", ]
dfmda$Latitude <- as.numeric(dfmda$Latitude)
dfmda$Longitude <- as.numeric(dfmda$Longitude)
# summary(dfmda$Longitude)
# summary(dfmda$Latitude)
mapoutline <- get_map(location = c(left = 26.00, # lon min
bottom = 45.00, # lat min
right = 31.00, # lon max
top = 49.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfmda <- dfmda[dfmda$Event.Mode == "arrest", ]
dfmda$Event_count <- 1
df01 <- ddply(dfmda,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Moldova, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **8.2. Moldova: illegal drugs**
```{r, error = F, message = F, warning = F}
dfmda$drugs <- ifelse(str_detect(dfmda$Contexts, "illegal_drugs") == T, 1, 0)
dfmda <- dfmda[dfmda$drugs == 1, ]
dfmda$Event_count <- 1
df01 <- ddply(dfmda,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfmda$Longitude <- as.numeric(dfmda$Longitude)
dfmda$Latitude <- as.numeric(dfmda$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Moldova, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 9. Maps: Poland**
## **9.1. Poland: arrests**
```{r, error = F, message = F, warning = F}
dfpol <- df[df$Country == "POL", ]
dfpol$Latitude <- as.numeric(dfpol$Latitude)
dfpol$Longitude <- as.numeric(dfpol$Longitude)
# summary(dfpol$Longitude)
# summary(dfpol$Latitude)
mapoutline <- get_map(location = c(left = 13.50, # lon min
bottom = 48.50, # lat min
right = 24.75, # lon max
top = 55.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfpol <- dfpol[dfpol$Event.Mode == "arrest", ]
dfpol$Event_count <- 1
df01 <- ddply(dfpol,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Poland, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **9.2. Poland: illegal drugs**
```{r, error = F, message = F, warning = F}
dfpol$drugs <- ifelse(str_detect(dfpol$Contexts, "illegal_drugs") == T, 1, 0)
dfpol <- dfpol[dfpol$drugs == 1, ]
dfpol$Event_count <- 1
df01 <- ddply(dfpol,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfpol$Longitude <- as.numeric(dfpol$Longitude)
dfpol$Latitude <- as.numeric(dfpol$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Poland, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 10. Maps: Romania**
## **10.1. Romania: arrests**
```{r, error = F, message = F, warning = F}
dfrou <- df[df$Country == "ROU", ]
dfrou$Latitude <- as.numeric(dfrou$Latitude)
dfrou$Longitude <- as.numeric(dfrou$Longitude)
# summary(dfrou$Longitude)
# summary(dfrou$Latitude)
mapoutline <- get_map(location = c(left = 20.00, # lon min
bottom = 43.00, # lat min
right = 31.00, # lon max
top = 49.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfrou <- dfrou[dfrou$Event.Mode == "arrest", ]
dfrou$Event_count <- 1
df01 <- ddply(dfrou,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Romania, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **10.2. Romania: illegal drugs**
```{r, error = F, message = F, warning = F}
dfrou$drugs <- ifelse(str_detect(dfrou$Contexts, "illegal_drugs") == T, 1, 0)
dfrou <- dfrou[dfrou$drugs == 1, ]
dfrou$Event_count <- 1
df01 <- ddply(dfrou,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfrou$Longitude <- as.numeric(dfrou$Longitude)
dfrou$Latitude <- as.numeric(dfrou$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Romania, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 11. Maps: Russia**
## **11.1. Russia: arrests**
```{r, error = F, message = F, warning = F}
dfrus <- df[df$Country == "RUS", ]
dfrus$Latitude <- as.numeric(dfrus$Latitude)
dfrus$Longitude <- as.numeric(dfrus$Longitude)
# summary(dfrus$Longitude)
# summary(dfrus$Latitude)
mapoutline <- get_map(location = c(left = 20.00, # lon min
bottom = 42.00, # lat min
right = 160.00, # lon max
top = 78.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfrus <- dfrus[dfrus$Event.Mode == "arrest", ]
dfrus$Event_count <- 1
df01 <- ddply(dfrus,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Russia, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **11.2. Russia: illegal drugs**
```{r, error = F, message = F, warning = F}
dfrus$drugs <- ifelse(str_detect(dfrus$Contexts, "illegal_drugs") == T, 1, 0)
dfrus <- dfrus[dfrus$drugs == 1, ]
dfrus$Event_count <- 1
df01 <- ddply(dfrus,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfrus$Longitude <- as.numeric(dfrus$Longitude)
dfrus$Latitude <- as.numeric(dfrus$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Russia, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 12. Maps: Slovakia**
## **12.1. Slovakia: arrests**
```{r, error = F, message = F, warning = F}
dfsvk <- df[df$Country == "SVK", ]
dfsvk$Latitude <- as.numeric(dfsvk$Latitude)
dfsvk$Longitude <- as.numeric(dfsvk$Longitude)
# summary(dfsvk$Longitude)
# summary(dfsvk$Latitude)
mapoutline <- get_map(location = c(left = 16.00, # lon min
bottom = 47.00, # lat min
right = 23.00, # lon max
top = 51.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfsvk <- dfsvk[dfsvk$Event.Mode == "arrest", ]
dfsvk$Event_count <- 1
df01 <- ddply(dfsvk,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Slovakia, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **12.2. Slovakia: illegal drugs**
```{r, error = F, message = F, warning = F}
dfsvk$drugs <- ifelse(str_detect(dfsvk$Contexts, "illegal_drugs") == T, 1, 0)
dfsvk <- dfsvk[dfsvk$drugs == 1, ]
dfsvk$Event_count <- 1
df01 <- ddply(dfsvk,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfsvk$Longitude <- as.numeric(dfsvk$Longitude)
dfsvk$Latitude <- as.numeric(dfsvk$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Slovakia, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
# **Section 13. Maps: Ukraine**
## **13.1. Ukraine: arrests**
```{r, error = F, message = F, warning = F}
dfukr <- df[df$Country == "UKR", ]
dfukr$Latitude <- as.numeric(dfukr$Latitude)
dfukr$Longitude <- as.numeric(dfukr$Longitude)
# summary(dfukr$Longitude)
# summary(dfukr$Latitude)
mapoutline <- get_map(location = c(left = 21.00, # lon min
bottom = 43.00, # lat min
right = 41.00, # lon max
top = 54.00), # lat max
maptype = "outdoors",
source = "stadia",
color="bw")
# ggmap(mapoutline)
```
```{r, error = F, message = F, warning = F}
dfukr <- dfukr[dfukr$Event.Mode == "arrest", ]
dfukr$Event_count <- 1
df01 <- ddply(dfukr,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event mode tagged as arrests in Ukraine, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```
## **13.2. Ukraine: illegal drugs**
```{r, error = F, message = F, warning = F}
dfukr$drugs <- ifelse(str_detect(dfukr$Contexts, "illegal_drugs") == T, 1, 0)
dfukr <- dfukr[dfukr$drugs == 1, ]
dfukr$Event_count <- 1
df01 <- ddply(dfukr,
.(Latitude, Longitude),
summarize,
Event_count = sum(Event_count))
dfukr$Longitude <- as.numeric(dfukr$Longitude)
dfukr$Latitude <- as.numeric(dfukr$Latitude)
## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) +
geom_point(data = df01,
aes(x = Longitude,
y = Latitude,
size = Event_count),
alpha = 0.5,
colour="black")+
ggtitle("Event contexts tagged as illegal_drugs in Ukraine, 2020 - 2023"))+
theme_bw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
```