Realice el cálculo de lo siguiente (de ser necesario haga las
agregaciones de servicios propuestas en clase)
#Agregando los servicios
#Para 1990
servicios_row<-colSums(mip1990_ci[41:46,])
temporal<-rbind(mip1990_ci[1:40,],servicios_row)
servicios_col<-rowSums(temporal[,41:46])
mip1990_ci_corregida<-cbind(temporal[,1:40],servicios_col)
names(mip1990_ci_corregida)<-as.character(1:41)
X_1990<-rbind(mip1990_X[1:40,],colSums(mip1990_X[41:46,]))
#Para 2006
servicios_row<-colSums(mip2006_ci[41:46,])
temporal<-rbind(mip2006_ci[1:40,],servicios_row)
servicios_col<-rowSums(temporal[,41:46])
mip2006_ci_corregida<-cbind(temporal[,1:40],servicios_col)
names(mip2006_ci_corregida)<-as.character(1:41)
X_2006<-rbind(mip2006_X[1:40,],colSums(mip2006_X[41:46,]))
#Conversion a matrices para los calculos
#1990
matriz_X_1990<- as.matrix(X_1990)
matriz_CI_1990<-as.matrix(mip1990_ci_corregida)
#2006
matriz_X_2006<-as.matrix(X_2006)
matriz_CI_2006<-as.matrix(mip2006_ci_corregida)
#Calculando la funcion leontief para los calculos
#1990
matriz_A_1990<-mip_coeficientes_tecnicos(matriz_CI_1990,matriz_X_1990)[[1]]
matriz_T_1990<-mip_matriz_tecnologica(matriz_A_1990)
matriz_L_1990 <- mip_matriz_leontief(matriz_T_1990)
#2006
matriz_A_2006<-mip_coeficientes_tecnicos(matriz_CI_2006,matriz_X_2006)[[1]]
matriz_T_2006<-mip_matriz_tecnologica(matriz_A_2006)
matriz_L_2006 <- mip_matriz_leontief(matriz_T_2006)
- Multiplicadores Expansión de la demanda (me) para la MIP 1990 y para
la MIP 2006.
#1990
me_1990 <- mip_multiplicadores_expansion_demanda_me(matriz_L_1990)
print(me_1990)
## [1] 1.255178 1.267747 1.261599 1.568111 1.124569 1.445002 1.768326
## [8] 1.029765 1.383834 1.047445 1.834384 1.788561 1.059243 1.799649
## [15] 1.840519 1.553178 1.365915 1.384794 1.505731 1.642505 1.578688
## [22] 1.361625 1.665210 1.447935 1.327641 1.408787 1.395278 1.459492
## [29] 2.366807 1.299373 1.109323 1.451591 1.392119 1.826914 37.440804
## [36] 1.636206 1.517817 1.258089 1.353294 1.170121 1.301949
#2006
me_2006<- mip_multiplicadores_expansion_demanda_me(matriz_L_2006)
print(me_2006)
## [1] 1.297922 1.020215 1.234962 1.847889 1.083978 1.400624 1.685844
## [8] 1.026941 1.499664 1.071302 1.401085 1.471804 1.040887 1.526300
## [15] 1.941532 1.344572 1.277062 1.000000 1.301245 1.371596 1.395160
## [22] 1.176944 1.433429 1.363739 1.212840 1.240559 1.276547 1.496298
## [29] 1.990601 1.109025 1.088510 1.588449 2.124461 1.674974 23.762309
## [36] 1.299292 1.397290 1.684696 1.236529 1.171619 1.360409
- Multiplicadores de la producción (mp) para la MIP 1990 y para la MIP
2006
#1990
mp_1990<- mip_multiplicadores_produccion_mp(matriz_L_1990)
print(mp_1990)
## [1] 1.105885 1.191285 1.750077 1.511243 1.389578 2.181171 1.119400
## [8] 1.246299 1.083152 3.671425 1.223539 1.133089 1.006271 1.592563
## [15] 1.194635 2.224389 1.253500 1.015813 1.928648 1.030379 1.189543
## [22] 1.146679 2.696695 2.739024 3.150917 6.985378 2.603476 1.606020
## [29] 2.197902 1.495203 2.066329 2.185642 1.177725 1.239212 1.067583
## [36] 1.291981 13.816987 2.262777 3.717322 7.533336 3.673047
#2006
mp_2006<- mip_multiplicadores_produccion_mp(matriz_L_2006)
print(mp_2006)
## [1] 1.013829 1.052815 1.474348 1.301361 1.244981 1.623459 1.060766
## [8] 1.196731 1.359658 2.568025 1.150131 1.077882 1.002044 1.355794
## [15] 1.054278 1.918127 1.134142 1.000527 1.470996 1.018324 1.129994
## [22] 1.107301 2.018467 1.888203 2.150340 6.346229 1.563541 1.509519
## [29] 1.791534 1.250410 1.532295 2.797425 1.081905 1.187016 1.062057
## [36] 1.197085 10.302597 1.590620 1.766302 6.502581 3.075466
c.Tasa de cambio para ambos multiplicadores (por ejemplo, para me:
me2006/me1990-1)
tabla <- data.frame(me_1990=me_1990, me_2006=me_2006, mp_1990=mp_1990, mp_2006=mp_2006) %>%
mutate(dif_me=round((me_2006/me_1990-1)*100,2),
dif_mp=round((mp_2006/mp_1990-1)*100,2)) %>%
mutate(sector=row_number()) %>%
select(sector, everything())
tabla%>% select(sector, dif_me,dif_mp)
## sector dif_me dif_mp
## 1 1 3.41 -8.32
## 2 2 -19.53 -11.62
## 3 3 -2.11 -15.76
## 4 4 17.84 -13.89
## 5 5 -3.61 -10.41
## 6 6 -3.07 -25.57
## 7 7 -4.66 -5.24
## 8 8 -0.27 -3.98
## 9 9 8.37 25.53
## 10 10 2.28 -30.05
## 11 11 -23.62 -6.00
## 12 12 -17.71 -4.87
## 13 13 -1.73 -0.42
## 14 14 -15.19 -14.87
## 15 15 5.49 -11.75
## 16 16 -13.43 -13.77
## 17 17 -6.51 -9.52
## 18 18 -27.79 -1.50
## 19 19 -13.58 -23.73
## 20 20 -16.49 -1.17
## 21 21 -11.63 -5.01
## 22 22 -13.56 -3.43
## 23 23 -13.92 -25.15
## 24 24 -5.81 -31.06
## 25 25 -8.65 -31.76
## 26 26 -11.94 -9.15
## 27 27 -8.51 -39.94
## 28 28 2.52 -6.01
## 29 29 -15.90 -18.49
## 30 30 -14.65 -16.37
## 31 31 -1.88 -25.84
## 32 32 9.43 27.99
## 33 33 52.61 -8.14
## 34 34 -8.32 -4.21
## 35 35 -36.53 -0.52
## 36 36 -20.59 -7.34
## 37 37 -7.94 -25.44
## 38 38 33.91 -29.70
## 39 39 -8.63 -52.48
## 40 40 0.13 -13.68
## 41 41 4.49 -16.27
- Presente los resultados en una tabla que incluya los nombres para
todos los sectores.
library(dplyr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
nombres_sectores<- data.frame(me_1990=me_1990,me_2006=me_2006, mp_1990=mp_1990, mp_2006=mp_2006) %>%
mutate(dif_me=round((me_2006/me_1990-1)*100,2),
dif_mp=round((mp_2006/mp_1990-1)*100,2)) %>%
mutate(sector=row_number()) %>%
select(sector, everything())
#Se une la tabla de los nombres de los sectores y la tabla de multiplicadores anterior
tabla_2<- left_join(nombres_sectores,tabla)
## Joining with `by = join_by(sector, me_1990, me_2006, mp_1990, mp_2006, dif_me,
## dif_mp)`
tabla_2 %>%
kable(aption="Tabla de los multiplicadores MIP 1990 y 2006",
digits = 2)
|
sector
|
me_1990
|
me_2006
|
mp_1990
|
mp_2006
|
dif_me
|
dif_mp
|
|
1
|
1.26
|
1.30
|
1.11
|
1.01
|
3.41
|
-8.32
|
|
2
|
1.27
|
1.02
|
1.19
|
1.05
|
-19.53
|
-11.62
|
|
3
|
1.26
|
1.23
|
1.75
|
1.47
|
-2.11
|
-15.76
|
|
4
|
1.57
|
1.85
|
1.51
|
1.30
|
17.84
|
-13.89
|
|
5
|
1.12
|
1.08
|
1.39
|
1.24
|
-3.61
|
-10.41
|
|
6
|
1.45
|
1.40
|
2.18
|
1.62
|
-3.07
|
-25.57
|
|
7
|
1.77
|
1.69
|
1.12
|
1.06
|
-4.66
|
-5.24
|
|
8
|
1.03
|
1.03
|
1.25
|
1.20
|
-0.27
|
-3.98
|
|
9
|
1.38
|
1.50
|
1.08
|
1.36
|
8.37
|
25.53
|
|
10
|
1.05
|
1.07
|
3.67
|
2.57
|
2.28
|
-30.05
|
|
11
|
1.83
|
1.40
|
1.22
|
1.15
|
-23.62
|
-6.00
|
|
12
|
1.79
|
1.47
|
1.13
|
1.08
|
-17.71
|
-4.87
|
|
13
|
1.06
|
1.04
|
1.01
|
1.00
|
-1.73
|
-0.42
|
|
14
|
1.80
|
1.53
|
1.59
|
1.36
|
-15.19
|
-14.87
|
|
15
|
1.84
|
1.94
|
1.19
|
1.05
|
5.49
|
-11.75
|
|
16
|
1.55
|
1.34
|
2.22
|
1.92
|
-13.43
|
-13.77
|
|
17
|
1.37
|
1.28
|
1.25
|
1.13
|
-6.51
|
-9.52
|
|
18
|
1.38
|
1.00
|
1.02
|
1.00
|
-27.79
|
-1.50
|
|
19
|
1.51
|
1.30
|
1.93
|
1.47
|
-13.58
|
-23.73
|
|
20
|
1.64
|
1.37
|
1.03
|
1.02
|
-16.49
|
-1.17
|
|
21
|
1.58
|
1.40
|
1.19
|
1.13
|
-11.63
|
-5.01
|
|
22
|
1.36
|
1.18
|
1.15
|
1.11
|
-13.56
|
-3.43
|
|
23
|
1.67
|
1.43
|
2.70
|
2.02
|
-13.92
|
-25.15
|
|
24
|
1.45
|
1.36
|
2.74
|
1.89
|
-5.81
|
-31.06
|
|
25
|
1.33
|
1.21
|
3.15
|
2.15
|
-8.65
|
-31.76
|
|
26
|
1.41
|
1.24
|
6.99
|
6.35
|
-11.94
|
-9.15
|
|
27
|
1.40
|
1.28
|
2.60
|
1.56
|
-8.51
|
-39.94
|
|
28
|
1.46
|
1.50
|
1.61
|
1.51
|
2.52
|
-6.01
|
|
29
|
2.37
|
1.99
|
2.20
|
1.79
|
-15.90
|
-18.49
|
|
30
|
1.30
|
1.11
|
1.50
|
1.25
|
-14.65
|
-16.37
|
|
31
|
1.11
|
1.09
|
2.07
|
1.53
|
-1.88
|
-25.84
|
|
32
|
1.45
|
1.59
|
2.19
|
2.80
|
9.43
|
27.99
|
|
33
|
1.39
|
2.12
|
1.18
|
1.08
|
52.61
|
-8.14
|
|
34
|
1.83
|
1.67
|
1.24
|
1.19
|
-8.32
|
-4.21
|
|
35
|
37.44
|
23.76
|
1.07
|
1.06
|
-36.53
|
-0.52
|
|
36
|
1.64
|
1.30
|
1.29
|
1.20
|
-20.59
|
-7.34
|
|
37
|
1.52
|
1.40
|
13.82
|
10.30
|
-7.94
|
-25.44
|
|
38
|
1.26
|
1.68
|
2.26
|
1.59
|
33.91
|
-29.70
|
|
39
|
1.35
|
1.24
|
3.72
|
1.77
|
-8.63
|
-52.48
|
|
40
|
1.17
|
1.17
|
7.53
|
6.50
|
0.13
|
-13.68
|
|
41
|
1.30
|
1.36
|
3.67
|
3.08
|
4.49
|
-16.27
|
- Realice el análisis de Rasmussen para para las MIP 1990 y 2006.
Analisis 1990
library(dplyr)
library(kableExtra)
## Análisis de Rasmussen para MIP 1990.
rasmussen_1990 <-mip_tabla_rasmussen(matriz_L_1990)
summary_rasmussen_1990 <- rasmussen_1990 %>%
group_by(clasificacion) %>% summarise(total=n()) %>% mutate(porcentaje=round(prop.table(total)*100,2))
summary_rasmussen_1990 %>%
kable(aption="Análisis de Rasmussen para MIP 1990",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
|
clasificacion
|
total
|
porcentaje
|
|
Sector Estrategico
|
2
|
4.88
|
|
Sector Impulsor
|
10
|
24.39
|
|
Sector Isla
|
29
|
70.73
|
Analisis 2006
library(dplyr)
library(kableExtra)
## Análisis de Rasmussen para MIP 2006.
rasmussen_2006<-mip_tabla_rasmussen(matriz_L_2006)
summary_rasmussen_2006 <- rasmussen_2006 %>%
group_by(clasificacion) %>% summarise(total=n()) %>% mutate(porcentaje=round(prop.table(total)*100,2))
summary_rasmussen_2006 %>%
kable(aption="Análisis de Rasmussen para MIP 2006",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
|
clasificacion
|
total
|
porcentaje
|
|
Sector Estrategico
|
4
|
9.76
|
|
Sector Impulsor
|
8
|
19.51
|
|
Sector Isla
|
29
|
70.73
|
- Presente una tabla comparativa entre los resultados porcentuales por
tipo de sector entre 1990 y 2006, incluya una columna que muestre la
variación porcentual por tipo de sector.
library(dplyr)
library(kableExtra)
tabla_comparativa_1990_2006<-left_join(summary_rasmussen_1990, summary_rasmussen_2006, by="clasificacion", suffix=c("_1990","_2006"))
tabla_comparativa_1990_2006 %>%
mutate(dif_variacion_porcentual= round((porcentaje_2006/porcentaje_1990-1)*100,2)) %>%
kable(aption="Tabla comparativa",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
|
clasificacion
|
total_1990
|
porcentaje_1990
|
total_2006
|
porcentaje_2006
|
dif_variacion_porcentual
|
|
Sector Estrategico
|
2
|
4.88
|
4
|
9.76
|
100.00
|
|
Sector Impulsor
|
10
|
24.39
|
8
|
19.51
|
-20.01
|
|
Sector Isla
|
29
|
70.73
|
29
|
70.73
|
0.00
|