Introduction

For this week’s project, I will be importing a text file of chess tournament results to then use the information to create a csv. file with the variables; Player’s Name, Player’s State, Total Number of Points, Player’s Pre-Rating, and Average Pre Chess Rating of Opponents.

I first imported the text file using ‘read.table’ which imported the file with 1 variable and 195 observations.

tournament <- read.table("C:\\Users\\nakes\\OneDrive\\Desktop\\607\\tournamentinfo.txt", sep="\t", header=TRUE, col.names = "all")

Tidy Data and Create Seperate Datasets

I cleaned and tidyed the dataset a little by removing rows that were dashes. Then I created two datasets: df.t1 and df.t2. The df.t1 dataset has all the player ids, player names, total points and each opponent for the rounds. The df.t2 dataset has the state and each players pre-ratings. Creating two separate datasets makes it easier to extract the variables we need later on to combine.

#Remove all the rows with dashes

t1 <- tournament %>%
  filter(!str_detect(all, pattern = "---"))

#Extract every other row

df.t1 <- data.frame(t1[seq(3, nrow(t1), 2), ])

df.t2 <- data.frame(t1[seq(4, nrow(t1), 2), ])

Extract data

In this next step, I used ‘substr’ to pull out specific length strings as different variables from df.t1 and df.t2. Then I changed the strings to individual dataframes to combine all the variables together.

#Extract the all the variables from df.new and df.other

id <- as.numeric(substr(df.t1$t1.seq.3..nrow.t1...2...., start = 2, stop = 5))

player_name <- (substr(df.t1$t1.seq.3..nrow.t1...2...., start = 9, stop = 35))

player_state <- (substr(df.t2$t1.seq.4..nrow.t1...2...., start = 2, stop = 5))

total_points <- (substr(df.t1$t1.seq.3..nrow.t1...2...., start = 42, stop = 45))

player_pre_rating <- as.numeric(substr(df.t2$t1.seq.4..nrow.t1...2...., start = 22, stop = 26))

round1 <- as.numeric(substr(df.t1$t1.seq.3..nrow.t1...2...., start = 50, stop = 52))
round2 <- as.numeric(substr(df.t1$t1.seq.3..nrow.t1...2...., start = 55, stop = 58))
round3 <- as.numeric(substr(df.t1$t1.seq.3..nrow.t1...2...., start = 61, stop = 64))
round4 <- as.numeric(substr(df.t1$t1.seq.3..nrow.t1...2...., start = 67, stop = 70))
round5 <- as.numeric(substr(df.t1$t1.seq.3..nrow.t1...2...., start = 73, stop = 76))
round6 <- as.numeric(substr(df.t1$t1.seq.3..nrow.t1...2...., start = 79, stop = 82))
round7 <- as.numeric(substr(df.t1$t1.seq.3..nrow.t1...2...., start = 85, stop = 88))

#Change all of the extracted strings to a dataframe

df1 <- data.frame(id)
df2 <- data.frame(player_name)
df3 <- data.frame(player_state)
df4 <- data.frame(total_points)
df5 <- data.frame(player_pre_rating)
df6 <- data.frame(round1)
df7 <- data.frame(round2)
df8 <- data.frame(round3)
df9 <- data.frame(round4)
df10 <- data.frame(round5)
df11 <- data.frame(round6)
df12 <- data.frame(round7)

# Combine all the dataframes into one dataframe

data <- cbind(df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11, df12)

print(data)
##    id                 player_name player_state total_points player_pre_rating
## 1   1 GARY HUA                              ON         6.0               1794
## 2   2 DAKSHESH DARURI                       MI         6.0               1553
## 3   3 ADITYA BAJAJ                          MI         6.0               1384
## 4   4 PATRICK H SCHILLING                   MI         5.5               1716
## 5   5 HANSHI ZUO                            MI         5.5               1655
## 6   6 HANSEN SONG                           OH         5.0               1686
## 7   7 GARY DEE SWATHELL                     MI         5.0               1649
## 8   8 EZEKIEL HOUGHTON                      MI         5.0               1641
## 9   9 STEFANO LEE                           ON         5.0               1411
## 10 10 ANVIT RAO                             MI         5.0               1365
## 11 11 CAMERON WILLIAM MC LEMAN              MI         4.5               1712
## 12 12 KENNETH J TACK                        MI         4.5               1663
## 13 13 TORRANCE HENRY JR                     MI         4.5               1666
## 14 14 BRADLEY SHAW                          MI         4.5               1610
## 15 15 ZACHARY JAMES HOUGHTON                MI         4.5               1220
## 16 16 MIKE NIKITIN                          MI         4.0               1604
## 17 17 RONALD GRZEGORCZYK                    MI         4.0               1629
## 18 18 DAVID SUNDEEN                         MI         4.0               1600
## 19 19 DIPANKAR ROY                          MI         4.0               1564
## 20 20 JASON ZHENG                           MI         4.0               1595
## 21 21 DINH DANG BUI                         ON         4.0               1563
## 22 22 EUGENE L MCCLURE                      MI         4.0               1555
## 23 23 ALAN BUI                              ON         4.0               1363
## 24 24 MICHAEL R ALDRICH                     MI         4.0               1229
## 25 25 LOREN SCHWIEBERT                      MI         3.5               1745
## 26 26 MAX ZHU                               ON         3.5               1579
## 27 27 GAURAV GIDWANI                        MI         3.5               1552
## 28 28 SOFIA ADINA STANESCU-BELLU            MI         3.5               1507
## 29 29 CHIEDOZIE OKORIE                      MI         3.5               1602
## 30 30 GEORGE AVERY JONES                    ON         3.5               1522
## 31 31 RISHI SHETTY                          MI         3.5               1494
## 32 32 JOSHUA PHILIP MATHEWS                 ON         3.5               1441
## 33 33 JADE GE                               MI         3.5               1449
## 34 34 MICHAEL JEFFERY THOMAS                MI         3.5               1399
## 35 35 JOSHUA DAVID LEE                      MI         3.5               1438
## 36 36 SIDDHARTH JHA                         MI         3.5               1355
## 37 37 AMIYATOSH PWNANANDAM                  MI         3.5                980
## 38 38 BRIAN LIU                             MI         3.0               1423
## 39 39 JOEL R HENDON                         MI         3.0               1436
## 40 40 FOREST ZHANG                          MI         3.0               1348
## 41 41 KYLE WILLIAM MURPHY                   MI         3.0               1403
## 42 42 JARED GE                              MI         3.0               1332
## 43 43 ROBERT GLEN VASEY                     MI         3.0               1283
## 44 44 JUSTIN D SCHILLING                    MI         3.0               1199
## 45 45 DEREK YAN                             MI         3.0               1242
## 46 46 JACOB ALEXANDER LAVALLEY              MI         3.0                377
## 47 47 ERIC WRIGHT                           MI         2.5               1362
## 48 48 DANIEL KHAIN                          MI         2.5               1382
## 49 49 MICHAEL J MARTIN                      MI         2.5               1291
## 50 50 SHIVAM JHA                            MI         2.5               1056
## 51 51 TEJAS AYYAGARI                        MI         2.5               1011
## 52 52 ETHAN GUO                             MI         2.5                935
## 53 53 JOSE C YBARRA                         MI         2.0               1393
## 54 54 LARRY HODGE                           MI         2.0               1270
## 55 55 ALEX KONG                             MI         2.0               1186
## 56 56 MARISA RICCI                          MI         2.0               1153
## 57 57 MICHAEL LU                            MI         2.0               1092
## 58 58 VIRAJ MOHILE                          MI         2.0                917
## 59 59 SEAN M MC CORMICK                     MI         2.0                853
## 60 60 JULIA SHEN                            MI         1.5                967
## 61 61 JEZZEL FARKAS                         ON         1.5                955
## 62 62 ASHWIN BALAJI                         MI         1.0               1530
## 63 63 THOMAS JOSEPH HOSMER                  MI         1.0               1175
## 64 64 BEN LI                                MI         1.0               1163
##    round1 round2 round3 round4 round5 round6 round7
## 1      39     21     18     14      7     12      4
## 2      63     58      4     17     16     20      7
## 3       8     61     25     21     11     13     12
## 4      23     28      2     26      5     19      1
## 5      45     37     12     13      4     14     17
## 6      34     29     11     35     10     27     21
## 7      57     46     13     11      1      9      2
## 8       3     32     14      9     47     28     19
## 9      25     18     59      8     26      7     20
## 10     16     19     55     31      6     25     18
## 11     38     56      6      7      3     34     26
## 12     42     33      5     38     NA      1      3
## 13     36     27      7      5     33      3     32
## 14     54     44      8      1     27      5     31
## 15     19     16     30     22     54     33     38
## 16     10     15     NA     39      2     36     NA
## 17     48     41     26      2     23     22      5
## 18     47      9      1     32     19     38     10
## 19     15     10     52     28     18      4      8
## 20     40     49     23     41     28      2      9
## 21     43      1     47      3     40     39      6
## 22     64     52     28     15     NA     17     40
## 23      4     43     20     58     17     37     46
## 24     28     47     43     25     60     44     39
## 25      9     53      3     24     34     10     47
## 26     49     40     17      4      9     32     11
## 27     51     13     46     37     14      6     NA
## 28     24      4     22     19     20      8     36
## 29     50      6     38     34     52     48     NA
## 30     52     64     15     55     31     61     50
## 31     58     55     64     10     30     50     14
## 32     61      8     44     18     51     26     13
## 33     60     12     50     36     13     15     51
## 34      6     60     37     29     25     11     52
## 35     46     38     56      6     57     52     48
## 36     13     57     51     33     NA     16     28
## 37     NA      5     34     27     NA     23     61
## 38     11     35     29     12     NA     18     15
## 39      1     54     40     16     44     21     24
## 40     20     26     39     59     21     56     22
## 41     59     17     58     20     NA     NA     NA
## 42     12     50     57     60     61     64     56
## 43     21     23     24     63     59     46     55
## 44     NA     14     32     53     39     24     59
## 45      5     51     60     56     63     55     58
## 46     35      7     27     50     64     43     23
## 47     18     24     21     61      8     51     25
## 48     17     63     NA     52     NA     29     35
## 49     26     20     63     64     58     NA     NA
## 50     29     42     33     46     NA     31     30
## 51     27     45     36     57     32     47     33
## 52     30     22     19     48     29     35     34
## 53     NA     25     NA     44     NA     57     NA
## 54     14     39     61     NA     15     59     64
## 55     62     31     10     30     NA     45     43
## 56     NA     11     35     45     NA     40     42
## 57      7     36     42     51     35     53     NA
## 58     31      2     41     23     49     NA     45
## 59     41     NA      9     40     43     54     44
## 60     33     34     45     42     24     NA     NA
## 61     32      3     54     47     42     30     37
## 62     55     NA     NA     NA     NA     NA     NA
## 63      2     48     49     43     45     NA     NA
## 64     22     30     31     49     46     42     54

Create new variables

In the step, I created 7 new variables, round1_opp to round7_opp in the dataframe ‘data’. I used 7 loops to cycle through the data frame and input a value of the Players Pre-Rating in each correlating round using the rows. Then I used rowMean to calculate the Average Pre Chess Rating of Opponents, rounded the mean, and then selected only the variables I wanted to keep to export as a csv.

# Create a loop for the 7 new variables using round and nrow 

for (row in 1:nrow(data))
data$round1_opp[row] <- data$player_pre_rating[data$round1[row]]

for (row in 1:nrow(data))
data$round2_opp[row] <- data$player_pre_rating[data$round2[row]]

for (row in 1:nrow(data))
data$round3_opp[row] <- data$player_pre_rating[data$round3[row]]

for (row in 1:nrow(data))
data$round4_opp[row] <- data$player_pre_rating[data$round4[row]]

for (row in 1:nrow(data))
data$round5_opp[row] <- data$player_pre_rating[data$round5[row]]

for (row in 1:nrow(data))
data$round6_opp[row] <- data$player_pre_rating[data$round6[row]]

for (row in 1:nrow(data))
data$round7_opp[row] <- data$player_pre_rating[data$round7[row]]

# Find mean for a new variable avg_pre_chess_rating

data$mean <- rowMeans(data[,13:19], na.rm=TRUE)

data$avg_pre_chess_rating <- round(data$mean)

print(data)
##    id                 player_name player_state total_points player_pre_rating
## 1   1 GARY HUA                              ON         6.0               1794
## 2   2 DAKSHESH DARURI                       MI         6.0               1553
## 3   3 ADITYA BAJAJ                          MI         6.0               1384
## 4   4 PATRICK H SCHILLING                   MI         5.5               1716
## 5   5 HANSHI ZUO                            MI         5.5               1655
## 6   6 HANSEN SONG                           OH         5.0               1686
## 7   7 GARY DEE SWATHELL                     MI         5.0               1649
## 8   8 EZEKIEL HOUGHTON                      MI         5.0               1641
## 9   9 STEFANO LEE                           ON         5.0               1411
## 10 10 ANVIT RAO                             MI         5.0               1365
## 11 11 CAMERON WILLIAM MC LEMAN              MI         4.5               1712
## 12 12 KENNETH J TACK                        MI         4.5               1663
## 13 13 TORRANCE HENRY JR                     MI         4.5               1666
## 14 14 BRADLEY SHAW                          MI         4.5               1610
## 15 15 ZACHARY JAMES HOUGHTON                MI         4.5               1220
## 16 16 MIKE NIKITIN                          MI         4.0               1604
## 17 17 RONALD GRZEGORCZYK                    MI         4.0               1629
## 18 18 DAVID SUNDEEN                         MI         4.0               1600
## 19 19 DIPANKAR ROY                          MI         4.0               1564
## 20 20 JASON ZHENG                           MI         4.0               1595
## 21 21 DINH DANG BUI                         ON         4.0               1563
## 22 22 EUGENE L MCCLURE                      MI         4.0               1555
## 23 23 ALAN BUI                              ON         4.0               1363
## 24 24 MICHAEL R ALDRICH                     MI         4.0               1229
## 25 25 LOREN SCHWIEBERT                      MI         3.5               1745
## 26 26 MAX ZHU                               ON         3.5               1579
## 27 27 GAURAV GIDWANI                        MI         3.5               1552
## 28 28 SOFIA ADINA STANESCU-BELLU            MI         3.5               1507
## 29 29 CHIEDOZIE OKORIE                      MI         3.5               1602
## 30 30 GEORGE AVERY JONES                    ON         3.5               1522
## 31 31 RISHI SHETTY                          MI         3.5               1494
## 32 32 JOSHUA PHILIP MATHEWS                 ON         3.5               1441
## 33 33 JADE GE                               MI         3.5               1449
## 34 34 MICHAEL JEFFERY THOMAS                MI         3.5               1399
## 35 35 JOSHUA DAVID LEE                      MI         3.5               1438
## 36 36 SIDDHARTH JHA                         MI         3.5               1355
## 37 37 AMIYATOSH PWNANANDAM                  MI         3.5                980
## 38 38 BRIAN LIU                             MI         3.0               1423
## 39 39 JOEL R HENDON                         MI         3.0               1436
## 40 40 FOREST ZHANG                          MI         3.0               1348
## 41 41 KYLE WILLIAM MURPHY                   MI         3.0               1403
## 42 42 JARED GE                              MI         3.0               1332
## 43 43 ROBERT GLEN VASEY                     MI         3.0               1283
## 44 44 JUSTIN D SCHILLING                    MI         3.0               1199
## 45 45 DEREK YAN                             MI         3.0               1242
## 46 46 JACOB ALEXANDER LAVALLEY              MI         3.0                377
## 47 47 ERIC WRIGHT                           MI         2.5               1362
## 48 48 DANIEL KHAIN                          MI         2.5               1382
## 49 49 MICHAEL J MARTIN                      MI         2.5               1291
## 50 50 SHIVAM JHA                            MI         2.5               1056
## 51 51 TEJAS AYYAGARI                        MI         2.5               1011
## 52 52 ETHAN GUO                             MI         2.5                935
## 53 53 JOSE C YBARRA                         MI         2.0               1393
## 54 54 LARRY HODGE                           MI         2.0               1270
## 55 55 ALEX KONG                             MI         2.0               1186
## 56 56 MARISA RICCI                          MI         2.0               1153
## 57 57 MICHAEL LU                            MI         2.0               1092
## 58 58 VIRAJ MOHILE                          MI         2.0                917
## 59 59 SEAN M MC CORMICK                     MI         2.0                853
## 60 60 JULIA SHEN                            MI         1.5                967
## 61 61 JEZZEL FARKAS                         ON         1.5                955
## 62 62 ASHWIN BALAJI                         MI         1.0               1530
## 63 63 THOMAS JOSEPH HOSMER                  MI         1.0               1175
## 64 64 BEN LI                                MI         1.0               1163
##    round1 round2 round3 round4 round5 round6 round7 round1_opp round2_opp
## 1      39     21     18     14      7     12      4       1436       1563
## 2      63     58      4     17     16     20      7       1175        917
## 3       8     61     25     21     11     13     12       1641        955
## 4      23     28      2     26      5     19      1       1363       1507
## 5      45     37     12     13      4     14     17       1242        980
## 6      34     29     11     35     10     27     21       1399       1602
## 7      57     46     13     11      1      9      2       1092        377
## 8       3     32     14      9     47     28     19       1384       1441
## 9      25     18     59      8     26      7     20       1745       1600
## 10     16     19     55     31      6     25     18       1604       1564
## 11     38     56      6      7      3     34     26       1423       1153
## 12     42     33      5     38     NA      1      3       1332       1449
## 13     36     27      7      5     33      3     32       1355       1552
## 14     54     44      8      1     27      5     31       1270       1199
## 15     19     16     30     22     54     33     38       1564       1604
## 16     10     15     NA     39      2     36     NA       1365       1220
## 17     48     41     26      2     23     22      5       1382       1403
## 18     47      9      1     32     19     38     10       1362       1411
## 19     15     10     52     28     18      4      8       1220       1365
## 20     40     49     23     41     28      2      9       1348       1291
## 21     43      1     47      3     40     39      6       1283       1794
## 22     64     52     28     15     NA     17     40       1163        935
## 23      4     43     20     58     17     37     46       1716       1283
## 24     28     47     43     25     60     44     39       1507       1362
## 25      9     53      3     24     34     10     47       1411       1393
## 26     49     40     17      4      9     32     11       1291       1348
## 27     51     13     46     37     14      6     NA       1011       1666
## 28     24      4     22     19     20      8     36       1229       1716
## 29     50      6     38     34     52     48     NA       1056       1686
## 30     52     64     15     55     31     61     50        935       1163
## 31     58     55     64     10     30     50     14        917       1186
## 32     61      8     44     18     51     26     13        955       1641
## 33     60     12     50     36     13     15     51        967       1663
## 34      6     60     37     29     25     11     52       1686        967
## 35     46     38     56      6     57     52     48        377       1423
## 36     13     57     51     33     NA     16     28       1666       1092
## 37     NA      5     34     27     NA     23     61         NA       1655
## 38     11     35     29     12     NA     18     15       1712       1438
## 39      1     54     40     16     44     21     24       1794       1270
## 40     20     26     39     59     21     56     22       1595       1579
## 41     59     17     58     20     NA     NA     NA        853       1629
## 42     12     50     57     60     61     64     56       1663       1056
## 43     21     23     24     63     59     46     55       1563       1363
## 44     NA     14     32     53     39     24     59         NA       1610
## 45      5     51     60     56     63     55     58       1655       1011
## 46     35      7     27     50     64     43     23       1438       1649
## 47     18     24     21     61      8     51     25       1600       1229
## 48     17     63     NA     52     NA     29     35       1629       1175
## 49     26     20     63     64     58     NA     NA       1579       1595
## 50     29     42     33     46     NA     31     30       1602       1332
## 51     27     45     36     57     32     47     33       1552       1242
## 52     30     22     19     48     29     35     34       1522       1555
## 53     NA     25     NA     44     NA     57     NA         NA       1745
## 54     14     39     61     NA     15     59     64       1610       1436
## 55     62     31     10     30     NA     45     43       1530       1494
## 56     NA     11     35     45     NA     40     42         NA       1712
## 57      7     36     42     51     35     53     NA       1649       1355
## 58     31      2     41     23     49     NA     45       1494       1553
## 59     41     NA      9     40     43     54     44       1403         NA
## 60     33     34     45     42     24     NA     NA       1449       1399
## 61     32      3     54     47     42     30     37       1441       1384
## 62     55     NA     NA     NA     NA     NA     NA       1186         NA
## 63      2     48     49     43     45     NA     NA       1553       1382
## 64     22     30     31     49     46     42     54       1555       1522
##    round3_opp round4_opp round5_opp round6_opp round7_opp     mean
## 1        1600       1610       1649       1663       1716 1605.286
## 2        1716       1629       1604       1595       1649 1469.286
## 3        1745       1563       1712       1666       1663 1563.571
## 4        1553       1579       1655       1564       1794 1573.571
## 5        1663       1666       1716       1610       1629 1500.857
## 6        1712       1438       1365       1552       1563 1518.714
## 7        1666       1712       1794       1411       1553 1372.143
## 8        1610       1411       1362       1507       1564 1468.429
## 9         853       1641       1579       1649       1595 1523.143
## 10       1186       1494       1686       1745       1600 1554.143
## 11       1686       1649       1384       1399       1579 1467.571
## 12       1655       1423         NA       1794       1384 1506.167
## 13       1649       1655       1449       1384       1441 1497.857
## 14       1641       1794       1552       1655       1494 1515.000
## 15       1522       1555       1270       1449       1423 1483.857
## 16         NA       1436       1553       1355         NA 1385.800
## 17       1579       1553       1363       1555       1655 1498.571
## 18       1794       1441       1564       1423       1365 1480.000
## 19        935       1507       1600       1716       1641 1426.286
## 20       1363       1403       1507       1553       1411 1410.857
## 21       1362       1384       1348       1436       1686 1470.429
## 22       1507       1220         NA       1629       1348 1300.333
## 23       1595        917       1629        980        377 1213.857
## 24       1283       1745        967       1199       1436 1357.000
## 25       1384       1229       1399       1365       1362 1363.286
## 26       1629       1716       1411       1441       1712 1506.857
## 27        377        980       1610       1686         NA 1221.667
## 28       1555       1564       1595       1641       1355 1522.143
## 29       1423       1399        935       1382         NA 1313.500
## 30       1220       1186       1494        955       1056 1144.143
## 31       1163       1365       1522       1056       1610 1259.857
## 32       1199       1600       1011       1579       1666 1378.714
## 33       1056       1355       1666       1220       1011 1276.857
## 34        980       1602       1745       1712        935 1375.286
## 35       1153       1686       1092        935       1382 1149.714
## 36       1011       1449         NA       1604       1507 1388.167
## 37       1399       1552         NA       1363        955 1384.800
## 38       1602       1663         NA       1600       1220 1539.167
## 39       1348       1604       1199       1563       1229 1429.571
## 40       1436        853       1563       1153       1555 1390.571
## 41        917       1595         NA         NA         NA 1248.500
## 42       1092        967        955       1163       1153 1149.857
## 43       1229       1175        853        377       1186 1106.571
## 44       1441       1393       1436       1229        853 1327.000
## 45        967       1153       1175       1186        917 1152.000
## 46       1552       1056       1163       1283       1363 1357.714
## 47       1563        955       1641       1011       1745 1392.000
## 48         NA        935         NA       1602       1438 1355.800
## 49       1175       1163        917         NA         NA 1285.800
## 50       1449        377         NA       1494       1522 1296.000
## 51       1355       1092       1441       1362       1449 1356.143
## 52       1564       1382       1602       1438       1399 1494.571
## 53         NA       1199         NA       1092         NA 1345.333
## 54        955         NA       1220        853       1163 1206.167
## 55       1365       1522         NA       1242       1283 1406.000
## 56       1438       1242         NA       1348       1332 1414.400
## 57       1332       1011       1438       1393         NA 1363.000
## 58       1403       1363       1291         NA       1242 1391.000
## 59       1411       1348       1283       1270       1199 1319.000
## 60       1242       1332       1229         NA         NA 1330.200
## 61       1270       1362       1332       1522        980 1327.286
## 62         NA         NA         NA         NA         NA 1186.000
## 63       1291       1283       1242         NA         NA 1350.200
## 64       1494       1291        377       1332       1270 1263.000
##    avg_pre_chess_rating
## 1                  1605
## 2                  1469
## 3                  1564
## 4                  1574
## 5                  1501
## 6                  1519
## 7                  1372
## 8                  1468
## 9                  1523
## 10                 1554
## 11                 1468
## 12                 1506
## 13                 1498
## 14                 1515
## 15                 1484
## 16                 1386
## 17                 1499
## 18                 1480
## 19                 1426
## 20                 1411
## 21                 1470
## 22                 1300
## 23                 1214
## 24                 1357
## 25                 1363
## 26                 1507
## 27                 1222
## 28                 1522
## 29                 1314
## 30                 1144
## 31                 1260
## 32                 1379
## 33                 1277
## 34                 1375
## 35                 1150
## 36                 1388
## 37                 1385
## 38                 1539
## 39                 1430
## 40                 1391
## 41                 1248
## 42                 1150
## 43                 1107
## 44                 1327
## 45                 1152
## 46                 1358
## 47                 1392
## 48                 1356
## 49                 1286
## 50                 1296
## 51                 1356
## 52                 1495
## 53                 1345
## 54                 1206
## 55                 1406
## 56                 1414
## 57                 1363
## 58                 1391
## 59                 1319
## 60                 1330
## 61                 1327
## 62                 1186
## 63                 1350
## 64                 1263
#Select only the variables we want in new dataframe

df = subset(data, select = c(player_name, player_state, total_points, player_pre_rating, avg_pre_chess_rating) )

print(df)
##                    player_name player_state total_points player_pre_rating
## 1  GARY HUA                              ON         6.0               1794
## 2  DAKSHESH DARURI                       MI         6.0               1553
## 3  ADITYA BAJAJ                          MI         6.0               1384
## 4  PATRICK H SCHILLING                   MI         5.5               1716
## 5  HANSHI ZUO                            MI         5.5               1655
## 6  HANSEN SONG                           OH         5.0               1686
## 7  GARY DEE SWATHELL                     MI         5.0               1649
## 8  EZEKIEL HOUGHTON                      MI         5.0               1641
## 9  STEFANO LEE                           ON         5.0               1411
## 10 ANVIT RAO                             MI         5.0               1365
## 11 CAMERON WILLIAM MC LEMAN              MI         4.5               1712
## 12 KENNETH J TACK                        MI         4.5               1663
## 13 TORRANCE HENRY JR                     MI         4.5               1666
## 14 BRADLEY SHAW                          MI         4.5               1610
## 15 ZACHARY JAMES HOUGHTON                MI         4.5               1220
## 16 MIKE NIKITIN                          MI         4.0               1604
## 17 RONALD GRZEGORCZYK                    MI         4.0               1629
## 18 DAVID SUNDEEN                         MI         4.0               1600
## 19 DIPANKAR ROY                          MI         4.0               1564
## 20 JASON ZHENG                           MI         4.0               1595
## 21 DINH DANG BUI                         ON         4.0               1563
## 22 EUGENE L MCCLURE                      MI         4.0               1555
## 23 ALAN BUI                              ON         4.0               1363
## 24 MICHAEL R ALDRICH                     MI         4.0               1229
## 25 LOREN SCHWIEBERT                      MI         3.5               1745
## 26 MAX ZHU                               ON         3.5               1579
## 27 GAURAV GIDWANI                        MI         3.5               1552
## 28 SOFIA ADINA STANESCU-BELLU            MI         3.5               1507
## 29 CHIEDOZIE OKORIE                      MI         3.5               1602
## 30 GEORGE AVERY JONES                    ON         3.5               1522
## 31 RISHI SHETTY                          MI         3.5               1494
## 32 JOSHUA PHILIP MATHEWS                 ON         3.5               1441
## 33 JADE GE                               MI         3.5               1449
## 34 MICHAEL JEFFERY THOMAS                MI         3.5               1399
## 35 JOSHUA DAVID LEE                      MI         3.5               1438
## 36 SIDDHARTH JHA                         MI         3.5               1355
## 37 AMIYATOSH PWNANANDAM                  MI         3.5                980
## 38 BRIAN LIU                             MI         3.0               1423
## 39 JOEL R HENDON                         MI         3.0               1436
## 40 FOREST ZHANG                          MI         3.0               1348
## 41 KYLE WILLIAM MURPHY                   MI         3.0               1403
## 42 JARED GE                              MI         3.0               1332
## 43 ROBERT GLEN VASEY                     MI         3.0               1283
## 44 JUSTIN D SCHILLING                    MI         3.0               1199
## 45 DEREK YAN                             MI         3.0               1242
## 46 JACOB ALEXANDER LAVALLEY              MI         3.0                377
## 47 ERIC WRIGHT                           MI         2.5               1362
## 48 DANIEL KHAIN                          MI         2.5               1382
## 49 MICHAEL J MARTIN                      MI         2.5               1291
## 50 SHIVAM JHA                            MI         2.5               1056
## 51 TEJAS AYYAGARI                        MI         2.5               1011
## 52 ETHAN GUO                             MI         2.5                935
## 53 JOSE C YBARRA                         MI         2.0               1393
## 54 LARRY HODGE                           MI         2.0               1270
## 55 ALEX KONG                             MI         2.0               1186
## 56 MARISA RICCI                          MI         2.0               1153
## 57 MICHAEL LU                            MI         2.0               1092
## 58 VIRAJ MOHILE                          MI         2.0                917
## 59 SEAN M MC CORMICK                     MI         2.0                853
## 60 JULIA SHEN                            MI         1.5                967
## 61 JEZZEL FARKAS                         ON         1.5                955
## 62 ASHWIN BALAJI                         MI         1.0               1530
## 63 THOMAS JOSEPH HOSMER                  MI         1.0               1175
## 64 BEN LI                                MI         1.0               1163
##    avg_pre_chess_rating
## 1                  1605
## 2                  1469
## 3                  1564
## 4                  1574
## 5                  1501
## 6                  1519
## 7                  1372
## 8                  1468
## 9                  1523
## 10                 1554
## 11                 1468
## 12                 1506
## 13                 1498
## 14                 1515
## 15                 1484
## 16                 1386
## 17                 1499
## 18                 1480
## 19                 1426
## 20                 1411
## 21                 1470
## 22                 1300
## 23                 1214
## 24                 1357
## 25                 1363
## 26                 1507
## 27                 1222
## 28                 1522
## 29                 1314
## 30                 1144
## 31                 1260
## 32                 1379
## 33                 1277
## 34                 1375
## 35                 1150
## 36                 1388
## 37                 1385
## 38                 1539
## 39                 1430
## 40                 1391
## 41                 1248
## 42                 1150
## 43                 1107
## 44                 1327
## 45                 1152
## 46                 1358
## 47                 1392
## 48                 1356
## 49                 1286
## 50                 1296
## 51                 1356
## 52                 1495
## 53                 1345
## 54                 1206
## 55                 1406
## 56                 1414
## 57                 1363
## 58                 1391
## 59                 1319
## 60                 1330
## 61                 1327
## 62                 1186
## 63                 1350
## 64                 1263
#write csv.

write.csv(df,"C:\\Users\\nakes\\OneDrive\\Desktop\\607\\data607_chess_project1.csv")

Conclusion

I was able to create the final dataset using the materials from our 607 class and the information available to us online. In the final dataset we have: Player’s Name (player_name), Player’s State (player_state), Total Number of Points (total_points), Player’s Pre-Rating (player_pre_rating), and Average Pre Chess Rating of Opponents (avg_pre_chess_rating). This dataset is now more easy to use and manipulate as csv. and dataframe to plot or do some descriptive analysis.