IMPORTAR DATOS
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readxl)
options(scipen = 9999)
# Consumo Intermedio
mip_1990_ci <- read_excel("C:/Users/Usuario/Downloads/MATRIZ_INSUMO_PRODUCTO_1990-2006.xlsx", sheet = "MIP 1990", range = "i14:bb59",
col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
## • `` -> `...21`
## • `` -> `...22`
## • `` -> `...23`
## • `` -> `...24`
## • `` -> `...25`
## • `` -> `...26`
## • `` -> `...27`
## • `` -> `...28`
## • `` -> `...29`
## • `` -> `...30`
## • `` -> `...31`
## • `` -> `...32`
## • `` -> `...33`
## • `` -> `...34`
## • `` -> `...35`
## • `` -> `...36`
## • `` -> `...37`
## • `` -> `...38`
## • `` -> `...39`
## • `` -> `...40`
## • `` -> `...41`
## • `` -> `...42`
## • `` -> `...43`
## • `` -> `...44`
## • `` -> `...45`
## • `` -> `...46`
names(mip_1990_ci) <- as.character(1:46)
# Demanda Final
mip_1990_h <- read_excel("C:/Users/Usuario/Downloads/MATRIZ_INSUMO_PRODUCTO_1990-2006.xlsx", sheet = "MIP 1990", range = "bd14:be59",
col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
names(mip_1990_h) <- as.character(1:46)
## Warning: The `value` argument of `names<-()` must have the same length as `x` as of
## tibble 3.0.0.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
# Vector de Producción
mip_1990_x <- read_excel("C:/Users/Usuario/Downloads/MATRIZ_INSUMO_PRODUCTO_1990-2006.xlsx", sheet = "MIP 1990", range = "bi14:bi59",
col_names = FALSE)
## New names:
## • `` -> `...1`
names(mip_1990_x)<-as.character("X")
servicios_row_1990<-colSums(mip_1990_ci[41:46,])
temporal_1990<-rbind(mip_1990_ci[1:40,],servicios_row_1990)
servicios_col_1990<-rowSums(temporal_1990[,41:46])
mip1990_ci_corregida<-cbind(temporal_1990[,1:40],servicios_col_1990)
names(mip1990_ci_corregida)<-as.character(1:41)
X_1990<-rbind(mip_1990_x[1:40,],colSums(mip_1990_x[41:46,])) %>% print()
## # A tibble: 41 × 1
## X
## <dbl>
## 1 254545.
## 2 31712.
## 3 293495.
## 4 44229.
## 5 246870.
## 6 199058.
## 7 182977.
## 8 71190.
## 9 42357.
## 10 157813.
## # ℹ 31 more rows
library(dplyr)
library(readxl)
options(scipen = 9999)
# Consumo Intermedio
mip_2006_ci <- read_excel("C:/Users/Usuario/Downloads/MATRIZ_INSUMO_PRODUCTO_1990-2006.xlsx", sheet = "MIP 2006", range = "i15:bb60",
col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
## • `` -> `...21`
## • `` -> `...22`
## • `` -> `...23`
## • `` -> `...24`
## • `` -> `...25`
## • `` -> `...26`
## • `` -> `...27`
## • `` -> `...28`
## • `` -> `...29`
## • `` -> `...30`
## • `` -> `...31`
## • `` -> `...32`
## • `` -> `...33`
## • `` -> `...34`
## • `` -> `...35`
## • `` -> `...36`
## • `` -> `...37`
## • `` -> `...38`
## • `` -> `...39`
## • `` -> `...40`
## • `` -> `...41`
## • `` -> `...42`
## • `` -> `...43`
## • `` -> `...44`
## • `` -> `...45`
## • `` -> `...46`
names(mip_2006_ci) <- as.character(1:46)
# Demanda FInal
mip_2006_h <- read_excel("C:/Users/Usuario/Downloads/MATRIZ_INSUMO_PRODUCTO_1990-2006.xlsx", sheet = "MIP 2006", range = "bd15:be60",
col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
names(mip_2006_h) <- as.character(1:2)
# Vector de producción
mip_2006_x <- read_excel("C:/Users/Usuario/Downloads/MATRIZ_INSUMO_PRODUCTO_1990-2006.xlsx", sheet = "MIP 2006", range = "bi15:bi60",
col_names = FALSE)
## New names:
## • `` -> `...1`
names(mip_2006_x) <- as.character("X")
servicios_row_2006<-colSums(mip_2006_ci[41:46,])
temporal_2006<-rbind(mip_2006_ci[1:40,],servicios_row_2006)
servicios_col_2006<-rowSums(temporal_2006[,41:46])
mip2006_ci_corregida<-cbind(temporal_2006[,1:40],servicios_col_2006)
names(mip2006_ci_corregida)<-as.character(1:41)
X_2006<-rbind(mip_2006_x[1:40,],colSums(mip_2006_x[41:46,])) %>% print()
## # A tibble: 41 × 1
## X
## <dbl>
## 1 182287
## 2 34523
## 3 715438.
## 4 80222
## 5 1474837.
## 6 312032.
## 7 576046.
## 8 172777.
## 9 188273.
## 10 490735.
## # ℹ 31 more rows
#Matriz de coeficientes tecnicos
mip_coeficientes_tecnicos<-function(matriz_consumo_intermedio,
vector_demanda_final){
filas_ci<-nrow(matriz_consumo_intermedio)
columnas_ci<-ncol(matriz_consumo_intermedio)
filas_x<-nrow(vector_demanda_final)
if(filas_ci!=columnas_ci){
stop("Ingrese una matriz de Consumo Intermedio, Cuadrada",call. = FALSE)
}
if(filas_ci!=filas_x){
stop("Vector de demanda final incompatible (diferente dimensión)",call. = FALSE)
}
v<-solve(diag(as.vector(vector_demanda_final)))
A<-matriz_consumo_intermedio%*%v
list(A=A,V=v)
}
#matriz tecnológica
mip_matriz_tecnologica<-function(matriz_coeficientes_tecnicos){
filas_A<-nrow(matriz_coeficientes_tecnicos)
columnas_A<-ncol(matriz_coeficientes_tecnicos)
if(filas_A!=columnas_A){
stop("Ingrese una matriz de coef. técnicos cuadrada",call. = FALSE)
}
tipo_matriz<-typeof(matriz_coeficientes_tecnicos)
if(tipo_matriz!="double"){
stop("La matriz ingresada no es numerica",call. = FALSE)
}
T<-diag(1,filas_A)-matriz_coeficientes_tecnicos
T
}
mip_matriz_leontief<-function(matriz_tecnologica){
L<-solve(matriz_tecnologica)
L
}
mip_multiplicadores_produccion_mp<-function(matriz_leontief){
mp<-rowSums(matriz_leontief)
mp
}
mip_multiplicadores_expansion_demanda_me<-function(matriz_leontief){
me<-colSums(matriz_leontief)
me
}
mip_encadenamiento_pd<-function(matriz_leontief){
mp<-mip_multiplicadores_produccion_mp(matriz_leontief)
mp/mean(mp)
}
mip_encadenamiento_sd<-function(matriz_leontief){
me<-mip_multiplicadores_expansion_demanda_me(matriz_leontief)
me/mean(me)
}
mip_tabla_rasmussen<-function(matriz_leontief){
library(dplyr)
pd<-mip_encadenamiento_pd(matriz_leontief)
sd<-mip_encadenamiento_sd(matriz_leontief)
rasmussen<-data.frame(pd=pd,sd=sd)
rasmussen_clasificado<-rasmussen %>%
mutate(clasificacion=case_when(pd>1 & sd>1 ~ "Sector Clave",
pd<1 & sd>1 ~"Sector Estrategico",
pd>1 & sd<1 ~"Sector Impulsor",
pd<1 & sd<1 ~"Sector Isla",
TRUE ~ "No clasificado")) %>% mutate(sector=row_number()) %>% select(sector,pd,sd,clasificacion)
rasmussen_clasificado
}
EJERCICIO 1
LITERAL A
##LITERAL A
library(dplyr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
# Año 1990
A_1990<-mip_coeficientes_tecnicos(as.matrix(mip1990_ci_corregida),as.matrix(X_1990))[[1]]
matriz_T_1990<-mip_matriz_tecnologica(matriz_coeficientes_tecnicos = A_1990)
L_1990<-mip_matriz_leontief(matriz_tecnologica = matriz_T_1990)
me_1990<-mip_multiplicadores_expansion_demanda_me(matriz_leontief = L_1990)
# Año 2006
A_2006<-mip_coeficientes_tecnicos(as.matrix(mip2006_ci_corregida),as.matrix(X_2006))[[1]]
matriz_T_2006<-mip_matriz_tecnologica(matriz_coeficientes_tecnicos = A_2006)
L_2006<-mip_matriz_leontief(matriz_tecnologica = matriz_T_2006)
me_2006<-mip_multiplicadores_expansion_demanda_me(matriz_leontief = L_2006)
tabla_me_1990_2006 <- cbind(1:41,me_1990, me_2006)
tabla_me_1990_2006 %>% head(41) %>%
kable(caption = "Multiplicadores Expansión de la demanda (me) para la MIP 1990 y 2006",
align="c", digits = 4) %>% kable_styling(bootstrap_options = c("striped", "hover"))
Multiplicadores Expansión de la demanda (me) para la MIP 1990 y 2006
|
|
me_1990
|
me_2006
|
|
1
|
1.2552
|
1.2979
|
|
2
|
1.2677
|
1.0202
|
|
3
|
1.2616
|
1.2350
|
|
4
|
1.5681
|
1.8479
|
|
5
|
1.1246
|
1.0840
|
|
6
|
1.4450
|
1.4006
|
|
7
|
1.7683
|
1.6858
|
|
8
|
1.0298
|
1.0269
|
|
9
|
1.3838
|
1.4997
|
|
10
|
1.0474
|
1.0713
|
|
11
|
1.8344
|
1.4011
|
|
12
|
1.7886
|
1.4718
|
|
13
|
1.0592
|
1.0409
|
|
14
|
1.7996
|
1.5263
|
|
15
|
1.8405
|
1.9415
|
|
16
|
1.5532
|
1.3446
|
|
17
|
1.3659
|
1.2771
|
|
18
|
1.3848
|
1.0000
|
|
19
|
1.5057
|
1.3012
|
|
20
|
1.6425
|
1.3716
|
|
21
|
1.5787
|
1.3952
|
|
22
|
1.3616
|
1.1769
|
|
23
|
1.6652
|
1.4334
|
|
24
|
1.4479
|
1.3637
|
|
25
|
1.3276
|
1.2128
|
|
26
|
1.4088
|
1.2406
|
|
27
|
1.3953
|
1.2765
|
|
28
|
1.4595
|
1.4963
|
|
29
|
2.3668
|
1.9906
|
|
30
|
1.2994
|
1.1090
|
|
31
|
1.1093
|
1.0885
|
|
32
|
1.4516
|
1.5884
|
|
33
|
1.3921
|
2.1245
|
|
34
|
1.8269
|
1.6750
|
|
35
|
37.4408
|
23.7623
|
|
36
|
1.6362
|
1.2993
|
|
37
|
1.5178
|
1.3973
|
|
38
|
1.2581
|
1.6847
|
|
39
|
1.3533
|
1.2365
|
|
40
|
1.1701
|
1.1716
|
|
41
|
1.3019
|
1.3604
|
LIREAL B
library(dplyr)
library(kableExtra)
# Año 1990
A_1990<-mip_coeficientes_tecnicos(as.matrix(mip1990_ci_corregida),as.matrix(X_1990))[[1]]
matriz_T_1990<-mip_matriz_tecnologica(matriz_coeficientes_tecnicos = A_1990)
L_1990<-mip_matriz_leontief(matriz_tecnologica = matriz_T_1990)
mp_1990<-mip_multiplicadores_produccion_mp(matriz_leontief = L_1990)
# Año 2006
A_2006<-mip_coeficientes_tecnicos(as.matrix(mip2006_ci_corregida),as.matrix(X_2006))[[1]]
matriz_T_2006<-mip_matriz_tecnologica(matriz_coeficientes_tecnicos = A_2006)
L_2006<-mip_matriz_leontief(matriz_tecnologica = matriz_T_2006)
mp_2006<-mip_multiplicadores_produccion_mp(matriz_leontief = L_2006)
tabla_mp_1990_2006 <- cbind(1:41,mp_1990, mp_2006)
tabla_mp_1990_2006 %>% head(41) %>%
kable(caption = "Multiplicadores de la producción (mp) para la MIP 1990 y 2006",
align="c", digits = 4) %>% kable_styling(bootstrap_options = c("striped", "hover"))
Multiplicadores de la producción (mp) para la MIP 1990 y 2006
|
|
mp_1990
|
mp_2006
|
|
1
|
1.1059
|
1.0138
|
|
2
|
1.1913
|
1.0528
|
|
3
|
1.7501
|
1.4743
|
|
4
|
1.5112
|
1.3014
|
|
5
|
1.3896
|
1.2450
|
|
6
|
2.1812
|
1.6235
|
|
7
|
1.1194
|
1.0608
|
|
8
|
1.2463
|
1.1967
|
|
9
|
1.0832
|
1.3597
|
|
10
|
3.6714
|
2.5680
|
|
11
|
1.2235
|
1.1501
|
|
12
|
1.1331
|
1.0779
|
|
13
|
1.0063
|
1.0020
|
|
14
|
1.5926
|
1.3558
|
|
15
|
1.1946
|
1.0543
|
|
16
|
2.2244
|
1.9181
|
|
17
|
1.2535
|
1.1341
|
|
18
|
1.0158
|
1.0005
|
|
19
|
1.9286
|
1.4710
|
|
20
|
1.0304
|
1.0183
|
|
21
|
1.1895
|
1.1300
|
|
22
|
1.1467
|
1.1073
|
|
23
|
2.6967
|
2.0185
|
|
24
|
2.7390
|
1.8882
|
|
25
|
3.1509
|
2.1503
|
|
26
|
6.9854
|
6.3462
|
|
27
|
2.6035
|
1.5635
|
|
28
|
1.6060
|
1.5095
|
|
29
|
2.1979
|
1.7915
|
|
30
|
1.4952
|
1.2504
|
|
31
|
2.0663
|
1.5323
|
|
32
|
2.1856
|
2.7974
|
|
33
|
1.1777
|
1.0819
|
|
34
|
1.2392
|
1.1870
|
|
35
|
1.0676
|
1.0621
|
|
36
|
1.2920
|
1.1971
|
|
37
|
13.8170
|
10.3026
|
|
38
|
2.2628
|
1.5906
|
|
39
|
3.7173
|
1.7663
|
|
40
|
7.5333
|
6.5026
|
|
41
|
3.6730
|
3.0755
|
LITERAL C
library(dplyr)
library(kableExtra)
tasa_cambio_me<-(me_2006/me_1990)-1
tasa_cambio_mp<-(mp_2006/mp_1990)-1
tabla_tasa_me_mp <- cbind(1:41,tasa_cambio_me, tasa_cambio_mp)
tabla_tasa_me_mp %>% head(41) %>%
kable(caption = "Tasa de cambio para ambos multiplicadores 1990 y 2006",
align="c", digits = 4) %>% kable_styling(bootstrap_options = c("striped", "hover"))
Tasa de cambio para ambos multiplicadores 1990 y 2006
|
|
tasa_cambio_me
|
tasa_cambio_mp
|
|
1
|
0.0341
|
-0.0832
|
|
2
|
-0.1953
|
-0.1162
|
|
3
|
-0.0211
|
-0.1576
|
|
4
|
0.1784
|
-0.1389
|
|
5
|
-0.0361
|
-0.1041
|
|
6
|
-0.0307
|
-0.2557
|
|
7
|
-0.0466
|
-0.0524
|
|
8
|
-0.0027
|
-0.0398
|
|
9
|
0.0837
|
0.2553
|
|
10
|
0.0228
|
-0.3005
|
|
11
|
-0.2362
|
-0.0600
|
|
12
|
-0.1771
|
-0.0487
|
|
13
|
-0.0173
|
-0.0042
|
|
14
|
-0.1519
|
-0.1487
|
|
15
|
0.0549
|
-0.1175
|
|
16
|
-0.1343
|
-0.1377
|
|
17
|
-0.0651
|
-0.0952
|
|
18
|
-0.2779
|
-0.0150
|
|
19
|
-0.1358
|
-0.2373
|
|
20
|
-0.1649
|
-0.0117
|
|
21
|
-0.1163
|
-0.0501
|
|
22
|
-0.1356
|
-0.0343
|
|
23
|
-0.1392
|
-0.2515
|
|
24
|
-0.0581
|
-0.3106
|
|
25
|
-0.0865
|
-0.3176
|
|
26
|
-0.1194
|
-0.0915
|
|
27
|
-0.0851
|
-0.3994
|
|
28
|
0.0252
|
-0.0601
|
|
29
|
-0.1590
|
-0.1849
|
|
30
|
-0.1465
|
-0.1637
|
|
31
|
-0.0188
|
-0.2584
|
|
32
|
0.0943
|
0.2799
|
|
33
|
0.5261
|
-0.0814
|
|
34
|
-0.0832
|
-0.0421
|
|
35
|
-0.3653
|
-0.0052
|
|
36
|
-0.2059
|
-0.0734
|
|
37
|
-0.0794
|
-0.2544
|
|
38
|
0.3391
|
-0.2970
|
|
39
|
-0.0863
|
-0.5248
|
|
40
|
0.0013
|
-0.1368
|
|
41
|
0.0449
|
-0.1627
|
LITERAL D
library(dplyr)
library(kableExtra)
tabla_multiplicadores <- data.frame(me_1990=me_1990,me_2006=me_2006, mp_1990=mp_1990, mp_2006=mp_2006) %>%
mutate(dif_me=round((me_2006/me_1990-1)*100,2),
dif_mp=round((mp_2006/mp_1990-1)*100,2)) %>%
mutate(sector=row_number()) %>%
select(sector, everything())
tabla_multiplicadores %>%
kable(aption="Tabla de los multiplicadores MIP 1990 y 2006",
align = "c", digits = 4) %>%
kable_styling(bootstrap_options = c("striped", "hover"))
|
sector
|
me_1990
|
me_2006
|
mp_1990
|
mp_2006
|
dif_me
|
dif_mp
|
|
1
|
1.2552
|
1.2979
|
1.1059
|
1.0138
|
3.41
|
-8.32
|
|
2
|
1.2677
|
1.0202
|
1.1913
|
1.0528
|
-19.53
|
-11.62
|
|
3
|
1.2616
|
1.2350
|
1.7501
|
1.4743
|
-2.11
|
-15.76
|
|
4
|
1.5681
|
1.8479
|
1.5112
|
1.3014
|
17.84
|
-13.89
|
|
5
|
1.1246
|
1.0840
|
1.3896
|
1.2450
|
-3.61
|
-10.41
|
|
6
|
1.4450
|
1.4006
|
2.1812
|
1.6235
|
-3.07
|
-25.57
|
|
7
|
1.7683
|
1.6858
|
1.1194
|
1.0608
|
-4.66
|
-5.24
|
|
8
|
1.0298
|
1.0269
|
1.2463
|
1.1967
|
-0.27
|
-3.98
|
|
9
|
1.3838
|
1.4997
|
1.0832
|
1.3597
|
8.37
|
25.53
|
|
10
|
1.0474
|
1.0713
|
3.6714
|
2.5680
|
2.28
|
-30.05
|
|
11
|
1.8344
|
1.4011
|
1.2235
|
1.1501
|
-23.62
|
-6.00
|
|
12
|
1.7886
|
1.4718
|
1.1331
|
1.0779
|
-17.71
|
-4.87
|
|
13
|
1.0592
|
1.0409
|
1.0063
|
1.0020
|
-1.73
|
-0.42
|
|
14
|
1.7996
|
1.5263
|
1.5926
|
1.3558
|
-15.19
|
-14.87
|
|
15
|
1.8405
|
1.9415
|
1.1946
|
1.0543
|
5.49
|
-11.75
|
|
16
|
1.5532
|
1.3446
|
2.2244
|
1.9181
|
-13.43
|
-13.77
|
|
17
|
1.3659
|
1.2771
|
1.2535
|
1.1341
|
-6.51
|
-9.52
|
|
18
|
1.3848
|
1.0000
|
1.0158
|
1.0005
|
-27.79
|
-1.50
|
|
19
|
1.5057
|
1.3012
|
1.9286
|
1.4710
|
-13.58
|
-23.73
|
|
20
|
1.6425
|
1.3716
|
1.0304
|
1.0183
|
-16.49
|
-1.17
|
|
21
|
1.5787
|
1.3952
|
1.1895
|
1.1300
|
-11.63
|
-5.01
|
|
22
|
1.3616
|
1.1769
|
1.1467
|
1.1073
|
-13.56
|
-3.43
|
|
23
|
1.6652
|
1.4334
|
2.6967
|
2.0185
|
-13.92
|
-25.15
|
|
24
|
1.4479
|
1.3637
|
2.7390
|
1.8882
|
-5.81
|
-31.06
|
|
25
|
1.3276
|
1.2128
|
3.1509
|
2.1503
|
-8.65
|
-31.76
|
|
26
|
1.4088
|
1.2406
|
6.9854
|
6.3462
|
-11.94
|
-9.15
|
|
27
|
1.3953
|
1.2765
|
2.6035
|
1.5635
|
-8.51
|
-39.94
|
|
28
|
1.4595
|
1.4963
|
1.6060
|
1.5095
|
2.52
|
-6.01
|
|
29
|
2.3668
|
1.9906
|
2.1979
|
1.7915
|
-15.90
|
-18.49
|
|
30
|
1.2994
|
1.1090
|
1.4952
|
1.2504
|
-14.65
|
-16.37
|
|
31
|
1.1093
|
1.0885
|
2.0663
|
1.5323
|
-1.88
|
-25.84
|
|
32
|
1.4516
|
1.5884
|
2.1856
|
2.7974
|
9.43
|
27.99
|
|
33
|
1.3921
|
2.1245
|
1.1777
|
1.0819
|
52.61
|
-8.14
|
|
34
|
1.8269
|
1.6750
|
1.2392
|
1.1870
|
-8.32
|
-4.21
|
|
35
|
37.4408
|
23.7623
|
1.0676
|
1.0621
|
-36.53
|
-0.52
|
|
36
|
1.6362
|
1.2993
|
1.2920
|
1.1971
|
-20.59
|
-7.34
|
|
37
|
1.5178
|
1.3973
|
13.8170
|
10.3026
|
-7.94
|
-25.44
|
|
38
|
1.2581
|
1.6847
|
2.2628
|
1.5906
|
33.91
|
-29.70
|
|
39
|
1.3533
|
1.2365
|
3.7173
|
1.7663
|
-8.63
|
-52.48
|
|
40
|
1.1701
|
1.1716
|
7.5333
|
6.5026
|
0.13
|
-13.68
|
|
41
|
1.3019
|
1.3604
|
3.6730
|
3.0755
|
4.49
|
-16.27
|