K-Means in R

Data Preparation

df <- USArrests
df <- na.omit(df) #remove missing values
df <- scale(df) #standardizes data (mean 0 and sd 1)
head(df)
##                Murder   Assault   UrbanPop         Rape
## Alabama    1.24256408 0.7828393 -0.5209066 -0.003416473
## Alaska     0.50786248 1.1068225 -1.2117642  2.484202941
## Arizona    0.07163341 1.4788032  0.9989801  1.042878388
## Arkansas   0.23234938 0.2308680 -1.0735927 -0.184916602
## California 0.27826823 1.2628144  1.7589234  2.067820292
## Colorado   0.02571456 0.3988593  0.8608085  1.864967207

K-means Algorithm

k2 <- kmeans(df, centers = 2, nstart = 25)
str(k2)
## List of 9
##  $ cluster     : Named int [1:50] 1 1 1 2 1 1 2 2 1 1 ...
##   ..- attr(*, "names")= chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...
##  $ centers     : num [1:2, 1:4] 1.005 -0.67 1.014 -0.676 0.198 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "1" "2"
##   .. ..$ : chr [1:4] "Murder" "Assault" "UrbanPop" "Rape"
##  $ totss       : num 196
##  $ withinss    : num [1:2] 46.7 56.1
##  $ tot.withinss: num 103
##  $ betweenss   : num 93.1
##  $ size        : int [1:2] 20 30
##  $ iter        : int 1
##  $ ifault      : int 0
##  - attr(*, "class")= chr "kmeans"
k2
## K-means clustering with 2 clusters of sizes 20, 30
## 
## Cluster means:
##      Murder    Assault   UrbanPop       Rape
## 1  1.004934  1.0138274  0.1975853  0.8469650
## 2 -0.669956 -0.6758849 -0.1317235 -0.5646433
## 
## Clustering vector:
##        Alabama         Alaska        Arizona       Arkansas     California 
##              1              1              1              2              1 
##       Colorado    Connecticut       Delaware        Florida        Georgia 
##              1              2              2              1              1 
##         Hawaii          Idaho       Illinois        Indiana           Iowa 
##              2              2              1              2              2 
##         Kansas       Kentucky      Louisiana          Maine       Maryland 
##              2              2              1              2              1 
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
##              2              1              2              1              1 
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey 
##              2              2              1              2              2 
##     New Mexico       New York North Carolina   North Dakota           Ohio 
##              1              1              1              2              2 
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
##              2              2              2              2              1 
##   South Dakota      Tennessee          Texas           Utah        Vermont 
##              2              1              1              2              2 
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming 
##              2              2              2              2              2 
## 
## Within cluster sum of squares by cluster:
## [1] 46.74796 56.11445
##  (between_SS / total_SS =  47.5 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
fviz_cluster(k2, data=df)

df %>%
  as_tibble() %>%
  mutate(cluster = k2$cluster,
         state = row.names(USArrests)) %>%
  ggplot(aes(UrbanPop, Murder, color = factor(cluster), label = state)) +
  geom_text()

k3 <- kmeans(df, centers = 3, nstart = 25)
k4 <- kmeans(df, centers = 4, nstart = 25)
k5 <- kmeans(df, centers = 5, nstart = 25)

# plots to compare
p1 <- fviz_cluster(k2, geom = "point", data = df) + ggtitle("k = 2")
p2 <- fviz_cluster(k3, geom = "point",  data = df) + ggtitle("k = 3")
p3 <- fviz_cluster(k4, geom = "point",  data = df) + ggtitle("k = 4")
p4 <- fviz_cluster(k5, geom = "point",  data = df) + ggtitle("k = 5")

library(gridExtra)
## Warning: package 'gridExtra' was built under R version 4.4.1
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
grid.arrange(p1, p2, p3, p4, nrow = 2)

Determining Optimal Clusters

set.seed(123)

# function to compute total within-cluster sum of square 
wss <- function(k) {
  kmeans(df, k, nstart = 10 )$tot.withinss
}

# Compute and plot wss for k = 1 to k = 15
k.values <- 1:15

# extract wss for 2-15 clusters
wss_values <- map_dbl(k.values, wss)

plot(k.values, wss_values,
       type="b", pch = 19, frame = FALSE, 
       xlab="Number of clusters K",
       ylab="Total within-clusters sum of squares")

set.seed(123)

fviz_nbclust(df, kmeans, method = "wss")

# function to compute average silhouette for k clusters
avg_sil <- function(k) {
  km.res <- kmeans(df, centers = k, nstart = 25)
  ss <- silhouette(km.res$cluster, dist(df))
  mean(ss[, 3])
}

# Compute and plot wss for k = 2 to k = 15
k.values <- 2:15

# extract avg silhouette for 2-15 clusters
avg_sil_values <- map_dbl(k.values, avg_sil)

plot(k.values, avg_sil_values,
       type = "b", pch = 19, frame = FALSE, 
       xlab = "Number of clusters K",
       ylab = "Average Silhouettes")

fviz_nbclust(df, kmeans, method = "silhouette")

# compute gap statistic
set.seed(123)
gap_stat <- clusGap(df, FUN = kmeans, nstart = 25,
                    K.max = 10, B = 50)
print(gap_stat, method = "firstmax")
## Clustering Gap statistic ["clusGap"] from call:
## clusGap(x = df, FUNcluster = kmeans, K.max = 10, B = 50, nstart = 25)
## B=50 simulated reference sets, k = 1..10; spaceH0="scaledPCA"
##  --> Number of clusters (method 'firstmax'): 4
##           logW   E.logW       gap     SE.sim
##  [1,] 3.458369 3.640154 0.1817845 0.04422857
##  [2,] 3.135112 3.372283 0.2371717 0.03559601
##  [3,] 2.977727 3.233771 0.2560446 0.03749193
##  [4,] 2.826221 3.119172 0.2929511 0.04067348
##  [5,] 2.738868 3.019965 0.2810969 0.04185469
##  [6,] 2.666967 2.930002 0.2630347 0.04105040
##  [7,] 2.609895 2.852152 0.2422572 0.04184725
##  [8,] 2.539156 2.778562 0.2394054 0.04292750
##  [9,] 2.468162 2.711752 0.2435901 0.04344197
## [10,] 2.407265 2.647595 0.2403307 0.04548446
fviz_gap_stat(gap_stat)

set.seed(123)
final <- kmeans(df, 4, nstart = 25)
print(final)
## K-means clustering with 4 clusters of sizes 8, 13, 16, 13
## 
## Cluster means:
##       Murder    Assault   UrbanPop        Rape
## 1  1.4118898  0.8743346 -0.8145211  0.01927104
## 2 -0.9615407 -1.1066010 -0.9301069 -0.96676331
## 3 -0.4894375 -0.3826001  0.5758298 -0.26165379
## 4  0.6950701  1.0394414  0.7226370  1.27693964
## 
## Clustering vector:
##        Alabama         Alaska        Arizona       Arkansas     California 
##              1              4              4              1              4 
##       Colorado    Connecticut       Delaware        Florida        Georgia 
##              4              3              3              4              1 
##         Hawaii          Idaho       Illinois        Indiana           Iowa 
##              3              2              4              3              2 
##         Kansas       Kentucky      Louisiana          Maine       Maryland 
##              3              2              1              2              4 
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
##              3              4              2              1              4 
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey 
##              2              2              4              2              3 
##     New Mexico       New York North Carolina   North Dakota           Ohio 
##              4              4              1              2              3 
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
##              3              3              3              3              1 
##   South Dakota      Tennessee          Texas           Utah        Vermont 
##              2              1              4              3              2 
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming 
##              3              3              2              2              3 
## 
## Within cluster sum of squares by cluster:
## [1]  8.316061 11.952463 16.212213 19.922437
##  (between_SS / total_SS =  71.2 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
fviz_cluster(final, data = df)

USArrests %>%
  mutate(Cluster = final$cluster) %>%
  group_by(Cluster) %>%
  summarise_all("mean")
## # A tibble: 4 × 5
##   Cluster Murder Assault UrbanPop  Rape
##     <int>  <dbl>   <dbl>    <dbl> <dbl>
## 1       1  13.9    244.      53.8  21.4
## 2       2   3.6     78.5     52.1  12.2
## 3       3   5.66   139.      73.9  18.8
## 4       4  10.8    257.      76    33.2

Hierarchical Analysis in R

Data Preparation

df <- USArrests
df <- na.omit(df) #remove missing values
df <- scale(df) #standardizes data (mean 0 and sd 1)
head(df)
##                Murder   Assault   UrbanPop         Rape
## Alabama    1.24256408 0.7828393 -0.5209066 -0.003416473
## Alaska     0.50786248 1.1068225 -1.2117642  2.484202941
## Arizona    0.07163341 1.4788032  0.9989801  1.042878388
## Arkansas   0.23234938 0.2308680 -1.0735927 -0.184916602
## California 0.27826823 1.2628144  1.7589234  2.067820292
## Colorado   0.02571456 0.3988593  0.8608085  1.864967207

Hierarchical Clustering

# Dissimilarity matrix
d <- dist(df, method = "euclidean")

# Hierarchical clustering using Complete Linkage
hc1 <- hclust(d, method = "complete" )

# Plot the obtained dendrogram
plot(hc1, cex = 0.6, hang = -1)

# Compute with agnes
hc2 <- agnes(df, method = "complete")

# Agglomerative coefficient
hc2$ac
## [1] 0.8531583
# methods to assess
m <- c("average", "single", "complete", "ward")
names(m) <- c("average", "single", "complete", "ward")

# function to compute coefficient
ac <- function(x) {
  agnes(df, method = x)$ac
}

map_dbl(m, ac)
##   average    single  complete      ward 
## 0.7379371 0.6276128 0.8531583 0.9346210
hc3 <- agnes(df, method = "ward")
pltree(hc3, cex = 0.6, hang = -1, main = "Dendrogram of agnes")

# compute divisive hierarchical clustering
hc4 <- diana(df)

# Divise coefficient; amount of clustering structure found
hc4$dc
## [1] 0.8514345
## [1] 0.8514345

# plot dendrogram
pltree(hc4, cex = 0.6, hang = -1, main = "Dendrogram of diana")

Working with Dendograms

# Ward's method
hc5 <- hclust(d, method = "ward.D2" )

# Cut tree into 4 groups
sub_grp <- cutree(hc5, k = 4)

# Number of members in each cluster
table(sub_grp)
## sub_grp
##  1  2  3  4 
##  7 12 19 12
USArrests %>%
  mutate(cluster = sub_grp) %>%
  head
##            Murder Assault UrbanPop Rape cluster
## Alabama      13.2     236       58 21.2       1
## Alaska       10.0     263       48 44.5       2
## Arizona       8.1     294       80 31.0       2
## Arkansas      8.8     190       50 19.5       3
## California    9.0     276       91 40.6       2
## Colorado      7.9     204       78 38.7       2
plot(hc5, cex = 0.6)
rect.hclust(hc5, k = 4, border = 2:5)

fviz_cluster(list(data = df, cluster = sub_grp))

# Cut agnes() tree into 4 groups
hc_a <- agnes(df, method = "ward")
cutree(as.hclust(hc_a), k = 4)
##        Alabama         Alaska        Arizona       Arkansas     California 
##              1              2              2              3              2 
##       Colorado    Connecticut       Delaware        Florida        Georgia 
##              2              3              3              2              1 
##         Hawaii          Idaho       Illinois        Indiana           Iowa 
##              3              4              2              3              4 
##         Kansas       Kentucky      Louisiana          Maine       Maryland 
##              3              3              1              4              2 
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
##              3              2              4              1              3 
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey 
##              4              4              2              4              3 
##     New Mexico       New York North Carolina   North Dakota           Ohio 
##              2              2              1              4              3 
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
##              3              3              3              3              1 
##   South Dakota      Tennessee          Texas           Utah        Vermont 
##              4              1              2              3              4 
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming 
##              3              3              4              4              3
# Cut diana() tree into 4 groups
hc_d <- diana(df)
cutree(as.hclust(hc_d), k = 4)
##        Alabama         Alaska        Arizona       Arkansas     California 
##              1              2              2              3              2 
##       Colorado    Connecticut       Delaware        Florida        Georgia 
##              2              3              3              2              1 
##         Hawaii          Idaho       Illinois        Indiana           Iowa 
##              3              4              2              3              4 
##         Kansas       Kentucky      Louisiana          Maine       Maryland 
##              3              4              1              4              2 
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
##              3              2              4              1              2 
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey 
##              4              4              2              4              3 
##     New Mexico       New York North Carolina   North Dakota           Ohio 
##              2              2              1              4              3 
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
##              3              3              3              3              1 
##   South Dakota      Tennessee          Texas           Utah        Vermont 
##              4              1              2              3              4 
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming 
##              3              3              4              4              3
# Compute distance matrix
res.dist <- dist(df, method = "euclidean")

# Compute 2 hierarchical clusterings
hc1 <- hclust(res.dist, method = "complete")
hc2 <- hclust(res.dist, method = "ward.D2")

# Create two dendrograms
dend1 <- as.dendrogram (hc1)
dend2 <- as.dendrogram (hc2)

tanglegram(dend1, dend2)

dend_list <- dendlist(dend1, dend2)

tanglegram(dend1, dend2,
  highlight_distinct_edges = FALSE, # Turn-off dashed lines
  common_subtrees_color_lines = FALSE, # Turn-off line colors
  common_subtrees_color_branches = TRUE, # Color common branches 
  main = paste("entanglement =", round(entanglement(dend_list), 2))
  )

Determining Optimal Clusters

fviz_nbclust(df, FUN = hcut, method = "wss")

fviz_nbclust(df, FUN = hcut, method = "silhouette")

gap_stat <- clusGap(df, FUN = hcut, nstart = 25, K.max = 10, B = 50)
fviz_gap_stat(gap_stat)