Introduction
Questions
Variation
Visualizing distributions
diamonds %>%
ggplot(aes(x = cut)) +
geom_bar()

diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Typical values
diamonds %>%
# Filter out diamonds > 3 carat
filter(carat < 3) %>%
# Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)

faithful %>%
ggplot(aes(eruptions)) +
geom_histogram(binwidth = 0.25)

Unusual values
diamonds %>%
ggplot(aes(y)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

diamonds %>%
ggplot(aes(y)) +
geom_histogram() +
coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Missing values
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
# Plot
ggplot(aes(x =x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

Covariation
A categorical and continuous variable
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()

Two categorical variables
diamonds %>%
count(color, cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) +
geom_tile()

Two continous variables
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()

diamonds %>%
filter(carat <3) %>%
ggplot(aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))

Patterns and models
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds2 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds2 %>%
ggplot(aes(carat, resid)) +
geom_point()

diamonds2 %>%
ggplot(aes(cut, resid)) +
geom_boxplot()
