TAS Descriptive statistics

We will be going through

Step 1: Loading Packages

library(tidyverse)
library(readxl)
library(ggplot2)
library (reshape2)
library(writexl)
library(lme4)

Step 2: Import the data

TAS_data_long_format_age <- read_excel("TAS_data_long_format_age.xlsx")

Step 3: Preview the data

view(TAS_data_long_format_age)
head(TAS_data_long_format_age)
## # A tibble: 6 × 42
##     TAS TAS05 TAS09 TAS15 `1968 Interview Number` `Person Number` Gender
##   <dbl> <dbl> <dbl> <dbl>                   <dbl>           <dbl>  <dbl>
## 1     2     1     1    NA                       4             180      2
## 2     2     1     1    NA                       5              32      2
## 3     2     1     1    NA                       6              34      1
## 4     2     1     1    NA                      14              30      1
## 5     1     1    NA    NA                      18              38      2
## 6     2     1     1    NA                      47              34      2
## # ℹ 35 more variables: `Individual is sample` <dbl>, `Year ID Number` <dbl>,
## #   `Sequence Number` <dbl>, `Relationship to Head` <dbl>,
## #   `Release Number` <dbl>, B5A <dbl>, B5D <dbl>, B6C <dbl>, C2D <dbl>,
## #   C2E <dbl>, C2F <dbl>, D2D3_month <dbl>, D2D3_year <dbl>,
## #   E1_1st_mention <dbl>, E1_2nd_mention <dbl>, E1_3rd_mention <dbl>, E3 <dbl>,
## #   G1 <dbl>, G2_month <dbl>, G2_year <dbl>, G10 <dbl>, G11 <dbl>, G30A <dbl>,
## #   G41A <dbl>, G41B <dbl>, G41C <dbl>, G41H <dbl>, G41P <dbl>, H1 <dbl>, …

2005 & 2015

Step 4: Regression (2005 & 2015)

Filter the data (2005 & 2015)

Long_format_2005_2015 <-  TAS_data_long_format_age %>% filter(year==2005| year==2015) %>% filter(Age_18_graduate< 50) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
knitr::kable(head(Long_format_2005_2015[, 1:43]))
TAS TAS05 TAS09 TAS15 1968 Interview Number Person Number Gender Individual is sample Year ID Number Sequence Number Relationship to Head Release Number B5A B5D B6C C2D C2E C2F D2D3_month D2D3_year E1_1st_mention E1_2nd_mention E1_3rd_mention E3 G1 G2_month G2_year G10 G11 G30A G41A G41B G41C G41H G41P H1 L7_1st_mention L7_2nd_mention L7_3rd_mention Age_17_graduate Age_18_graduate year year_new
2 1 1 NA 5 32 2 2 624 3 30 5 5 5 5 7 7 7 0 0 1 7 0 0 1 5 2002 1 1 7 7 6 6 7 5 2 1 0 0 20 21 2005 -1
2 1 1 NA 6 34 1 2 1202 51 30 5 2 2 6 1 1 1 0 0 7 0 0 5 1 5 2002 1 1 0 7 5 7 5 3 1 1 0 0 20 21 2005 -1
2 1 1 NA 14 30 1 2 736 51 30 5 4 4 4 2 1 1 0 0 2 0 0 0 1 6 2003 1 5 6 5 6 6 5 5 2 1 0 0 19 20 2005 -1
1 1 NA NA 18 38 2 2 5647 3 98 5 3 4 3 4 2 2 0 0 3 7 0 5 1 6 2004 1 5 6 5 5 5 7 5 2 1 0 0 18 19 2005 -1
2 1 1 NA 47 34 2 2 2516 3 30 5 4 5 6 4 5 2 0 0 1 0 0 0 1 5 2005 5 0 6 3 6 4 7 4 1 1 0 0 17 18 2005 -1
2 1 1 NA 53 35 2 2 1392 3 33 5 4 5 5 3 1 1 0 0 1 0 0 0 1 6 2002 1 1 7 6 7 7 7 5 1 1 0 0 20 21 2005 -1

B5A: Respobility for self

B5A_Regression_05_15 <- lm(B5A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
B5A_Regression_05_15
## 
## Call:
## lm(formula = B5A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  0.15546                   0.17709                   0.49385  
## Age_18_graduate:year_new  
##                 -0.02312
summary(B5A_Regression_05_15)
## 
## Call:
## lm(formula = B5A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8066 -0.6659  0.3341  0.7345  4.1172 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.15546    0.44715   0.348    0.728    
## Age_18_graduate           0.17709    0.02280   7.768 1.62e-14 ***
## year_new                  0.49385    0.44715   1.104    0.270    
## Age_18_graduate:year_new -0.02312    0.02280  -1.014    0.311    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.108 on 1296 degrees of freedom
## Multiple R-squared:  0.1075, Adjusted R-squared:  0.1054 
## F-statistic: 52.01 on 3 and 1296 DF,  p-value: < 2.2e-16

B5D: Managing own money

B5D_Regression_05_15 <- lm(B5D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
B5D_Regression_05_15
## 
## Call:
## lm(formula = B5D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 3.045448                  0.069444                 -0.128830  
## Age_18_graduate:year_new  
##                 0.006945
summary(B5D_Regression_05_15)
## 
## Call:
## lm(formula = B5D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6736 -0.3617  0.4028  0.6320  0.7084 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.045448   0.360022   8.459  < 2e-16 ***
## Age_18_graduate           0.069444   0.018357   3.783 0.000162 ***
## year_new                 -0.128830   0.360022  -0.358 0.720522    
## Age_18_graduate:year_new  0.006945   0.018357   0.378 0.705238    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8921 on 1296 degrees of freedom
## Multiple R-squared:  0.03595,    Adjusted R-squared:  0.03372 
## F-statistic: 16.11 on 3 and 1296 DF,  p-value: 2.77e-10

B6C: Money management skills

B6C_Regression_05_15 <- lm(B6C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
B6C_Regression_05_15
## 
## Call:
## lm(formula = B6C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  6.31388                  -0.05142                  -0.98854  
## Age_18_graduate:year_new  
##                  0.05295
summary(B6C_Regression_05_15)
## 
## Call:
## lm(formula = B6C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4236 -0.4236 -0.2149  0.7851  1.9939 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               6.31388    0.54701  11.543   <2e-16 ***
## Age_18_graduate          -0.05142    0.02789  -1.844   0.0654 .  
## year_new                 -0.98854    0.54701  -1.807   0.0710 .  
## Age_18_graduate:year_new  0.05295    0.02789   1.899   0.0578 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.355 on 1296 degrees of freedom
## Multiple R-squared:  0.003719,   Adjusted R-squared:  0.001413 
## F-statistic: 1.613 on 3 and 1296 DF,  p-value: 0.1846

C2D: Worry about expenses

C2D_Regression_05_15 <- lm(C2D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
C2D_Regression_05_15
## 
## Call:
## lm(formula = C2D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 3.570786                  0.002447                  0.115152  
## Age_18_graduate:year_new  
##                -0.008905
summary(C2D_Regression_05_15)
## 
## Call:
## lm(formula = C2D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6940 -1.5632 -0.5116  1.4303  3.4820 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.570786   0.743479   4.803 1.75e-06 ***
## Age_18_graduate           0.002447   0.037909   0.065    0.949    
## year_new                  0.115152   0.743479   0.155    0.877    
## Age_18_graduate:year_new -0.008905   0.037909  -0.235    0.814    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.842 on 1296 degrees of freedom
## Multiple R-squared:  0.001239,   Adjusted R-squared:  -0.001073 
## F-statistic: 0.536 on 3 and 1296 DF,  p-value: 0.6577

C2E: Worry about future job

C2E_Regression_05_15 <- lm(C2E ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
C2E_Regression_05_15
## 
## Call:
## lm(formula = C2E ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  4.25107                  -0.03511                   0.63715  
## Age_18_graduate:year_new  
##                 -0.03063
summary(C2E_Regression_05_15)
## 
## Call:
## lm(formula = C2E ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7051 -1.5333 -0.4421  1.4757  3.8208 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.25107    0.77492   5.486 4.94e-08 ***
## Age_18_graduate          -0.03511    0.03951  -0.889    0.374    
## year_new                  0.63715    0.77492   0.822    0.411    
## Age_18_graduate:year_new -0.03063    0.03951  -0.775    0.438    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.92 on 1296 degrees of freedom
## Multiple R-squared:  0.004197,   Adjusted R-squared:  0.001892 
## F-statistic: 1.821 on 3 and 1296 DF,  p-value: 0.1415

C2F: Discouraged about future

C2F_Regression_05_15 <- lm(C2F ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
C2F_Regression_05_15
## 
## Call:
## lm(formula = C2F ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 3.178093                 -0.007862                  0.235240  
## Age_18_graduate:year_new  
##                -0.009527
summary(C2F_Regression_05_15)
## 
## Call:
## lm(formula = C2F ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1003 -1.0829 -0.0829  1.0255  4.0272 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.178093   0.699068   4.546 5.97e-06 ***
## Age_18_graduate          -0.007862   0.035644  -0.221    0.825    
## year_new                  0.235240   0.699068   0.337    0.737    
## Age_18_graduate:year_new -0.009527   0.035644  -0.267    0.789    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.732 on 1296 degrees of freedom
## Multiple R-squared:  0.0007165,  Adjusted R-squared:  -0.001597 
## F-statistic: 0.3098 on 3 and 1296 DF,  p-value: 0.8183

D2D3_month: Widowed – Month

D2D3_month_Regression_05_15 <- lm(D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
D2D3_month_Regression_05_15
## 
## Call:
## lm(formula = D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 -0.95734                   0.04986                  -0.95734  
## Age_18_graduate:year_new  
##                  0.04986
summary(D2D3_month_Regression_05_15)
## 
## Call:
## lm(formula = D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.276 -0.279  0.000  0.000 97.422 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)              -0.95734    1.12349  -0.852    0.394
## Age_18_graduate           0.04986    0.05728   0.870    0.384
## year_new                 -0.95734    1.12349  -0.852    0.394
## Age_18_graduate:year_new  0.04986    0.05728   0.870    0.384
## 
## Residual standard error: 2.784 on 1296 degrees of freedom
## Multiple R-squared:  0.005955,   Adjusted R-squared:  0.003654 
## F-statistic: 2.588 on 3 and 1296 DF,  p-value: 0.05161

D2D3_year: Widowed – Year

D2D3_year_Regression_05_15 <- lm(D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
D2D3_year_Regression_05_15
## 
## Call:
## lm(formula = D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  -64.331                     3.544                   -64.331  
## Age_18_graduate:year_new  
##                    3.544
summary(D2D3_year_Regression_05_15)
## 
## Call:
## lm(formula = D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
##  -98.17  -27.29    0.00    0.00 1993.80 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)               -64.331     63.219  -1.018    0.309
## Age_18_graduate             3.544      3.223   1.100    0.272
## year_new                  -64.331     63.219  -1.018    0.309
## Age_18_graduate:year_new    3.544      3.223   1.100    0.272
## 
## Residual standard error: 156.7 on 1296 degrees of freedom
## Multiple R-squared:  0.01232,    Adjusted R-squared:  0.01003 
## F-statistic: 5.389 on 3 and 1296 DF,  p-value: 0.001096

E1_1st_mention: Employment Status – 1st mention

E1_1st_mention_Regression_05_15 <- lm(E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
E1_1st_mention_Regression_05_15
## 
## Call:
## lm(formula = E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  6.24591                  -0.15753                   0.56949  
## Age_18_graduate:year_new  
##                 -0.05012
summary(E1_1st_mention_Regression_05_15)
## 
## Call:
## lm(formula = E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.743 -2.078 -1.040  3.257  5.791 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               6.24591    1.01639   6.145 1.06e-09 ***
## Age_18_graduate          -0.15753    0.05182  -3.040  0.00242 ** 
## year_new                  0.56949    1.01639   0.560  0.57537    
## Age_18_graduate:year_new -0.05012    0.05182  -0.967  0.33371    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.519 on 1296 degrees of freedom
## Multiple R-squared:  0.07769,    Adjusted R-squared:  0.07556 
## F-statistic: 36.39 on 3 and 1296 DF,  p-value: < 2.2e-16

E1_2nd_mention Employment Status – 2nd mention

E1_2nd_mention_Regression_05_15 <- lm(E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
E1_2nd_mention_Regression_05_15
## 
## Call:
## lm(formula = E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  3.73127                  -0.09728                   3.12859  
## Age_18_graduate:year_new  
##                 -0.14665
summary(E1_2nd_mention_Regression_05_15)
## 
## Call:
## lm(formula = E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4691 -1.5900 -1.4913 -0.2737  6.4824 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               3.73127    1.13387   3.291  0.00103 **
## Age_18_graduate          -0.09728    0.05781  -1.683  0.09268 . 
## year_new                  3.12859    1.13387   2.759  0.00588 **
## Age_18_graduate:year_new -0.14665    0.05781  -2.537  0.01131 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.81 on 1296 degrees of freedom
## Multiple R-squared:  0.02591,    Adjusted R-squared:  0.02366 
## F-statistic: 11.49 on 3 and 1296 DF,  p-value: 1.942e-07

E1_3rd_mention: Employment Status – 3rd mention

E1_3rd_mention_Regression_05_15 <- lm(E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
E1_3rd_mention_Regression_05_15
## 
## Call:
## lm(formula = E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                -0.052551                  0.003901                  0.041526  
## Age_18_graduate:year_new  
##                -0.002452
summary(E1_3rd_mention_Regression_05_15)
## 
## Call:
## lm(formula = E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.0520 -0.0266 -0.0216 -0.0194  6.9791 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)              -0.052551   0.150479  -0.349    0.727
## Age_18_graduate           0.003901   0.007673   0.508    0.611
## year_new                  0.041526   0.150479   0.276    0.783
## Age_18_graduate:year_new -0.002452   0.007673  -0.320    0.749
## 
## Residual standard error: 0.3729 on 1296 degrees of freedom
## Multiple R-squared:  0.0003313,  Adjusted R-squared:  -0.001983 
## F-statistic: 0.1432 on 3 and 1296 DF,  p-value: 0.9341

E3 Regression: Work for money

E3_Regression_05_15 <- lm(E3 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
E3_Regression_05_15
## 
## Call:
## lm(formula = E3 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  5.52955                  -0.19787                  -0.27701  
## Age_18_graduate:year_new  
##                  0.01148
summary(E3_Regression_05_15)
## 
## Call:
## lm(formula = E3 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.038 -1.711 -1.038  2.962  6.962 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.52955    0.88351   6.259 5.27e-10 ***
## Age_18_graduate          -0.19787    0.04505  -4.392 1.21e-05 ***
## year_new                 -0.27701    0.88351  -0.314    0.754    
## Age_18_graduate:year_new  0.01148    0.04505   0.255    0.799    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.189 on 1296 degrees of freedom
## Multiple R-squared:  0.0415, Adjusted R-squared:  0.03928 
## F-statistic: 18.71 on 3 and 1296 DF,  p-value: 7.011e-12

G1: Education Status

G1_Regression_05_15 <- lm(G1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G1_Regression_05_15
## 
## Call:
## lm(formula = G1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                0.9945187                 0.0002896                -0.0054813  
## Age_18_graduate:year_new  
##                0.0002896
summary(G1_Regression_05_15)
## 
## Call:
## lm(formula = G1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.00757 -0.00178  0.00000  0.00000  0.99706 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.9945187  0.0111933  88.849   <2e-16 ***
## Age_18_graduate           0.0002896  0.0005707   0.507    0.612    
## year_new                 -0.0054813  0.0111933  -0.490    0.624    
## Age_18_graduate:year_new  0.0002896  0.0005707   0.507    0.612    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02774 on 1296 degrees of freedom
## Multiple R-squared:  0.00217,    Adjusted R-squared:  -0.0001397 
## F-statistic: 0.9395 on 3 and 1296 DF,  p-value: 0.4208

G2_month: High School Graduation – month

G2_month_Regression_05_15 <- lm(G2_month ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G2_month_Regression_05_15
## 
## Call:
## lm(formula = G2_month ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                7.9424898                -0.1000563                 0.2539945  
## Age_18_graduate:year_new  
##               -0.0001595
summary(G2_month_Regression_05_15)
## 
## Call:
## lm(formula = G2_month ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.393 -0.890 -0.393  0.209 93.110 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               7.9424898  2.1226291   3.742 0.000191 ***
## Age_18_graduate          -0.1000563  0.1082288  -0.924 0.355404    
## year_new                  0.2539945  2.1226291   0.120 0.904771    
## Age_18_graduate:year_new -0.0001595  0.1082288  -0.001 0.998825    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.26 on 1296 degrees of freedom
## Multiple R-squared:  0.002203,   Adjusted R-squared:  -0.0001068 
## F-statistic: 0.9538 on 3 and 1296 DF,  p-value: 0.4138

G2_year: High School Graduation – year

G2_year_Regression_05_15 <- lm(G2_year ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G2_year_Regression_05_15
## 
## Call:
## lm(formula = G2_year ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                2.028e+03                -1.000e+00                 5.000e+00  
## Age_18_graduate:year_new  
##               -9.311e-13
summary(G2_year_Regression_05_15)
## 
## Call:
## lm(formula = G2_year ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -8.160e-12 -7.100e-13  0.000e+00  0.000e+00  7.314e-10 
## 
## Coefficients:
##                            Estimate Std. Error    t value Pr(>|t|)    
## (Intercept)               2.028e+03  8.224e-12  2.466e+14   <2e-16 ***
## Age_18_graduate          -1.000e+00  4.193e-13 -2.385e+12   <2e-16 ***
## year_new                  5.000e+00  8.224e-12  6.080e+11   <2e-16 ***
## Age_18_graduate:year_new -9.311e-13  4.193e-13 -2.220e+00   0.0266 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.038e-11 on 1296 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 2.028e+25 on 3 and 1296 DF,  p-value: < 2.2e-16

G10: Attended College

G10_Regression_05_15 <- lm(G10 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G10_Regression_05_15
## 
## Call:
## lm(formula = G10 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                   6.0227                   -0.2096                   -0.3622  
## Age_18_graduate:year_new  
##                   0.0247
summary(G10_Regression_05_15)
## 
## Call:
## lm(formula = G10 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1469 -1.1469 -0.6983 -0.4071  7.0673 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               6.02272    0.67882   8.872  < 2e-16 ***
## Age_18_graduate          -0.20963    0.03461  -6.057 1.82e-09 ***
## year_new                 -0.36221    0.67882  -0.534    0.594    
## Age_18_graduate:year_new  0.02470    0.03461   0.714    0.476    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.682 on 1296 degrees of freedom
## Multiple R-squared:  0.05172,    Adjusted R-squared:  0.04952 
## F-statistic: 23.56 on 3 and 1296 DF,  p-value: 7.525e-15

G11: Attending college

G11_Regression_05_15 <- lm(G11 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G11_Regression_05_15
## 
## Call:
## lm(formula = G11 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 -5.07994                   0.34009                  -0.74350  
## Age_18_graduate:year_new  
##                  0.04566
summary(G11_Regression_05_15)
## 
## Call:
## lm(formula = G11 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3631 -1.1200 -0.5057  1.1798  4.0366 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              -5.07994    0.70973  -7.158 1.37e-12 ***
## Age_18_graduate           0.34009    0.03619   9.398  < 2e-16 ***
## year_new                 -0.74350    0.70973  -1.048    0.295    
## Age_18_graduate:year_new  0.04566    0.03619   1.262    0.207    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.759 on 1296 degrees of freedom
## Multiple R-squared:  0.2172, Adjusted R-squared:  0.2154 
## F-statistic: 119.9 on 3 and 1296 DF,  p-value: < 2.2e-16

G30A: Likelihood of well-paying job

G30A_Regression_05_15 <- lm(G30A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G30A_Regression_05_15
## 
## Call:
## lm(formula = G30A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 5.908619                 -0.007911                  0.258439  
## Age_18_graduate:year_new  
##                 0.003302
summary(G30A_Regression_05_15)
## 
## Call:
## lm(formula = G30A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4484 -0.4371  0.5516  0.9343  1.6077 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.908619   0.634683   9.310   <2e-16 ***
## Age_18_graduate          -0.007911   0.032361  -0.244    0.807    
## year_new                  0.258439   0.634683   0.407    0.684    
## Age_18_graduate:year_new  0.003302   0.032361   0.102    0.919    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.573 on 1296 degrees of freedom
## Multiple R-squared:  0.03903,    Adjusted R-squared:  0.0368 
## F-statistic: 17.54 on 3 and 1296 DF,  p-value: 3.627e-11

G41A: Importance of job status

G41A_Regression_05_15 <- lm(G41A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41A_Regression_05_15
## 
## Call:
## lm(formula = G41A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  5.58414                  -0.02707                  -0.50731  
## Age_18_graduate:year_new  
##                  0.01674
summary(G41A_Regression_05_15)
## 
## Call:
## lm(formula = G41A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3030 -0.8806  0.1504  1.1736  4.1504 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.58414    0.68628   8.137 9.43e-16 ***
## Age_18_graduate          -0.02707    0.03499  -0.773    0.439    
## year_new                 -0.50731    0.68628  -0.739    0.460    
## Age_18_graduate:year_new  0.01674    0.03499   0.478    0.632    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.701 on 1296 degrees of freedom
## Multiple R-squared:  0.01348,    Adjusted R-squared:  0.01119 
## F-statistic: 5.902 on 3 and 1296 DF,  p-value: 0.0005338

G41B: Importance of decision-making

G41B_Regression_05_15 <- lm(G41B ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41B_Regression_05_15
## 
## Call:
## lm(formula = G41B ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 5.119286                  0.028469                  0.021745  
## Age_18_graduate:year_new  
##                -0.005185
summary(G41B_Regression_05_15)
## 
## Call:
## lm(formula = G41B ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7697 -0.7033  0.2630  1.2294  3.3467 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.119286   0.493473  10.374   <2e-16 ***
## Age_18_graduate           0.028469   0.025161   1.131    0.258    
## year_new                  0.021745   0.493473   0.044    0.965    
## Age_18_graduate:year_new -0.005185   0.025161  -0.206    0.837    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.223 on 1296 degrees of freedom
## Multiple R-squared:  0.003559,   Adjusted R-squared:  0.001252 
## F-statistic: 1.543 on 3 and 1296 DF,  p-value: 0.2017

G41C: Importance of challenging work

G41C_Regression_05_15 <- lm(G41C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41C_Regression_05_15
## 
## Call:
## lm(formula = G41C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                   9.7681                   -0.2160                    4.7219  
## Age_18_graduate:year_new  
##                  -0.2397
summary(G41C_Regression_05_15)
## 
## Call:
## lm(formula = G41C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.8326 -0.8326  0.4456  1.1674  7.0908 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               9.76805    0.65631  14.883  < 2e-16 ***
## Age_18_graduate          -0.21599    0.03346  -6.454 1.53e-10 ***
## year_new                  4.72185    0.65631   7.195 1.06e-12 ***
## Age_18_graduate:year_new -0.23966    0.03346  -7.162 1.33e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.626 on 1296 degrees of freedom
## Multiple R-squared:  0.2466, Adjusted R-squared:  0.2448 
## F-statistic: 141.4 on 3 and 1296 DF,  p-value: < 2.2e-16

G41H: Importance of healthcare benefits

G41H_Regression_05_15 <- lm(G41H ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41H_Regression_05_15
## 
## Call:
## lm(formula = G41H ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 6.372599                 -0.003932                  0.007573  
## Age_18_graduate:year_new  
##                -0.002837
summary(G41H_Regression_05_15)
## 
## Call:
## lm(formula = G41H ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3453 -0.3442  0.6547  0.7484  2.7687 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               6.372599   0.425545  14.975   <2e-16 ***
## Age_18_graduate          -0.003932   0.021698  -0.181    0.856    
## year_new                  0.007573   0.425545   0.018    0.986    
## Age_18_graduate:year_new -0.002837   0.021698  -0.131    0.896    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.054 on 1296 degrees of freedom
## Multiple R-squared:  0.002776,   Adjusted R-squared:  0.0004676 
## F-statistic: 1.203 on 3 and 1296 DF,  p-value: 0.3075

G41P: Importance of job central to identity

G41P_Regression_05_15 <- lm(G41P ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41P_Regression_05_15
## 
## Call:
## lm(formula = G41P ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 4.564503                  0.019148                 -0.123732  
## Age_18_graduate:year_new  
##                 0.002194
summary(G41P_Regression_05_15)
## 
## Call:
## lm(formula = G41P ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0443 -0.9934  0.0684  1.0897  4.0897 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.564503   0.640747   7.124 1.74e-12 ***
## Age_18_graduate           0.019148   0.032670   0.586    0.558    
## year_new                 -0.123732   0.640747  -0.193    0.847    
## Age_18_graduate:year_new  0.002194   0.032670   0.067    0.946    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.588 on 1296 degrees of freedom
## Multiple R-squared:  0.002054,   Adjusted R-squared:  -0.0002561 
## F-statistic: 0.8891 on 3 and 1296 DF,  p-value: 0.4461

H1: General Health

H1_Regression_05_15 <- lm(H1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
H1_Regression_05_15
## 
## Call:
## lm(formula = H1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  1.95956                   0.01105                  -0.17487  
## Age_18_graduate:year_new  
##                  0.01162
summary(H1_Regression_05_15)
## 
## Call:
## lm(formula = H1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5101 -0.3741 -0.1243  0.7676  6.7166 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.95956    0.37858   5.176 2.62e-07 ***
## Age_18_graduate           0.01105    0.01930   0.573    0.567    
## year_new                 -0.17487    0.37858  -0.462    0.644    
## Age_18_graduate:year_new  0.01162    0.01930   0.602    0.547    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9381 on 1296 degrees of freedom
## Multiple R-squared:  0.008008,   Adjusted R-squared:  0.005712 
## F-statistic: 3.487 on 3 and 1296 DF,  p-value: 0.01528

L7_1st_mention: Race – 1st mention

L7_1st_mention_Regression_05_15 <- lm(L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
L7_1st_mention_Regression_05_15
## 
## Call:
## lm(formula = L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                1.6603344                 0.0058137                -0.0626579  
## Age_18_graduate:year_new  
##                0.0001903
summary(L7_1st_mention_Regression_05_15)
## 
## Call:
## lm(formula = L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8523 -0.8242 -0.7118  0.2582  7.2943 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               1.6603344  0.6019138   2.758  0.00589 **
## Age_18_graduate           0.0058137  0.0306904   0.189  0.84979   
## year_new                 -0.0626579  0.6019138  -0.104  0.91711   
## Age_18_graduate:year_new  0.0001903  0.0306904   0.006  0.99505   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.492 on 1296 degrees of freedom
## Multiple R-squared:  0.001304,   Adjusted R-squared:  -0.001008 
## F-statistic: 0.564 on 3 and 1296 DF,  p-value: 0.6388

L7_2nd_mention: Race – 2nd mention

L7_2nd_mention_Regression_05_15 <- lm(L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
L7_2nd_mention_Regression_05_15
## 
## Call:
## lm(formula = L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 0.318149                 -0.006156                  0.269649  
## Age_18_graduate:year_new  
##                -0.007451
summary(L7_2nd_mention_Regression_05_15)
## 
## Call:
## lm(formula = L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3429 -0.2884 -0.0757 -0.0731  8.7252 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)               0.318149   0.356995   0.891    0.373
## Age_18_graduate          -0.006156   0.018202  -0.338    0.735
## year_new                  0.269649   0.356995   0.755    0.450
## Age_18_graduate:year_new -0.007451   0.018202  -0.409    0.682
## 
## Residual standard error: 0.8846 on 1296 degrees of freedom
## Multiple R-squared:  0.01642,    Adjusted R-squared:  0.01415 
## F-statistic: 7.214 on 3 and 1296 DF,  p-value: 8.405e-05

L7_3rd_mention: Race – 3rd mention

L7_3rd_mention_Regression_05_15 <- lm(L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
L7_3rd_mention_Regression_05_15
## 
## Call:
## lm(formula = L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                -0.046459                  0.003499                  0.095283  
## Age_18_graduate:year_new  
##                -0.004114
summary(L7_3rd_mention_Regression_05_15)
## 
## Call:
## lm(formula = L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.0377 -0.0353 -0.0328 -0.0029  6.9647 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)              -0.046459   0.127344  -0.365    0.715
## Age_18_graduate           0.003499   0.006493   0.539    0.590
## year_new                  0.095283   0.127344   0.748    0.454
## Age_18_graduate:year_new -0.004114   0.006493  -0.634    0.526
## 
## Residual standard error: 0.3156 on 1296 degrees of freedom
## Multiple R-squared:  0.002663,   Adjusted R-squared:  0.0003547 
## F-statistic: 1.154 on 3 and 1296 DF,  p-value: 0.3263

2005 & 2009

Step 5: Regression (2005 & 2009)

Filter the data (2005 & 2009)

Long_format_2005_2009 <-  TAS_data_long_format_age %>% filter(TAS05 == 1 & TAS09 ==1) %>% filter(Age_18_graduate< 50) %>% unite("TAS_ID", c("1968 Interview Number", "Person Number")) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
knitr::kable(head(Long_format_2005_2009[, 1:42]))
TAS TAS05 TAS09 TAS15 TAS_ID Gender Individual is sample Year ID Number Sequence Number Relationship to Head Release Number B5A B5D B6C C2D C2E C2F D2D3_month D2D3_year E1_1st_mention E1_2nd_mention E1_3rd_mention E3 G1 G2_month G2_year G10 G11 G30A G41A G41B G41C G41H G41P H1 L7_1st_mention L7_2nd_mention L7_3rd_mention Age_17_graduate Age_18_graduate year year_new
2 1 1 NA 5_32 2 2 624 3 30 5 5 5 5 7 7 7 0 0 1 7 0 0 1 5 2002 1 1 7 7 6 6 7 5 2 1 0 0 20 21 2005 -1
2 1 1 NA 6_34 1 2 1202 51 30 5 2 2 6 1 1 1 0 0 7 0 0 5 1 5 2002 1 1 0 7 5 7 5 3 1 1 0 0 20 21 2005 -1
2 1 1 NA 14_30 1 2 736 51 30 5 4 4 4 2 1 1 0 0 2 0 0 0 1 6 2003 1 5 6 5 6 6 5 5 2 1 0 0 19 20 2005 -1
2 1 1 NA 47_34 2 2 2516 3 30 5 4 5 6 4 5 2 0 0 1 0 0 0 1 5 2005 5 0 6 3 6 4 7 4 1 1 0 0 17 18 2005 -1
2 1 1 NA 53_35 2 2 1392 3 33 5 4 5 5 3 1 1 0 0 1 0 0 0 1 6 2002 1 1 7 6 7 7 7 5 1 1 0 0 20 21 2005 -1
2 1 1 NA 53_36 2 2 1616 3 30 5 4 5 7 4 1 1 0 0 6 0 0 1 1 6 2005 1 5 7 7 7 5 7 6 2 1 0 0 17 18 2005 -1

B5A: Responsibility for self

B5A_Regression_05_09 <- lmer(B5A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
B5A_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: B5A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 3154.08
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.5598  
##  Residual             0.9117  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   1.7049                    0.1126                    2.3318  
## Age_18_graduate:year_new  
##                  -0.1010
summary(B5A_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: B5A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 3154.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3007 -0.4818  0.1902  0.6032  1.8125 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.3133   0.5598  
##  Residual             0.8313   0.9117  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               1.70494    0.95041   1.794
## Age_18_graduate           0.11265    0.04087   2.756
## year_new                  2.33176    1.09860   2.122
## Age_18_graduate:year_new -0.10101    0.05159  -1.958
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.678 -0.678       
## Ag_18_grd:_ -0.585  0.586 -0.992

B5D: Managing own money

B5D_Regression_05_09 <- lmer(B5D ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
B5D_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: B5D ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 2556.905
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.3082  
##  Residual             0.7357  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 4.505982                  0.009648                  1.274845  
## Age_18_graduate:year_new  
##                -0.049783
summary(B5D_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: B5D ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 2556.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5218 -0.4056  0.2098  0.6399  1.4148 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.09499  0.3082  
##  Residual             0.54125  0.7357  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               4.505982   0.710308   6.344
## Age_18_graduate           0.009648   0.030547   0.316
## year_new                  1.274845   0.880385   1.448
## Age_18_graduate:year_new -0.049783   0.041386  -1.203
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.712 -0.711       
## Ag_18_grd:_ -0.633  0.633 -0.993

B6C: Money management skills

B6C_Regression_05_09 <- lmer(B6C ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
B6C_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: B6C ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 3542.164
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.9431  
##  Residual             0.9615  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  5.66943                  -0.01262                  -1.42473  
## Age_18_graduate:year_new  
##                  0.08129
summary(B6C_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: B6C ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 3542.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.09781 -0.50078  0.03584  0.56357  2.39691 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.8894   0.9431  
##  Residual             0.9245   0.9615  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               5.66943    1.18545   4.783
## Age_18_graduate          -0.01262    0.05098  -0.247
## year_new                 -1.42473    1.17360  -1.214
## Age_18_graduate:year_new  0.08129    0.05494   1.479
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.618 -0.617       
## Ag_18_grd:_ -0.492  0.493 -0.987

C2D: Worry about expenses

C2D_Regression_05_09 <- lmer(C2D ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
C2D_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2D ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4312.391
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.047   
##  Residual             1.532   
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   7.3809                   -0.1487                    4.0750  
## Age_18_graduate:year_new  
##                  -0.1667
summary(C2D_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2D ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4312.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.07121 -0.67266 -0.04062  0.68227  2.15894 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.096    1.047   
##  Residual             2.346    1.532   
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               7.38089    1.64577   4.485
## Age_18_graduate          -0.14870    0.07078  -2.101
## year_new                  4.07497    1.85011   2.203
## Age_18_graduate:year_new -0.16675    0.08684  -1.920
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.666 -0.665       
## Ag_18_grd:_ -0.567  0.568 -0.991

C2E: Worry about future job

C2E_Regression_05_09 <- lmer(C2E ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
C2E_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2E ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4340.572
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.162   
##  Residual             1.503   
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   7.0530                   -0.1439                    3.3269  
## Age_18_graduate:year_new  
##                  -0.1320
summary(C2E_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2E ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4340.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.96230 -0.69129 -0.03401  0.69871  2.19158 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.351    1.162   
##  Residual             2.260    1.503   
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               7.05301    1.68229   4.193
## Age_18_graduate          -0.14389    0.07235  -1.989
## year_new                  3.32690    1.82167   1.826
## Age_18_graduate:year_new -0.13197    0.08545  -1.544
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.651 -0.650       
## Ag_18_grd:_ -0.544  0.544 -0.990

C2F: Discouraged about future

C2F_Regression_05_09 <- lmer(C2F ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
C2F_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2F ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4091.376
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.066   
##  Residual             1.321   
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   6.1188                   -0.1258                    3.5870  
## Age_18_graduate:year_new  
##                  -0.1496
summary(C2F_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2F ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4091.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0673 -0.6399 -0.1171  0.5601  2.6563 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.137    1.066   
##  Residual             1.746    1.321   
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               6.11881    1.50217   4.073
## Age_18_graduate          -0.12583    0.06460  -1.948
## year_new                  3.58700    1.60325   2.237
## Age_18_graduate:year_new -0.14959    0.07518  -1.990
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.645 -0.644       
## Ag_18_grd:_ -0.535  0.536 -0.990

D2D3_month: Widowed – month

D2D3_month_Regression_05_09 <- lmer(D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
D2D3_month_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 1366.727
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.000061
##  Residual             0.453916
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 0.155328                 -0.004539                  0.155328  
## Age_18_graduate:year_new  
##                -0.004539
summary(D2D3_month_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 1366.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.1622 -0.1122 -0.0822  0.0000 26.3344 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  TAS_ID   (Intercept) 3.721e-09 0.000061
##  Residual             2.060e-01 0.453916
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               0.155328   0.404610   0.384
## Age_18_graduate          -0.004539   0.017401  -0.261
## year_new                  0.155328   0.538715   0.288
## Age_18_graduate:year_new -0.004539   0.025344  -0.179
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.751 -0.750       
## Ag_18_grd:_ -0.686  0.687 -0.994

D2D3_year: Widowed – year

D2D3_year_Regression_05_09 <- lmer(D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
## boundary (singular) fit: see help('isSingular')
D2D3_year_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 13299.9
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept)   0.0   
##  Residual             122.4   
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   145.13                     -5.61                    145.13  
## Age_18_graduate:year_new  
##                    -5.61  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
summary(D2D3_year_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 13299.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.3607 -0.1316  0.0000  0.0000 16.3026 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept)     0      0.0   
##  Residual             14983    122.4   
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               145.129    109.108   1.330
## Age_18_graduate            -5.610      4.692  -1.196
## year_new                  145.129    145.271   0.999
## Age_18_graduate:year_new   -5.610      6.834  -0.821
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.751 -0.750       
## Ag_18_grd:_ -0.686  0.687 -0.994
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

E1_1st_mention: Employment Status – 1st mention

E1_1st_mention_Regression_05_09 <- lmer(E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
E1_1st_mention_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4999.493
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.7132  
##  Residual             2.3946  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  7.01515                  -0.20699                   0.54147  
## Age_18_graduate:year_new  
##                 -0.06406
summary(E1_1st_mention_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4999.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2630 -0.6618 -0.3933  1.1513  2.3054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.5086   0.7132  
##  Residual             5.7341   2.3946  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               7.01515    2.22650   3.151
## Age_18_graduate          -0.20699    0.09575  -2.162
## year_new                  0.54147    2.85485   0.190
## Age_18_graduate:year_new -0.06406    0.13426  -0.477
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.730 -0.729       
## Ag_18_grd:_ -0.657  0.658 -0.994

E1_2nd_mention: Employment Status – 2nd mention

E1_2nd_mention_Regression_05_09 <- lmer(E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
E1_2nd_mention_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 5201.966
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.7677  
##  Residual             2.6377  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   6.2083                   -0.2058                    5.3040  
## Age_18_graduate:year_new  
##                  -0.2367
summary(E1_2nd_mention_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 5202
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.8752 -0.5170 -0.4777 -0.1993  2.4088 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.5893   0.7677  
##  Residual             6.9572   2.6377  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)                6.2083     2.4480   2.536
## Age_18_graduate           -0.2058     0.1053  -1.955
## year_new                   5.3040     3.1440   1.687
## Age_18_graduate:year_new  -0.2367     0.1479  -1.601
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.731 -0.730       
## Ag_18_grd:_ -0.658  0.659 -0.994

E1_3rd_mention: Employment Status – 3rd mention

E1_3rd_mention_Regression_05_09 <- lmer(E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
## boundary (singular) fit: see help('isSingular')
E1_3rd_mention_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 478.0027
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.0000  
##  Residual             0.2992  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                -0.024585                  0.001138                  0.082147  
## Age_18_graduate:year_new  
##                -0.006068  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
summary(E1_3rd_mention_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 478
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.1972 -0.1009 -0.0129 -0.0053 23.2960 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.00000  0.0000  
##  Residual             0.08951  0.2992  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)              -0.024585   0.266686  -0.092
## Age_18_graduate           0.001138   0.011469   0.099
## year_new                  0.082147   0.355078   0.231
## Age_18_graduate:year_new -0.006068   0.016705  -0.363
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.751 -0.750       
## Ag_18_grd:_ -0.686  0.687 -0.994
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

E3: Work for money

E3_Regression_05_09 <- lmer(E3 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
E3_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: E3 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4709.245
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.7859  
##  Residual             2.0398  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  4.39455                  -0.13948                  -1.37494  
## Age_18_graduate:year_new  
##                  0.06563
summary(E3_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: E3 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4709.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.1081 -0.6651 -0.4100  1.1438  3.0796 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.6177   0.7859  
##  Residual             4.1608   2.0398  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               4.39455    1.94710   2.257
## Age_18_graduate          -0.13948    0.08374  -1.666
## year_new                 -1.37494    2.43826  -0.564
## Age_18_graduate:year_new  0.06563    0.11464   0.573
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.717 -0.717       
## Ag_18_grd:_ -0.640  0.641 -0.993

G1: Education Status [cant generate summary]

G1_Regression_05_09 <- lmer(G1 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Problem with Hessian check (infinite or missing values?)
G1_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G1 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: -Inf
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0       
##  Residual             0       
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                        1                         0                         0  
## Age_18_graduate:year_new  
##                        0  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings

G2_month: High School Graduation – Month

G2_month_Regression_05_09 <- lmer(G2_month ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G2_month_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G2_month ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 5453.352
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.5183  
##  Residual             3.0430  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  3.90228                   0.07306                  -4.41760  
## Age_18_graduate:year_new  
##                  0.20598
summary(G2_month_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G2_month ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 5453.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5792 -0.2055 -0.1424  0.1070 29.7528 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.2686   0.5183  
##  Residual             9.2601   3.0430  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               3.90228    2.75146   1.418
## Age_18_graduate           0.07306    0.11833   0.617
## year_new                 -4.41760    3.61723  -1.221
## Age_18_graduate:year_new  0.20598    0.17016   1.211
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.744 -0.743       
## Ag_18_grd:_ -0.676  0.677 -0.994

G2_year: High School Graduation – Year

G2_year_Regression_05_09 <- lmer(G2_year ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 13.0297 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
G2_year_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G2_year ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: -52798.07
## Random effects:
##  Groups   Name        Std.Dev. 
##  TAS_ID   (Intercept) 4.146e-13
##  Residual             4.182e-12
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                2.027e+03                -1.000e+00                 4.000e+00  
## Age_18_graduate:year_new  
##                7.490e-12  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 2 lme4 warnings
summary(G2_year_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G2_year ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: -52798.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6431 -0.7069  0.2719  0.5438  5.2200 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  TAS_ID   (Intercept) 1.719e-25 4.146e-13
##  Residual             1.749e-23 4.182e-12
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                            Estimate Std. Error    t value
## (Intercept)               2.027e+03  3.746e-12  5.412e+14
## Age_18_graduate          -1.000e+00  1.611e-13 -6.208e+12
## year_new                  4.000e+00  4.966e-12  8.056e+11
## Age_18_graduate:year_new  7.490e-12  2.336e-13  3.206e+01
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.749 -0.748       
## Ag_18_grd:_ -0.682  0.683 -0.994
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 13.0297 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

G10: Attended college

G10_Regression_05_09 <- lmer(G10 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G10_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G10 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 3778.445
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.2655  
##  Residual             0.9673  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  3.87117                  -0.09284                  -3.33952  
## Age_18_graduate:year_new  
##                  0.18346
summary(G10_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G10 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 3778.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2822 -0.3147 -0.1337 -0.0303  4.7554 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.6014   1.2655  
##  Residual             0.9357   0.9673  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               3.87117    1.38495   2.795
## Age_18_graduate          -0.09284    0.05956  -1.559
## year_new                 -3.33952    1.19289  -2.800
## Age_18_graduate:year_new  0.18346    0.05561   3.299
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.578 -0.577       
## Ag_18_grd:_ -0.421  0.421 -0.982

G11: Attending college

G11_Regression_05_09 <- lmer(G11 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G11_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G11 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4363.736
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.6589  
##  Residual             1.7378  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 -2.58440                   0.23585                   2.47460  
## Age_18_graduate:year_new  
##                 -0.09394
summary(G11_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G11 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4363.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8943 -0.7558 -0.2446  1.0181  2.2748 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.4342   0.6589  
##  Residual             3.0199   1.7378  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)              -2.58440    1.65549  -1.561
## Age_18_graduate           0.23585    0.07120   3.313
## year_new                  2.47460    2.07685   1.192
## Age_18_graduate:year_new -0.09394    0.09765  -0.962
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.718 -0.717       
## Ag_18_grd:_ -0.641  0.642 -0.993

G30A: Likelihood of well-paying job

G30A_Regression_05_09 <- lmer(G30A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G30A_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G30A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4090.941
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.4731  
##  Residual             1.5617  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 5.718250                  0.008129                 -0.343537  
## Age_18_graduate:year_new  
##                 0.041186
summary(G30A_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G30A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4090.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2839 -0.2906  0.2903  0.6121  1.1887 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.2239   0.4731  
##  Residual             2.4388   1.5617  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               5.718250   1.454073   3.933
## Age_18_graduate           0.008129   0.062534   0.130
## year_new                 -0.343537   1.862100  -0.184
## Age_18_graduate:year_new  0.041186   0.087569   0.470
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.729 -0.728       
## Ag_18_grd:_ -0.656  0.657 -0.994

G41A: Importance of job status

G41A_Regression_05_09 <- lmer(G41A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G41A_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4075.203
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.238   
##  Residual             1.221   
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   7.8987                   -0.1409                    2.3370  
## Age_18_graduate:year_new  
##                  -0.1241
summary(G41A_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4075.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5449 -0.4868  0.1208  0.5924  2.2387 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.534    1.238   
##  Residual             1.490    1.221   
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               7.89869    1.52885   5.166
## Age_18_graduate          -0.14086    0.06575  -2.142
## year_new                  2.33700    1.49157   1.567
## Age_18_graduate:year_new -0.12413    0.06980  -1.778
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.613 -0.612       
## Ag_18_grd:_ -0.484  0.485 -0.987

G41B: Importance of decision-making

G41B_Regression_05_09 <- lmer(G41B ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G41B_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41B ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 3314.77
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.6485  
##  Residual             0.9625  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  6.80032                  -0.05037                   1.99033  
## Age_18_graduate:year_new  
##                 -0.09823
summary(G41B_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41B ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 3314.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0723 -0.5259  0.1336  0.6782  2.2419 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.4206   0.6485  
##  Residual             0.9264   0.9625  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               6.80032    1.02987   6.603
## Age_18_graduate          -0.05037    0.04429  -1.137
## year_new                  1.99033    1.16229   1.712
## Age_18_graduate:year_new -0.09823    0.05456  -1.800
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.668 -0.667       
## Ag_18_grd:_ -0.570  0.570 -0.991

G41C: Importance of challending work

G41C_Regression_05_09 <- lmer(G41C ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G41C_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41C ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 3298.521
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.6993  
##  Residual             0.9286  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  5.82546                  -0.01050                   1.51722  
## Age_18_graduate:year_new  
##                 -0.07307
summary(G41C_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41C ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 3298.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7948 -0.5121  0.0450  0.6634  2.1203 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.4890   0.6993  
##  Residual             0.8624   0.9286  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               5.82546    1.02975   5.657
## Age_18_graduate          -0.01050    0.04428  -0.237
## year_new                  1.51722    1.12459   1.349
## Age_18_graduate:year_new -0.07307    0.05276  -1.385
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.654 -0.653       
## Ag_18_grd:_ -0.549  0.550 -0.990

G41H: Importance of healthcare benefits

G41H_Regression_05_09 <- lmer(G41H ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G41H_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41H ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 3129.926
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.5887  
##  Residual             0.8854  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  7.12845                  -0.03713                   1.23106  
## Age_18_graduate:year_new  
##                 -0.06056
summary(G41H_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41H ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 3129.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7721 -0.4114  0.3761  0.4914  1.9963 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.3465   0.5887  
##  Residual             0.7839   0.8854  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               7.12845    0.94361   7.554
## Age_18_graduate          -0.03713    0.04058  -0.915
## year_new                  1.23106    1.06879   1.152
## Age_18_graduate:year_new -0.06056    0.05018  -1.207
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.669 -0.669       
## Ag_18_grd:_ -0.572  0.573 -0.991

G41P: Importance of job central to identity

G41P_Regression_05_09 <- lmer(G41P ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
G41P_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41P ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 4048.821
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.003   
##  Residual             1.316   
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   8.4519                   -0.1741                    3.7624  
## Age_18_graduate:year_new  
##                  -0.1916
summary(G41P_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41P ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 4048.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7108 -0.5486  0.0846  0.5894  2.1389 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.005    1.003   
##  Residual             1.732    1.316   
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               8.45187    1.46543   5.768
## Age_18_graduate          -0.17409    0.06302  -2.762
## year_new                  3.76244    1.59442   2.360
## Age_18_graduate:year_new -0.19162    0.07480  -2.562
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.652 -0.652       
## Ag_18_grd:_ -0.547  0.547 -0.990

H1: General Health

H1_Regression_05_09 <- lmer(H1 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
H1_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: H1 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 2687.195
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.5807  
##  Residual             0.6696  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 1.971502                  0.009647                 -0.316061  
## Age_18_graduate:year_new  
##                 0.017559
summary(H1_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: H1 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 2687.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.08257 -0.62790 -0.05667  0.46953  3.09080 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.3372   0.5807  
##  Residual             0.4483   0.6696  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               1.971502   0.782789   2.519
## Age_18_graduate           0.009647   0.033664   0.287
## year_new                 -0.316061   0.814130  -0.388
## Age_18_graduate:year_new  0.017559   0.038157   0.460
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.635 -0.635       
## Ag_18_grd:_ -0.520  0.520 -0.989

L7_1st_mention: Race – 1st mention

L7_1st_mention_Regression_05_09 <- lmer(L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
L7_1st_mention_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 3710.662
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.014   
##  Residual             1.044   
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  3.11145                  -0.06353                   0.97237  
## Age_18_graduate:year_new  
##                 -0.04780
summary(L7_1st_mention_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 3710.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6960 -0.3286 -0.1203  0.1395  4.8303 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.028    1.014   
##  Residual             1.090    1.044   
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               3.11145    1.28133   2.428
## Age_18_graduate          -0.06353    0.05510  -1.153
## year_new                  0.97237    1.27395   0.763
## Age_18_graduate:year_new -0.04780    0.05965  -0.801
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.619 -0.619       
## Ag_18_grd:_ -0.494  0.495 -0.987

L7_2nd_mention: Race – 2nd mention

L7_2nd_mention_Regression_05_09 <- lmer(L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
L7_2nd_mention_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 2020.621
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.5622  
##  Residual             0.4205  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  0.68811                  -0.02221                   0.73246  
## Age_18_graduate:year_new  
##                 -0.02862
summary(L7_2nd_mention_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 2020.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4515 -0.1850 -0.0447  0.0526  9.9576 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.3161   0.5622  
##  Residual             0.1768   0.4205  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               0.68811    0.60970   1.129
## Age_18_graduate          -0.02221    0.02622  -0.847
## year_new                  0.73246    0.51900   1.411
## Age_18_graduate:year_new -0.02862    0.02419  -1.183
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.575 -0.575       
## Ag_18_grd:_ -0.415  0.416 -0.982

L7_3rd_mention: Race – 3rd mention

L7_3rd_mention_Regression_05_09 <- lmer(L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)
L7_3rd_mention_Regression_05_09
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## REML criterion at convergence: 1000.921
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.1658  
##  Residual             0.3481  
## Number of obs: 1070, groups:  TAS_ID, 547
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                0.0635190                -0.0005072                 0.1562729  
## Age_18_graduate:year_new  
##               -0.0057423
summary(L7_3rd_mention_Regression_05_09)
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2005_2009
## 
## REML criterion at convergence: 1000.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1444 -0.1227 -0.1149  0.0070 16.8497 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.0275   0.1658  
##  Residual             0.1212   0.3481  
## Number of obs: 1070, groups:  TAS_ID, 547
## 
## Fixed effects:
##                            Estimate Std. Error t value
## (Intercept)               0.0635190  0.3432082   0.185
## Age_18_graduate          -0.0005072  0.0147599  -0.034
## year_new                  0.1562729  0.4174168   0.374
## Age_18_graduate:year_new -0.0057423  0.0196176  -0.293
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.999              
## year_new     0.702 -0.702       
## Ag_18_grd:_ -0.619  0.620 -0.993

2009 & 2015

Step 6: Regression (2009 & 2015)

Filter the data (2009 & 2015)

Long_format_2009_2015 <-  TAS_data_long_format_age %>% filter(TAS09 == 1 & TAS15 ==1) %>% filter(Age_18_graduate< 50) %>% unite("TAS_ID", c("1968 Interview Number", "Person Number")) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
knitr::kable(head(Long_format_2009_2015[, 1:42]))
TAS TAS05 TAS09 TAS15 TAS_ID Gender Individual is sample Year ID Number Sequence Number Relationship to Head Release Number B5A B5D B6C C2D C2E C2F D2D3_month D2D3_year E1_1st_mention E1_2nd_mention E1_3rd_mention E3 G1 G2_month G2_year G10 G11 G30A G41A G41B G41C G41H G41P H1 L7_1st_mention L7_2nd_mention L7_3rd_mention Age_17_graduate Age_18_graduate year year_new
2 NA 1 1 4_39 2 2 13 3 60 3 4 5 4 6 7 5 0 0 1 0 0 0 1 5 2008 1 5 5 6 5 2 7 6 2 1 0 0 18 19 2009 0
2 NA 1 1 7_40 2 2 3836 2 22 3 2 2 7 7 3 4 0 0 6 0 0 5 1 6 2007 5 0 5 5 2 5 6 5 3 1 0 0 19 20 2009 0
2 NA 1 1 7_41 1 2 576 2 30 3 3 4 7 4 5 4 0 0 3 0 0 5 1 5 2009 5 0 7 5 6 5 7 5 2 1 0 0 17 18 2009 0
2 NA 1 1 10_34 2 2 3276 3 30 3 4 5 6 4 1 1 0 0 1 0 0 0 1 6 2008 1 5 7 7 5 4 7 5 2 2 0 0 18 19 2009 0
2 NA 1 1 14_31 2 2 713 1 10 3 5 5 7 4 4 4 0 0 1 0 0 0 1 6 2005 5 0 6 5 7 6 7 2 4 1 0 0 21 22 2009 0
2 NA 1 1 22_30 2 2 907 2 30 3 5 1 4 3 1 1 0 0 1 0 0 0 1 5 2006 1 1 7 6 6 6 6 6 1 2 0 0 20 21 2009 0

B5A: Responsibility for self

B5A_Regression_09_15 <- lmer(B5A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
B5A_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: B5A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2013.711
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.6405  
##  Residual             0.9671  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 -0.06784                   0.18196                   8.18856  
## Age_18_graduate:year_new  
##                 -0.32077
summary(B5A_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: B5A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2013.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9738 -0.5167  0.1773  0.5697  4.1633 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.4103   0.6405  
##  Residual             0.9353   0.9671  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)              -0.06784    0.90650  -0.075
## Age_18_graduate           0.18196    0.04684   3.885
## year_new                  8.18856    2.13773   3.830
## Age_18_graduate:year_new -0.32077    0.08942  -3.587
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.307  0.306       
## Ag_18_grd:_  0.413 -0.413 -0.992

B5D: Managing own money

B5D_Regression_09_15 <- lmer(B5D ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
B5D_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: B5D ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 1713.707
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.5721  
##  Residual             0.7241  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   2.1596                    0.1158                    2.6653  
## Age_18_graduate:year_new  
##                  -0.1170
summary(B5D_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: B5D ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 1713.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4300 -0.3061  0.3472  0.5441  3.9452 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.3273   0.5721  
##  Residual             0.5243   0.7241  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               2.15960    0.71918   3.003
## Age_18_graduate           0.11581    0.03716   3.117
## year_new                  2.66531    1.64125   1.624
## Age_18_graduate:year_new -0.11695    0.06860  -1.705
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.285  0.284       
## Ag_18_grd:_  0.397 -0.397 -0.992

B6C: Money Management Skills

B6C_Regression_09_15 <- lmer(B6C ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
B6C_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: B6C ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2094.817
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.8232  
##  Residual             0.9399  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 5.387665                  0.005874                 -0.023141  
## Age_18_graduate:year_new  
##                -0.009996
summary(B6C_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: B6C ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2094.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.89809 -0.32653  0.06953  0.70376  2.15810 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.6776   0.8232  
##  Residual             0.8834   0.9399  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               5.387665   0.971474   5.546
## Age_18_graduate           0.005874   0.050196   0.117
## year_new                 -0.023141   2.163457  -0.011
## Age_18_graduate:year_new -0.009996   0.090383  -0.111
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.271  0.270       
## Ag_18_grd:_  0.387 -0.387 -0.991

C2D: Worry about expenses

C2D_Regression_09_15 <- lmer(C2D ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
C2D_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2D ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2661.31
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.7479  
##  Residual             1.7593  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  4.13061                  -0.02107                   2.39751  
## Age_18_graduate:year_new  
##                 -0.10212
summary(C2D_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2D ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2661.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5395 -0.8228  0.1197  0.6316  1.8222 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.5594   0.7479  
##  Residual             3.0951   1.7593  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               4.13061    1.49865   2.756
## Age_18_graduate          -0.02107    0.07743  -0.272
## year_new                  2.39751    3.70021   0.648
## Age_18_graduate:year_new -0.10212    0.15511  -0.658
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.349  0.349       
## Ag_18_grd:_  0.446 -0.447 -0.993

C2E: Worry about future job

C2E_Regression_09_15 <- lmer(C2E ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
C2E_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2E ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2655.352
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.8696  
##  Residual             1.6967  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  4.39942                  -0.03992                  -1.23603  
## Age_18_graduate:year_new  
##                  0.03854
summary(C2E_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2E ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2655.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.66199 -0.76592 -0.07729  0.63441  2.15336 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.7561   0.8696  
##  Residual             2.8788   1.6967  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               4.39942    1.49336   2.946
## Age_18_graduate          -0.03992    0.07716  -0.517
## year_new                 -1.23603    3.63453  -0.340
## Age_18_graduate:year_new  0.03854    0.15223   0.253
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.334  0.333       
## Ag_18_grd:_  0.434 -0.434 -0.993

C2F: Discouraged about future

C2F_Regression_09_15 <- lmer(C2F ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
C2F_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2F ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2486.009
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.030   
##  Residual             1.336   
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 3.233585                 -0.008496                  3.266891  
## Age_18_graduate:year_new  
##                -0.137321
summary(C2F_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: C2F ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2486
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.88719 -0.50994 -0.03786  0.44157  2.54331 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.061    1.030   
##  Residual             1.786    1.336   
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               3.233585   1.315383   2.458
## Age_18_graduate          -0.008496   0.067966  -0.125
## year_new                  3.266891   3.017656   1.083
## Age_18_graduate:year_new -0.137321   0.126136  -1.089
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.288  0.288       
## Ag_18_grd:_  0.399 -0.399 -0.992

D2D3_month: Widowed – month

D2D3_month_Regression_09_15 <- lmer(D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
D2D3_month_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 3583.659
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.384   
##  Residual             3.679   
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 -0.76268                   0.04214                   3.42146  
## Age_18_graduate:year_new  
##                 -0.11063
summary(D2D3_month_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## D2D3_month ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 3583.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.5086 -0.0291 -0.0091  0.0010 23.1727 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept)  1.914   1.384   
##  Residual             13.538   3.679   
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)              -0.76268    3.08276  -0.247
## Age_18_graduate           0.04214    0.15928   0.265
## year_new                  3.42146    7.66266   0.447
## Age_18_graduate:year_new -0.11063    0.32138  -0.344
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.358  0.357       
## Ag_18_grd:_  0.453 -0.453 -0.993

D2D3_year: Widowed – year

D2D3_year_Regression_09_15 <- lmer(D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
D2D3_year_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 8628.343
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 109.8   
##  Residual             173.2   
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  -250.54                     13.56                    742.84  
## Age_18_graduate:year_new  
##                   -30.89
summary(D2D3_year_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: D2D3_year ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 8628.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5447 -0.1414 -0.0659  0.0263  8.7751 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 12045    109.8   
##  Residual             29981    173.2   
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)              -250.535    160.288  -1.563
## Age_18_graduate            13.564      8.282   1.638
## year_new                  742.839    380.507   1.952
## Age_18_graduate:year_new  -30.890     15.920  -1.940
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.312  0.312       
## Ag_18_grd:_  0.417 -0.417 -0.992

E1_1st_mention: Employment Status – 1st mention

E1_1st_mention_Regression_09_15 <- lmer(E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
E1_1st_mention_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 3731.303
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 4.081   
##  Residual             2.438   
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  16.6366                   -0.6734                  -16.3347  
## Age_18_graduate:year_new  
##                   0.7368
summary(E1_1st_mention_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 3731.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5611 -0.3066 -0.1614  0.3406 10.1922 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 16.655   4.081   
##  Residual              5.942   2.438   
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               16.6366     3.5772   4.651
## Age_18_graduate           -0.6734     0.1848  -3.643
## year_new                 -16.3347     6.1467  -2.657
## Age_18_graduate:year_new   0.7368     0.2569   2.868
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.175  0.174       
## Ag_18_grd:_  0.335 -0.335 -0.985

E1_2nd_mention: Employment Status – 2nd mention

E1_2nd_mention_Regression_09_15 <- lmer(E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
## boundary (singular) fit: see help('isSingular')
E1_2nd_mention_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 3196.76
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.0     
##  Residual             2.9     
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  -1.2021                    0.1804                    6.0135  
## Age_18_graduate:year_new  
##                  -0.3507  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
summary(E1_2nd_mention_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 3196.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.9544 -0.7677 -0.4229  1.0414  2.2818 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.000    0.0     
##  Residual             8.409    2.9     
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               -1.2021     2.2756  -0.528
## Age_18_graduate            0.1804     0.1176   1.535
## year_new                   6.0135     5.7824   1.040
## Age_18_graduate:year_new  -0.3507     0.2431  -1.443
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.394  0.393       
## Ag_18_grd:_  0.483 -0.484 -0.994
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

E1_3rd_mention: Employment Status – 3rd mention

E1_3rd_mention_Regression_09_15 <- lmer(E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.117773 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
E1_3rd_mention_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: -3927.888
## Random effects:
##  Groups   Name        Std.Dev. 
##  TAS_ID   (Intercept) 2.372e-01
##  Residual             1.998e-08
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                1.914e-02                 1.945e-14                -3.996e-14  
## Age_18_graduate:year_new  
##               -3.006e-15  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 2 lme4 warnings
summary(E1_3rd_mention_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: E1_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: -3927.9
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -2.432e-06 -6.940e-09 -6.940e-09 -6.940e-09  2.425e-06 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  TAS_ID   (Intercept) 5.627e-02 2.372e-01
##  Residual             3.994e-16 1.998e-08
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                            Estimate Std. Error t value
## (Intercept)               1.914e-02  1.325e-02   1.444
## Age_18_graduate           1.945e-14  4.501e-09   0.000
## year_new                 -3.996e-14  5.454e-08   0.000
## Age_18_graduate:year_new -3.006e-15  2.428e-09   0.000
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt  0.000              
## year_new     0.000  0.001       
## Ag_18_grd:_  0.000 -0.439 -0.898
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.117773 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

E3: Work for money

E3_Regression_09_15 <- lmer(E3 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
E3_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: E3 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2874.296
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.7818  
##  Residual             2.1165  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  12.1131                   -0.5193                   -9.5815  
## Age_18_graduate:year_new  
##                   0.4502
summary(E3_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: E3 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2874.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3757 -0.7181 -0.4758  0.9867  1.8863 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.6112   0.7818  
##  Residual             4.4798   2.1165  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)              12.11313    1.76954   6.845
## Age_18_graduate          -0.51929    0.09143  -5.680
## year_new                 -9.58148    4.40211  -2.177
## Age_18_graduate:year_new  0.45021    0.18464   2.438
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.359  0.358       
## Ag_18_grd:_  0.454 -0.454 -0.993

G1: Education Status

G1_Regression_09_15 <- lmer(G1 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
G1_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G1 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: -5568.38
## Random effects:
##  Groups   Name        Std.Dev. 
##  TAS_ID   (Intercept) 3.952e-02
##  Residual             4.665e-08
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                1.002e+00                 8.916e-13                 3.134e-13  
## Age_18_graduate:year_new  
##               -2.225e-13  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 2 lme4 warnings
summary(G1_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G1 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: -5568.4
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -4.199e-05 -6.700e-08 -6.700e-08 -6.700e-08  4.192e-05 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  TAS_ID   (Intercept) 1.562e-03 3.952e-02
##  Residual             2.176e-15 4.665e-08
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                            Estimate Std. Error t value
## (Intercept)               1.002e+00  1.735e-03   577.6
## Age_18_graduate           8.916e-13  1.051e-08     0.0
## year_new                  3.134e-13  1.273e-07     0.0
## Age_18_graduate:year_new -2.225e-13  5.667e-09     0.0
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt  0.000              
## year_new     0.000  0.001       
## Ag_18_grd:_  0.000 -0.439 -0.898
## optimizer (nloptwrap) convergence code: 0 (OK)
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 1 negative eigenvalues

G2_month: High School Graduation – month

G2_month_Regression_09_15 <- lmer(G2_month ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G2_month_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G2_month ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 1508.22
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.7448  
##  Residual             0.4009  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  5.82670                  -0.01153                  -1.49962  
## Age_18_graduate:year_new  
##                  0.05981
summary(G2_month_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G2_month ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 1508.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1487 -0.3340  0.0437  0.2263  3.5818 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.5547   0.7448  
##  Residual             0.1607   0.4009  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               5.82670    0.63022   9.245
## Age_18_graduate          -0.01153    0.03256  -0.354
## year_new                 -1.49962    1.02238  -1.467
## Age_18_graduate:year_new  0.05981    0.04277   1.398
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.160  0.159       
## Ag_18_grd:_  0.330 -0.330 -0.983

G2_year: High School Graduation – year

G2_year_Regression_09_15 <- lmer(G2_year ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 9.97306 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
G2_year_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G2_year ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: -32554.64
## Random effects:
##  Groups   Name        Std.Dev. 
##  TAS_ID   (Intercept) 6.724e-15
##  Residual             2.057e-12
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                2.027e+03                -1.000e+00                 6.000e+00  
## Age_18_graduate:year_new  
##               -9.269e-14  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 2 lme4 warnings
summary(G2_year_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G2_year ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: -32554.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.6378 -0.8844 -0.3316  0.5527  2.3215 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  TAS_ID   (Intercept) 4.521e-29 6.724e-15
##  Residual             4.231e-24 2.057e-12
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                            Estimate Std. Error    t value
## (Intercept)               2.027e+03  1.614e-12  1.256e+15
## Age_18_graduate          -1.000e+00  8.340e-14 -1.199e+13
## year_new                  6.000e+00  4.101e-12  1.463e+12
## Age_18_graduate:year_new -9.269e-14  1.724e-13 -5.380e-01
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.394  0.393       
## Ag_18_grd:_  0.483 -0.484 -0.994
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 9.97306 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

G10: Attended college

G10_Regression_09_15 <- lmer(G10 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G10_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G10 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2473.981
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.362   
##  Residual             1.062   
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   5.9449                   -0.2045                   -4.2356  
## Age_18_graduate:year_new  
##                   0.1753
summary(G10_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G10 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2474
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1759 -0.3768 -0.2616  0.1465  2.7746 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.856    1.362   
##  Residual             1.127    1.062   
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               5.94490    1.32393   4.490
## Age_18_graduate          -0.20453    0.06841  -2.990
## year_new                 -4.23561    2.58747  -1.637
## Age_18_graduate:year_new  0.17527    0.10804   1.622
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.215  0.214       
## Ag_18_grd:_  0.352 -0.352 -0.989

G11: Attending college

G11_Regression_09_15 <- lmer(G11 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G11_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G11 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2425.074
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.4575  
##  Residual             1.5190  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  -4.1480                    0.2786                    6.0329  
## Age_18_graduate:year_new  
##                  -0.2079
summary(G11_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G11 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2425.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.44385 -0.48949 -0.11978  0.08061  2.69330 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.2093   0.4575  
##  Residual             2.3075   1.5190  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)              -4.14802    1.24458  -3.333
## Age_18_graduate           0.27858    0.06431   4.332
## year_new                  6.03293    3.11954   1.934
## Age_18_graduate:year_new -0.20786    0.13093  -1.588
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.369  0.369       
## Ag_18_grd:_  0.462 -0.463 -0.993

G30A: Likelihood of well-paying job

G30A_Regression_09_15 <- lmer(G30A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G30A_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G30A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 1822.345
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.5407  
##  Residual             0.8388  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  6.27869                  -0.01197                  -1.19473  
## Age_18_graduate:year_new  
##                  0.05204
summary(G30A_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G30A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 1822.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6334 -0.6763 -0.0251  0.7889  1.4168 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.2923   0.5407  
##  Residual             0.7036   0.8388  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               6.27869    0.78013   8.048
## Age_18_graduate          -0.01197    0.04031  -0.297
## year_new                 -1.19473    1.84737  -0.647
## Age_18_graduate:year_new  0.05204    0.07729   0.673
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.310  0.310       
## Ag_18_grd:_  0.415 -0.416 -0.992

G41A: Importance of job status

G41A_Regression_09_15 <- lmer(G41A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G41A_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2455.006
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.220   
##  Residual             1.149   
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  10.4620                   -0.2750                   -3.1766  
## Age_18_graduate:year_new  
##                   0.1716
summary(G41A_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41A ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2455
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6610 -0.3938  0.1280  0.6089  2.2436 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.487    1.220   
##  Residual             1.320    1.149   
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)              10.46203    1.29530   8.077
## Age_18_graduate          -0.27499    0.06693  -4.109
## year_new                 -3.17658    2.72347  -1.166
## Age_18_graduate:year_new  0.17163    0.11372   1.509
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.243  0.243       
## Ag_18_grd:_  0.368 -0.369 -0.990

G41B: Importance of decision-making

G41B_Regression_09_15 <- lmer(G41B ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G41B_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41B ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2045.289
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.7573  
##  Residual             0.9281  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 7.381505                 -0.086371                  0.590214  
## Age_18_graduate:year_new  
##                -0.003998
summary(G41B_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41B ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2045.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2818 -0.4789  0.1679  0.6487  1.5267 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.5736   0.7573  
##  Residual             0.8613   0.9281  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               7.381505   0.932900   7.912
## Age_18_graduate          -0.086371   0.048203  -1.792
## year_new                  0.590214   2.113662   0.279
## Age_18_graduate:year_new -0.003998   0.088328  -0.045
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.281  0.280       
## Ag_18_grd:_  0.393 -0.394 -0.992

G41C: Importance of challenging work

G41C_Regression_09_15 <- lmer(G41C ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G41C_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41C ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2399.71
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.3403  
##  Residual             1.5169  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  6.29767                  -0.03876                  25.15586  
## Age_18_graduate:year_new  
##                 -1.14267
summary(G41C_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41C ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2399.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.6490 -0.4411  0.2511  0.8511  3.2143 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.1158   0.3403  
##  Residual             2.3009   1.5169  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               6.29767    1.21981   5.163
## Age_18_graduate          -0.03876    0.06303  -0.615
## year_new                 25.15586    3.07690   8.176
## Age_18_graduate:year_new -1.14267    0.12923  -8.842
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.379  0.379       
## Ag_18_grd:_  0.471 -0.472 -0.994

G41H: Importance of healthcare benefits

G41H_Regression_09_15 <- lmer(G41H ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G41H_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41H ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 1907.542
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.7324  
##  Residual             0.7963  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  7.13998                  -0.04078                  -1.42773  
## Age_18_graduate:year_new  
##                  0.05883
summary(G41H_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41H ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 1907.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8042 -0.2484  0.4041  0.4596  2.1474 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.5364   0.7324  
##  Residual             0.6342   0.7963  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               7.13998    0.84018   8.498
## Age_18_graduate          -0.04078    0.04341  -0.939
## year_new                 -1.42773    1.84672  -0.773
## Age_18_graduate:year_new  0.05883    0.07714   0.763
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.264  0.263       
## Ag_18_grd:_  0.382 -0.382 -0.991

G41P: Importance of job central to identity

G41P_Regression_09_15 <- lmer(G41P ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
G41P_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41P ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2447.521
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.091   
##  Residual             1.234   
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                   9.3552                   -0.2298                   -4.5067  
## Age_18_graduate:year_new  
##                   0.2375
summary(G41P_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: G41P ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2447.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3999 -0.4495  0.1099  0.5873  1.7524 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.190    1.091   
##  Residual             1.523    1.234   
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               9.35524    1.28054   7.306
## Age_18_graduate          -0.22984    0.06617  -3.474
## year_new                 -4.50671    2.84500  -1.584
## Age_18_graduate:year_new  0.23747    0.11885   1.998
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.270  0.269       
## Ag_18_grd:_  0.386 -0.386 -0.991

H1: General Health

H1_Regression_09_15 <- lmer(H1 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
H1_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: H1 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 1674.149
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.5133  
##  Residual             0.7283  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  0.76615                   0.07040                   1.31171  
## Age_18_graduate:year_new  
##                 -0.06162
summary(H1_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: H1 ~ Age_18_graduate + year_new + Age_18_graduate * year_new +  
##     (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 1674.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.65096 -0.61886 -0.09524  0.69298  2.67585 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.2635   0.5133  
##  Residual             0.5304   0.7283  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               0.76615    0.69569   1.101
## Age_18_graduate           0.07040    0.03595   1.959
## year_new                  1.31171    1.62368   0.808
## Age_18_graduate:year_new -0.06162    0.06790  -0.908
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.300  0.299       
## Ag_18_grd:_  0.407 -0.408 -0.992

L7_1st_mention: Race – 1st mention

L7_1st_mention_Regression_09_15 <- lmer(L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
L7_1st_mention_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 2344.999
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 1.150   
##  Residual             1.029   
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                  1.55658                   0.01921                   2.46626  
## Age_18_graduate:year_new  
##                 -0.11375
summary(L7_1st_mention_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_1st_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 2345
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7364 -0.3982 -0.0922  0.0392  4.5613 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 1.323    1.150   
##  Residual             1.059    1.029   
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                          Estimate Std. Error t value
## (Intercept)               1.55658    1.19062   1.307
## Age_18_graduate           0.01921    0.06152   0.312
## year_new                  2.46626    2.45811   1.003
## Age_18_graduate:year_new -0.11375    0.10263  -1.108
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.236  0.235       
## Ag_18_grd:_  0.364 -0.364 -0.990

L7_2nd_mention: Race – 2nd mention

L7_2nd_mention_Regression_09_15 <- lmer(L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
L7_2nd_mention_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: 1331.688
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.3920  
##  Residual             0.5575  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 0.322047                 -0.009658                  0.738235  
## Age_18_graduate:year_new  
##                -0.028423
summary(L7_2nd_mention_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_2nd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: 1331.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2017 -0.1663 -0.1431 -0.1345  9.2836 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.1537   0.3920  
##  Residual             0.3108   0.5575  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               0.322047   0.532137   0.605
## Age_18_graduate          -0.009658   0.027495  -0.351
## year_new                  0.738235   1.242455   0.594
## Age_18_graduate:year_new -0.028423   0.051956  -0.547
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.300  0.299       
## Ag_18_grd:_  0.407 -0.408 -0.992

L7_3rd_mention: Race – 3rd mention

L7_3rd_mention_Regression_09_15 <- lmer(L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)
## boundary (singular) fit: see help('isSingular')
L7_3rd_mention_Regression_09_15
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## REML criterion at convergence: -448.7136
## Random effects:
##  Groups   Name        Std.Dev.
##  TAS_ID   (Intercept) 0.0000  
##  Residual             0.1673  
## Number of obs: 643, groups:  TAS_ID, 517
## Fixed Effects:
##              (Intercept)           Age_18_graduate                  year_new  
##                 0.168675                 -0.008124                 -0.168675  
## Age_18_graduate:year_new  
##                 0.008124  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
summary(L7_3rd_mention_Regression_09_15)
## Linear mixed model fit by REML ['lmerMod']
## Formula: L7_3rd_mention ~ Age_18_graduate + year_new + Age_18_graduate *  
##     year_new + (1 | TAS_ID)
##    Data: Long_format_2009_2015
## 
## REML criterion at convergence: -448.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.1342 -0.0856 -0.0371  0.0000 17.8440 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  TAS_ID   (Intercept) 0.000    0.0000  
##  Residual             0.028    0.1673  
## Number of obs: 643, groups:  TAS_ID, 517
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               0.168675   0.131303   1.285
## Age_18_graduate          -0.008124   0.006784  -1.197
## year_new                 -0.168675   0.333650  -0.506
## Age_18_graduate:year_new  0.008124   0.014027   0.579
## 
## Correlation of Fixed Effects:
##             (Intr) Ag_18_ yer_nw
## Age_18_grdt -0.998              
## year_new    -0.394  0.393       
## Ag_18_grd:_  0.483 -0.484 -0.994
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

Gender (2005 and 2015)

B5A: Responsibility for self

lm(B5A ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = B5A ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##      4.0316      -0.1979       0.2047

B5D: Managing own money

lm(B5D ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = B5D ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     4.56326     -0.06503      0.08377

B6C: Money management skills

lm(B6C ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = B6C ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     5.38049     -0.03713      0.03260

C2D: Worry about expenses

lm(C2D ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = C2D ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     3.47868      0.08748     -0.06055

C2E: Worry about future job

lm(C2E ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = C2E ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     3.05783      0.29526     -0.01328

C2F: Discouraged about future

lm(C2F ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = C2F ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     2.70300      0.20155      0.03963

D2D3_month: Widowed – month

lm(D2D3_month ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = D2D3_month ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##      0.2999      -0.1260       0.1051

D2D3_year: Widowed – year

lm(D2D3_year ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = D2D3_year ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     10.1353       0.8905      11.5120

E1_1st_mention: Employment Status – 1st mention

lm(E1_1st_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = E1_1st_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##      2.7863       0.1345      -0.6118

E1_2nd_mention: Employment Status – 2nd mention

lm(E1_2nd_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = E1_2nd_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     0.99540      0.39807      0.05653

E1_3rd_mention: Employment Status – 3rd mention

lm(E1_3rd_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = E1_3rd_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##   2.432e-02   -9.528e-05   -4.208e-03

E3: Work for money

lm(E3 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = E3 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     1.44293      0.04979     -0.25139

G1: Education Status

lm(G1 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G1 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##   1.0029698   -0.0014904    0.0006658

G2_month: High School Graduation – month

lm(G2_month ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G2_month ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##      5.4648       0.2927       0.1542

G2_year: High School Graduation – year

lm(G2_year ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G2_year ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##   2.008e+03    5.850e-04    3.942e+00

G10: Attended college

lm(G10 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G10 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     2.20323     -0.27530     -0.09048

G11: Attending college

lm(G11 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G11 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     1.84819      0.02327      0.54527

G30A: Likelihood of well-paying job

lm(G30A ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G30A ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     5.67676      0.04921      0.31878

G41A: Importance of job status

lm(G41A ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G41A ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     4.91623      0.08934     -0.19273

G41B: Importance of decision-making

lm(G41B ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G41B ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     5.55242      0.09263     -0.05063

G41C: Importance of healthcare benefits

lm(G41C ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G41C ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     5.05046      0.04782     -0.37812

G41H: Importance of healthcare benefits

lm(G41H ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G41H ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##      5.8826       0.2689      -0.0457

G41P: Importance of job central to identity

lm(G41P ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = G41P ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     4.92900      0.01794     -0.05830

H1: General Health

lm(H1 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = H1 ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     1.96973      0.14983      0.07781

L7_1st_mention: Race – 1st mention

lm(L7_1st_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = L7_1st_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     1.84561     -0.04416     -0.05405

L7_2nd_mention: Race – 2nd mention

lm(L7_2nd_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = L7_2nd_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##     0.31758     -0.08751      0.10884

L7_3rd_mention: Race – 3rd mention

lm(L7_3rd_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Call:
## lm(formula = L7_3rd_mention ~ Gender + year_new, data = Long_format_2005_2015)
## 
## Coefficients:
## (Intercept)       Gender     year_new  
##   0.0188941    0.0009522    0.0153578