library(tidycensus)
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
census_api_key('26c91fd986e86c89e61cf1f5d94ccd109067a935')
## To install your API key for use in future sessions, run this function with `install = TRUE`.
fl_data<- get_acs(geography = 'county', variables = c(total_pop="B01003_001", white = "B02001_002", hispanic_pop = "B03003_003"), state = "FL", geometry = T, year = 2022)
## Getting data from the 2018-2022 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## | | | 0% | | | 1% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |==== | 6% | |===== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 10% | |======== | 12% | |========== | 15% | |=========== | 15% | |============= | 18% | |============= | 19% | |================ | 23% | |==================== | 28% | |==================== | 29% | |======================== | 34% | |======================== | 35% | |============================ | 39% | |=============================== | 44% | |=============================== | 45% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |===================================== | 53% | |====================================== | 54% | |======================================== | 57% | |=========================================== | 61% | |============================================ | 63% | |============================================= | 65% | |============================================== | 66% | |================================================ | 68% | |================================================= | 71% | |==================================================== | 75% | |====================================================== | 78% | |======================================================== | 79% | |========================================================= | 81% | |========================================================== | 83% | |============================================================= | 87% | |=============================================================== | 89% | |=============================================================== | 90% | |================================================================= | 92% | |======================================================================| 100%
fl_data <- fl_data |>
select(-moe)|>
pivot_wider(names_from = variable, values_from = estimate)|>
mutate(whitepct = (white / total_pop) * 100
)
library(dplyr)
fl_data <- fl_data %>%
mutate(percent_hispanic = (hispanic_pop/total_pop)) %>%
filter(!is.na(percent_hispanic))
library(sf)
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
fl_data <- fl_data %>%
filter(!is.na(percent_hispanic)) %>%
st_as_sf()
ggplot(data = fl_data) +
geom_sf(aes(fill = percent_hispanic)) +
scale_fill_viridis_c(option = "plasma", name = "% Hispanic") +
theme_minimal() +
labs(
title = "Percent Hispanic Population in Florida by County",
subtitle = "2018-2022 American Community Survey",
caption = "Source: U.S. Census Bureau"
)