Starter Code and Data
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#Question 1: Rename the “Film” column to “movie_title” and “Year” to “release_year”.
movies_renamed <- movies %>%
rename(movie_title = Film, release_year = Year)
head(movies_renamed)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
#Question 2: Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,
movies_selected <- movies_renamed %>%
select(movie_title, release_year, Genre, Profitability, )
head(movies_selected)
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
#Question 3: Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.
movies_mutated <- movies_renamed %>%
mutate(Profitability_millions = Profitability / 1e6)
head(movies_mutated)
## # A tibble: 6 × 9
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>, Profitability_millions <dbl>
#Question 4: Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))
movies_sorted <- movies_mutated %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(movies_sorted)
## # A tibble: 6 × 9
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animation Disney 89 2.90
## 2 Midnight in Paris Romence Sony 84 8.74
## 3 Enchanted Comedy Disney 80 4.01
## 4 Knocked Up Comedy Universal 83 6.64
## 5 Waitress Romance Independent 67 11.1
## 6 A Serious Man Drama Universal 64 4.38
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>, Profitability_millions <dbl>
#Question 5: Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.
movies_final <- movies %>%
rename(movie_title = Film, release_year = Year) %>%
select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>%
mutate(Profitability_millions = Profitability / 1e6) %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(movies_final)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Midnight in Paris 2011 Romence 8.74 93
## 3 Enchanted 2007 Comedy 4.01 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Waitress 2007 Romance 11.1 89
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: Profitability_millions <dbl>
#Question 7: From the resulting data, are the best movies the most popular?
In the resulting data, the highest-rated movies (as indicated by Rotten Tomatoes %) may not always be the most profitable. This suggests that critical acclaim does not necessarily equate to popularity or financial success.
#Extra Credit Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre.
summary_by_genre <- movies_sorted %>%
group_by(Genre) %>%
summarize(
average_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
average_profitability_millions = mean(Profitability_millions, na.rm = TRUE)
)
print(summary_by_genre)
## # A tibble: 10 × 3
## Genre average_rating average_profitability_millions
## <chr> <dbl> <dbl>
## 1 Action 11 0.00000125
## 2 Animation 74.2 0.00000376
## 3 Comdy 13 0.00000265
## 4 Comedy 42.7 0.00000378
## 5 Drama 51.5 0.00000841
## 6 Fantasy 73 0.00000178
## 7 Romance 42.1 0.00000398
## 8 Romence 93 0.00000874
## 9 comedy 87 0.00000810
## 10 romance 54 0.000000653