Starter Code and Data

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

#Question 1: Rename the “Film” column to “movie_title” and “Year” to “release_year”.

movies_renamed <- movies %>%
  rename(movie_title = Film, release_year = Year)
head(movies_renamed)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

#Question 2: Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

movies_selected <- movies_renamed %>%
  select(movie_title, release_year, Genre, Profitability, )
head(movies_selected)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

#Question 3: Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

movies_mutated <- movies_renamed %>%
  mutate(Profitability_millions = Profitability / 1e6)
head(movies_mutated)
## # A tibble: 6 × 9
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_millions <dbl>

#Question 4: Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

movies_sorted <- movies_mutated %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(movies_sorted)
## # A tibble: 6 × 9
##   movie_title       Genre     `Lead Studio` `Audience score %` Profitability
##   <chr>             <chr>     <chr>                      <dbl>         <dbl>
## 1 WALL-E            Animation Disney                        89          2.90
## 2 Midnight in Paris Romence   Sony                          84          8.74
## 3 Enchanted         Comedy    Disney                        80          4.01
## 4 Knocked Up        Comedy    Universal                     83          6.64
## 5 Waitress          Romance   Independent                   67         11.1 
## 6 A Serious Man     Drama     Universal                     64          4.38
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_millions <dbl>

#Question 5: Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

movies_final <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability / 1e6) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(movies_final)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

#Question 7: From the resulting data, are the best movies the most popular?

In the resulting data, the highest-rated movies (as indicated by Rotten Tomatoes %) may not always be the most profitable. This suggests that critical acclaim does not necessarily equate to popularity or financial success.

#Extra Credit Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre.

summary_by_genre <- movies_sorted %>%
  group_by(Genre) %>%
  summarize(
    average_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    average_profitability_millions = mean(Profitability_millions, na.rm = TRUE)
  )


print(summary_by_genre)
## # A tibble: 10 × 3
##    Genre     average_rating average_profitability_millions
##    <chr>              <dbl>                          <dbl>
##  1 Action              11                      0.00000125 
##  2 Animation           74.2                    0.00000376 
##  3 Comdy               13                      0.00000265 
##  4 Comedy              42.7                    0.00000378 
##  5 Drama               51.5                    0.00000841 
##  6 Fantasy             73                      0.00000178 
##  7 Romance             42.1                    0.00000398 
##  8 Romence             93                      0.00000874 
##  9 comedy              87                      0.00000810 
## 10 romance             54                      0.000000653