# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
weight <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weight
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 5 × 2
## symbols weight
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0301
## 2 2013-06-28 -0.0201
## 3 2013-09-30 0.0608
## 4 2013-12-31 0.0482
## 5 2014-03-31 0.00617
## 6 2014-06-30 0.0375
## 7 2014-09-30 -0.0348
## 8 2014-12-31 0.0102
## 9 2015-03-31 0.0231
## 10 2015-06-30 -0.00588
## 11 2015-09-30 -0.0938
## 12 2015-12-31 0.0186
## 13 2016-03-31 0.0290
## 14 2016-06-30 0.0167
## 15 2016-09-30 0.0515
## 16 2016-12-30 0.00295
## 17 2017-03-31 0.0514
## 18 2017-06-30 0.0351
## 19 2017-09-29 0.0482
## 20 2017-12-29 0.0391
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = date, y = portfolio.returns)) +
geom_point(color = "cornflowerblue") +
scale_x_date(date_breaks = "1 year",
date_labels = "%Y") +
labs(y = "Monthly Returns",
x = NULL,
title = "Portfolio Returns Scatter")
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.005) +
labs(x = "returns",
y = "count",
title = "Portfolio Returns Distribution")
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01) +
geom_density() +
scale_x_continuous(labels = scales::percent_format())+
labs(x = "returns",
y = "distribution",
title = "Portfolio Histograms and density")
What return should you expect from the portfolio in a typical quarter?