Import data

## # A tibble: 603 × 75
##    index series_name   network season title  imdb engagement date_aired         
##    <dbl> <chr>         <chr>   <chr>  <chr> <dbl>      <dbl> <dttm>             
##  1     1 Scooby Doo, … CBS     1      What…   8.1        556 1969-09-13 00:00:00
##  2     2 Scooby Doo, … CBS     1      A Cl…   8.1        479 1969-09-20 00:00:00
##  3     3 Scooby Doo, … CBS     1      Hass…   8          455 1969-09-27 00:00:00
##  4     4 Scooby Doo, … CBS     1      Mine…   7.8        426 1969-10-04 00:00:00
##  5     5 Scooby Doo, … CBS     1      Deco…   7.5        391 1969-10-11 00:00:00
##  6     6 Scooby Doo, … CBS     1      What…   8.4        384 1969-10-18 00:00:00
##  7     7 Scooby Doo, … CBS     1      Neve…   7.6        358 1969-10-25 00:00:00
##  8     8 Scooby Doo, … CBS     1      Foul…   8.2        358 1969-11-01 00:00:00
##  9     9 Scooby Doo, … CBS     1      The …   8.1        371 1969-11-08 00:00:00
## 10    10 Scooby Doo, … CBS     1      Bedl…   8          346 1969-11-15 00:00:00
## # ℹ 593 more rows
## # ℹ 67 more variables: run_time <dbl>, format <chr>, monster_name <chr>,
## #   monster_gender <chr>, monster_type <chr>, monster_subtype <chr>,
## #   monster_species <chr>, monster_real <chr>, monster_amount <dbl>,
## #   caught_fred <chr>, caught_daphnie <chr>, caught_velma <chr>,
## #   caught_shaggy <chr>, caught_scooby <chr>, captured_fred <chr>,
## #   captured_daphnie <chr>, captured_velma <chr>, captured_shaggy <chr>, …

Apply the following dplyr verbs to your data

Filter rows

## # A tibble: 25 × 75
##    index series_name   network season title  imdb engagement date_aired         
##    <dbl> <chr>         <chr>   <chr>  <chr> <dbl>      <dbl> <dttm>             
##  1     1 Scooby Doo, … CBS     1      What…   8.1        556 1969-09-13 00:00:00
##  2     2 Scooby Doo, … CBS     1      A Cl…   8.1        479 1969-09-20 00:00:00
##  3     3 Scooby Doo, … CBS     1      Hass…   8          455 1969-09-27 00:00:00
##  4     4 Scooby Doo, … CBS     1      Mine…   7.8        426 1969-10-04 00:00:00
##  5     5 Scooby Doo, … CBS     1      Deco…   7.5        391 1969-10-11 00:00:00
##  6     6 Scooby Doo, … CBS     1      What…   8.4        384 1969-10-18 00:00:00
##  7     7 Scooby Doo, … CBS     1      Neve…   7.6        358 1969-10-25 00:00:00
##  8     8 Scooby Doo, … CBS     1      Foul…   8.2        358 1969-11-01 00:00:00
##  9     9 Scooby Doo, … CBS     1      The …   8.1        371 1969-11-08 00:00:00
## 10    10 Scooby Doo, … CBS     1      Bedl…   8          346 1969-11-15 00:00:00
## # ℹ 15 more rows
## # ℹ 67 more variables: run_time <dbl>, format <chr>, monster_name <chr>,
## #   monster_gender <chr>, monster_type <chr>, monster_subtype <chr>,
## #   monster_species <chr>, monster_real <chr>, monster_amount <dbl>,
## #   caught_fred <chr>, caught_daphnie <chr>, caught_velma <chr>,
## #   caught_shaggy <chr>, caught_scooby <chr>, captured_fred <chr>,
## #   captured_daphnie <chr>, captured_velma <chr>, captured_shaggy <chr>, …

Arrange rows

## # A tibble: 603 × 75
##    index series_name   network season title  imdb engagement date_aired         
##    <dbl> <chr>         <chr>   <chr>  <chr> <dbl>      <dbl> <dttm>             
##  1   553 Supernatural  The CW  Cross… Scoo…   9.6       6929 2018-03-29 00:00:00
##  2   483 Scooby-Doo M… Cartoo… 2      Come…   9.3        260 2013-04-05 00:00:00
##  3   451 Scooby-Doo M… Cartoo… 1      All …   9.2        272 2011-07-26 00:00:00
##  4   464 Scooby-Doo M… Cartoo… 2      Nigh…   9.1        202 2012-08-10 00:00:00
##  5   482 Scooby-Doo M… Cartoo… 2      Thro…   9          184 2013-04-05 00:00:00
##  6   467 Scooby-Doo M… Cartoo… 2      Wrat…   8.9        207 2012-08-15 00:00:00
##  7   478 Scooby-Doo M… Cartoo… 2      The …   8.9        176 2013-03-29 00:00:00
##  8   479 Scooby-Doo M… Cartoo… 2      Nigh…   8.9        187 2013-04-02 00:00:00
##  9   442 Scooby-Doo M… Cartoo… 1      Esca…   8.8        250 2011-05-24 00:00:00
## 10   450 Scooby-Doo M… Cartoo… 1      Pawn…   8.8        212 2011-07-19 00:00:00
## # ℹ 593 more rows
## # ℹ 67 more variables: run_time <dbl>, format <chr>, monster_name <chr>,
## #   monster_gender <chr>, monster_type <chr>, monster_subtype <chr>,
## #   monster_species <chr>, monster_real <chr>, monster_amount <dbl>,
## #   caught_fred <chr>, caught_daphnie <chr>, caught_velma <chr>,
## #   caught_shaggy <chr>, caught_scooby <chr>, captured_fred <chr>,
## #   captured_daphnie <chr>, captured_velma <chr>, captured_shaggy <chr>, …

Select columns

## # A tibble: 603 × 2
##    monster_type     monster_subtype
##    <chr>            <chr>          
##  1 Possessed Object Suit           
##  2 Ghost            Suit           
##  3 Ghost            Phantom        
##  4 Ancient          Miner          
##  5 Ancient          Witch Doctor   
##  6 Ghost            Phantom        
##  7 Animal           Half-Human     
##  8 Mechanical       Humanoid       
##  9 Ghost            Pupeteer       
## 10 Ghost            Clown          
## # ℹ 593 more rows

Add columns

Summarize by groups