# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("GOOG", "GME", "NVDA", "V")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GME" "GOOG" "NVDA" "V"
# weights
weights <- c(0.60, 0.55, 0.50, 0.45)
weights
## [1] 0.60 0.55 0.50 0.45
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 GME 0.6
## 2 GOOG 0.55
## 3 NVDA 0.5
## 4 V 0.45
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.213
## 2 2013-06-28 0.387
## 3 2013-09-30 0.175
## 4 2013-12-31 0.221
## 5 2014-03-31 -0.0615
## 6 2014-06-30 0.0233
## 7 2014-09-30 0.0236
## 8 2014-12-31 -0.0278
## 9 2015-03-31 0.120
## 10 2015-06-30 0.0473
## 11 2015-09-30 0.187
## 12 2015-12-31 0.0930
## 13 2016-03-31 0.106
## 14 2016-06-30 -0.0121
## 15 2016-09-30 0.333
## 16 2016-12-30 0.149
## 17 2017-03-31 0.0510
## 18 2017-06-30 0.202
## 19 2017-09-29 0.174
## 20 2017-12-29 0.0521
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "plum3", binwidth = 0.01) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portolio Histogram & Density")
What return should you expect from the portfolio in a typical quarter?
From the Portfolio Histogram & Density plot I created above, the typical returns are relatively steady besides around 10% to 20%. This is where a majority of the returns cluster. There is quite the gap between about 22%-30%. In a quarter, the most frequent return for this portfolio is between 10% and 20%. For instance, if I were to pick a random quarter, I would be most likely to get some kind of return between those percentages.